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Abstract In this paper, we present some Farkas-type results for a fractional pro-
gramming problem. To this end, by using the properties of dualizing parametrization
functions, Lagrangian functions and the epigraph of the conjugate functions, we intro-
duce some new notions of regularity conditions and then obtain some dual forms of
Farkas-type results for this fractional programming problem.We also obtain sufficient
conditions for alternative type theorems. As an application of these results, we obtain
the corresponding results for a convex optimization problem.
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1 Introduction

The classical Farkas-type results characterizes those linear inequalities which are con-
sequences of a consistent ordinary linear inequality system (i.e., they are satisfied by
every solution of the system). This result plays an important role in the development of
linear programming and optimization theory. Recently, different types of Farkas-type
results and their extensions have been given in the literature with applications to more
general nonlinear programming problems and nonsmooth optimization problems, see
[1–8] and the references therein. Centered around the celebrated Farkas-type results
and its extensions, in this paper, we investigate the following fractional programming
problem:

(P) inf
x∈X

f (x)

g(x)
,

where X is a locally convex vector space, f,−g : X → R := R ∪ {±∞} are
two proper, lower semicontinuous and convex functions. Moreover, we suppose that
g(x) > 0 for all x ∈ X .

The study of fractional programming problems is very important since many opti-
mization problems which arise from practical needs turn out to be of fractional type.
Many important results have been established for fractional programming problems
in the last decades, see [9–17] and the references therein. However, to the best of
our knowledge, there are few papers to deal with Farkas-type results for fractional
programming problems, see [18–21]. Here, we specially mention the works [18,21]
on Farkas-type results for fractional programming via different kinds of regularity
conditions. By using an interiority condition, Boţ et al. [18] obtained some sufficient
conditions for Farkas-type results and alternative type theorems for (P) in finite-
dimensional spaces (see also [19,20]). Since the interiority condition does not always
hold for finite-dimensional optimization problems and frequently fail for infinite-
dimensional optimization problems arising in applications, Sun et al. [21] obtained
some sufficient conditions for Farkas-type results and alternative type theorems for
a fractional programming problem by using some closedness condition in infinite-
dimensional spaces. It is therefore of interest to investigate Farkas-type results for
fractional programming problems. So, the aim of this paper is to introduce some reg-
ularity conditions to investigate Farkas-type results and alternative type theorems for
(P).

As mentioned above, the purpose of this paper is to establish some Farkas-type
results and alternative type theorems for (P). It is important to note that there are
some papers to investigate duality or Farkas-type results for other kinds of optimiza-
tion problems, see [4,22–24], where the Farkas-type results and regularity conditions
introduced here are defined in terms of conjugates of the functions involved. Now,
in this paper, we will use a new method which is different from the method used in
the references. In particular, our dual problems and regularity conditions considered
in this paper are defined in terms of conjugates of the Lagrangian functions for the
functions involved. It is also important to note that this technique has been employed
in the study of the duality theory of convex or nonconvex programming in [25–27].
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Some dual characterizations of Farkas-type… 1405

In order to do so, by using the idea due to Dinkelbach [9], we associate (P) with the
following optimization problem:

(Pμ) inf
x∈X{ f (x) − μg(x)},

where μ ∈ R. Then, by using dualizing parametrization functions and Lagrangian
functions, we introduce some new regularity conditions and formulate a type of dual
problems of (Pμ). By virtue of the epigraph technique, we establish some sufficient
and necessary conditions of the weak and strong dualities for (Pμ). Then, by using
the regularity conditions and the duality assertions for (Pμ), we obtain some Farkas-
type results and alternative type theorems for (P). Moreover, the results obtained here
underline the connections that exist between Farkas-type results and alternative type
theorems and, on the other hand, the duality.

The paper is organized as follows. In Sect. 2, we recall some notions and give some
preliminary results. In Sect. 3, we first construct the dual problem of (Pμ). Then, we
introduce some new regularity conditions, and investigate several relationships among
them. By using these new regularity conditions, we characterize the duality results of
(Pμ). After that, we obtain some Farkas-type results and alternative type theorems of
(P). In Sect. 4, we apply these problems to convex optimization problems.

2 Mathematical preliminaries

Throughout this paper, let X be a real locally convex vector space with its continuous
dual space X∗, endowed with the weak∗ topology w(X∗, X). We always use the
notation 〈·, ·〉 for the canonical paring between X and X∗. Let D be a set in X , the
interior (resp. closure, convex hull, convex cone hull) of D is denoted by int D (resp.
cl D, co D, cone D). Thus if W ⊆ X∗, then cl W denotes the weak∗ closure of
W . We shall adopt the convention that cone D = {0} when D is an empty set. Let
D∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0,∀x ∈ D} be the dual cone of D.

Let f : X → R be an extended real valued function. The effective domain and
the epigraph are defined by dom f = {x ∈ X : f (x) < +∞} and epi f = {(x, r) ∈
X × R : f (x) ≤ r}, respectively. We say that f is proper, iff dom f = ∅ and
f (x) > −∞. The conjugate function f ∗ : X∗ → R of f is defined by f ∗(x∗) =
supx∈X {〈x∗, x〉 − f (x)}. The biconjugate function of f is the conjugate function
f ∗∗ : X → R of f ∗: f ∗∗(x) = supx∗∈X∗ {〈x, x∗〉 − f ∗(x∗)}. By [28, Theorem
2.3.4], if f is proper, convex and lower semicontinuous function, then f ∗∗ = f . For
details, see [15,28].

In this paper, we endow X∗ × R with the product topology of w(X∗, X) and the
usual Euclidean topology. Now, we give the following important results which will be
used in the following section.

Lemma 2.1 [28] Let I be an index set, and let { fi : i ∈ I } be a family of functions.
Then epi (supi∈I fi ) = ∩i∈I epi fi .

We conclude this section by recalling the following notions which will be used in
this paper. Let p ∈ X∗. Then, p can be regarded as a function on X in such a way that
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p(x) := 〈p, x〉, for any x ∈ X. Thus, for any α ∈ R and any function h : X → R, we
have

(h + p + α)∗(x∗) = h∗(x∗ − p) − α, for each x∗ ∈ X∗, (1)

and

epi (h + p + α)∗ = epi h∗ + (p,−α). (2)

Here and throughout this paper, following Zălinescu [28], we adapt the convention
that

(+∞) + (−∞) = (+∞) − (+∞) = +∞, and 0 · ∞ = 0.

3 Main results

In this section, we use some new regularity conditions to establish some Farkas-type
results for (P). The obtained results are new in two features: firstly, our regularity
conditions considered in this paper are defined in terms of conjugates of theLagrangian
functions for the functions involved, while most of similar regularity conditions in the
literature are defined in terms of conjugates of the functions involved; secondly, we
obtain sufficient conditions for alternative type theorems by using a newmethodwhich
is different from the method used in the references. To this end, we first construct the
dual problems of (Pμ), and present the weak and strong duality assertions. Then,
by using the duality assertions, we establish some Farkas-type results for (P). It is
obvious that there exists the following relation between the optimal value val(P) of
the problem (P) and the optimal value val(Pμ) of the problem (Pμ).

Lemma 3.1 The inequality val(P) ≥ μholds if andonly if the inequalityval(Pμ) ≥ 0
holds.

Now, consider the problem (Pμ). For any x ∈ X, we introduce the dualizing
parametrization functions F : X × Z → R and G : X × Z → R for f and g
respectively by

F(x, 0) = f (x), G(x, 0) = −g(x), (3)

where Z is also a locally convex Hausdorff topological vector space and Z∗ is the
dual space. Throughout the paper, we also assume that F and G are proper convex
functions, and F(x, ·) and G(x, ·) are closed. Similar to the methods used on pages
18, 19 in [25], for the problem (Pμ), we define the Lagrangian functions K and L on
X × Z∗ by

K (x, z∗) = inf
z∈Z {F(x, z) + z∗(z)} (4)

and
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L(x, z∗) = inf
z∈Z {G(x, z) + z∗(z)}, (5)

respectively. Then, the functions z∗ → K (x, z∗) and z∗ → L(x, z∗) are the conjugates
in the concave sense of the functions z → −F(x, z) and z → −G(x, z), respectively.
Since F(x, ·) and G(x, ·) are closed and convex, the conjugates are reciprocal, i.e.,
the functions z → −F(x, z) and z → −G(x, z) are the conjugates of the functions
z∗ → K (x, z∗) and z∗ → L(x, z∗), or

F(x, z) = sup
z∗∈Z∗

{K (x, z∗) − z∗(z)} (6)

and

G(x, z) = sup
z∗∈Z∗

{L(x, z∗) − z∗(z)}. (7)

Let z = 0. Then, it follows from (3), (6), and (7) that

f (x) = sup
z∗∈Z∗

K (x, z∗), −g(x) = sup
z∗∈Z∗

L(x, z∗). (8)

One should notice that the Eq. (8) plays an important role in establishing the dual
problem of (Pμ). For given z∗ ∈ Z∗, denote

K z∗(x) = K (x, z∗), Lz∗(x) = L(x, z∗). (9)

Now, we will construct a dual problem to (Pμ) and completely characterize the weak
and strong Lagrange dualities. Since the objective function of the problem (Pμ)

depends on the sign of μ, we have to treat two different cases. In the case that μ

is a negative value, the objective function of the problem (Pμ) is the difference of two
convex functions and thereforewe can use a approach inspired fromDCprogramming.
In the case that μ is a non-negative value, the objective function of the problem (Pμ)

is a convex function and the convex optimization theory can be used.

3.1 The case that µ is a negative value

For any real number μ < 0, in order to formulate a dual problem for (Pμ), we further
assume throughout this subsection that there exist some z∗ ∈ Z∗ such that Lz∗ is
proper lower semicontinuous function. As G is proper convex function, and G(x, ·)
is closed, then, by Theorem 6 in [25], Lz∗(x) is convex. So, it follows that

Lz∗(x) =
(
Lz∗

)∗∗
(x) = sup

v∗∈ dom
(
Lz∗ )∗

{
v∗x −

(
Lz∗

)∗
(v∗)

}
. (10)
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Then,

inf
x∈X

{
K (x, z∗) + μL(x, z∗)

}

= inf
x∈X

{
K (x, z∗) − (−μ)L(x, z∗)

}

= inf
x∈X,

v∗∈ dom
(
Lz∗

)∗

{
K (x, z∗) − (−μ)

(
v∗x −

(
Lz∗

)∗
(v∗)

)}

= inf
x∈X,

v∗∈ dom
(
Lz∗

)∗

{
K (x, z∗) − (−μv∗)x + (−μ)

(
Lz∗

)∗
(v∗)

}

= inf
x∈X,

v∗∈ dom
(
Lz∗

)∗

{
K z∗(x) − (−μv∗)x + (−μ)

(
Lz∗

)∗
(v∗)

}

= inf
v∗∈ dom

(
Lz∗ )∗

{
−

(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗)

}
.

Let

φμ(z∗) := inf
v∗∈ dom

(
Lz∗ )∗

{
−

(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗)

}
. (11)

Then, we introduce the dual problem of (Pμ) as follows:

(Dμ) sup
z∗∈Z∗

φμ(z∗). (12)

In order to characterize the weak and strong dualities between (Pμ) and (Dμ), we
need to introduce some new regularity conditions. To this aim, we will make use of
the following characteristic set � defined by

� :=
⋃

z∗∈Z∗

⋂

v∗∈ dom
(
Lz∗ )∗

{
epi

(
K z∗

)∗ + μ
(
v∗, (Lz∗)∗(v∗)

)}
. (13)

The following lemma shows that � is equal to
⋃

z∗∈Z∗ epi
(
K z∗ + μLz∗

)∗
.

Lemma 3.2 The following formula holds:

� =
⋃

z∗∈Z∗
epi

(
K z∗ + μLz∗

)∗
. (14)
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Proof It follows from (10) that

(
K z∗ + μLz∗

)∗
(x∗)

= sup
x∈X

⎛
⎝x∗(x) − K z∗(x) + (−μ) sup

v∗∈ dom
(
Lz∗ )∗

{
v∗x −

(
Lz∗

)∗
(v∗)

}
⎞
⎠

= sup
x∈X,

v∗∈ dom
(
Lz∗

)∗

(
x∗(x) − K z∗(x) − μv∗x + μ

(
Lz∗

)∗
(v∗)

)

= sup
v∗∈ dom

(
Lz∗ )∗

(
K z∗ + μv∗ − μ

(
Lz∗

)∗
(v∗)

)∗
(x∗).

This, together with (2) and Lemma 2.1, implies that

epi
(
K z∗ + μLz∗

)∗ =
⋂

v∗∈ dom
(
Lz∗ )∗

epi
(
K z∗ + μv∗ − μ

(
Lz∗

)∗
(v∗)

)∗

=
⋂

v∗∈ dom
(
Lz∗ )∗

{
epi

(
K z∗

)∗ + μ
(
v∗,

(
Lz∗

)∗
(v∗)

)}
.

This completes the proof. ��
Comparing with the expressions of problems (Pμ) and (Dμ), it is easy to see that

� ∩ ({0} × R) is associated with (Dμ) and epi ( f − μg)∗ ∩ ({0} × R) is associated
with (Pμ). Considering the possible relationships between epi ( f − μg)∗ and �, we
introduce the following regularity conditions.

Definition 3.1 The family ( f, g) is said to satisfy

i. the further regularity condition (FRC), iff

epi ( f − μg)∗ ∩ ({0} × R) = � ∩ ({0} × R);

ii. the semi-(FRC) (SFRC), iff

epi ( f − μg)∗ ∩ ({0} × R) ⊇ � ∩ ({0} × R).

Remark 3.1 It is worth noting that since

val(Pμ) = inf
x∈X { f (x) − μg(x)} = −( f − μg)∗(0),

we have

(0, α) ∈ epi ( f − μg)∗ ⇔ val(Pμ) ≥ −α. (15)
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1410 X. Sun et al.

In order to completely characterize the duality results in terms of these regularity
conditions, we need the following lemma.

Lemma 3.3 Let α ∈ R. Then, (0, α) ∈ � if and only if there exists z∗ ∈ Z∗, such that
for any v∗ ∈ dom

(
Lz∗

)∗
, satisfies

−
(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗) ≥ −α. (16)

Proof (⇒) Let (0, α) ∈ �. Then, there exists z∗ ∈ Z∗, such that for any v∗ ∈
dom

(
Lz∗

)∗
,

(0, α) ∈ epi
(
K z∗

)∗ + μ
(
v∗,

(
Lz∗

)∗
(v∗)

)
.

Then, there exists (x∗
1 , α1) ∈ epi

(
K z∗

)∗
such that

x∗
1 = −μv∗ (17)

and
α = α1 + μ

(
Lz∗

)∗
(v∗). (18)

Since
(
K z∗

)∗
(x∗

1 ) ≤ α1, it follows from (17) and (18) that

−
(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗) ≥ −α1 − μ

(
Lz∗

)∗
(v∗) = −α.

Then, (16) holds.

(⇐) Suppose that there exists z∗ ∈ Z∗, such that for any v∗ ∈ dom
(
Lz∗

)∗
, (16)

holds. Then,

(
K z∗

)∗
(−μv∗) ≤ α − μ

(
Lz∗

)∗
(v∗),

which means that

(
−μv∗, α − μ

(
Lz∗

)∗
(v∗)

)
∈ epi

(
K z∗

)∗
. (19)

Then,

(0, α) =
(
−μv∗, α − μ

(
Lz∗

)∗
(v∗)

)
+ μ

(
v∗,

(
Lz∗

)∗
(v∗)

)

∈ epi
(
K z∗

)∗ + μ
(
v∗,

(
Lz∗

)∗
(v∗)

)
.
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Since v∗ ∈ dom (Lz∗) is arbitrary, we get

(0, α) ∈
⋂

v∗∈ dom
(
Lz∗ )∗

{
epi

(
K z∗

)∗ + μ
(
v∗,

(
Lz∗

)∗
(v∗)

)}
.

By (13), we get (0, α) ∈ � and the proof is complete. ��
Now, we use these regularity conditions to completely characterize weak and strong
parametrized Lagrange dualities between (Pμ) and (Dμ).

Theorem 3.1 The family ( f, g) satisfies the (SFRC) if and only if the weak duality
between (Pμ) and (Dμ) holds.

Proof (⇒) Suppose that the weak duality between (Pμ) and (Dμ) does not hold.
Then, there exist α ∈ R such that val(Pμ) < −α < val(Dμ). By (11) and (12),

there exists z∗ ∈ Z∗, such that for any v∗ ∈ dom
(
Lz∗

)∗
, we have (16) holds.

Then, from Lemma 3.3, (0, α) ∈ �. Since the family ( f, g) satisfies the (SFRC), we
have that (0, α) ∈ epi ( f − μg)∗. Then, from (15), val(Pμ) ≥ −α. This contradicts
val(Pμ) < −α. Thus, the weak duality between (Pμ) and (Dμ) holds.

(⇐) Suppose that the weak duality between (Pμ) and (Dμ) holds. Let (0, α) ∈ �.
By Lemma 3.3, val(Dμ) ≥ −α. Then, val(Pμ) ≥ val(Dμ) ≥ −α. which implies
that (0, α) ∈ epi ( f − μg)∗ in terms of (15). Then, the family ( f, g) satisfies the
(SFRC). The proof is complete. ��

Now, we give an example to explain Theorem 3.1.

Example 3.1 Let X = Y = Z = R and μ = −1. Define f, g : R → R by f =
δ[1,+∞) and

g(x) =
{
2x, if x ≥ 1,
+∞, otherwise.

Then, it is easy to see that

( f − μg)∗(x∗) =
{
x∗ − 2, if x∗ ≤ 2,
+∞, otherwise.

So,

epi ( f − μg)∗ =
{
(x∗, r) ∈ R

2 : x∗ ≤ 2, r ≥ x∗ − 2
}

.

On the other hand, let

F(x, z) =
{
0, if x ≥ 1, z ≤ 2x + 0.5,
+∞, otherwise.

123
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and G(x, z) = −g(x) + z. Obviously, F(x, 0) = f (x) and G(x, 0) = −g(x).
Moreover, we have

K (x, z∗) =
⎧⎨
⎩
z∗(2x + 0.5), if x ≥ 1, z∗ ≤ 0,
−∞, if x ≥ 1, z∗ > 0,
+∞, otherwise,

and

L(x, z∗) =
⎧⎨
⎩

−2x, if x ≥ 1, z∗ = −1,
−∞, if x ≥ 1, z∗ = −1,
+∞, otherwise.

Then,

(
K z∗ + μLz∗

)∗
(x∗) =

{
x∗ + 0.5, if x∗ ≤ 0, z∗ = −1,
+∞, otherwise.

So,

� =
{
(x∗, r) ∈ R

2 : x∗ ≤ 0, r ≥ x∗ + 0.5
}

.

Obviously, � ∩ ({0} × R) ⊆ epi ( f − μg)∗ ∩ ({0} × R) and then the family ( f, g)
satisfies the (SFRC). It is also easy to see that val(Pμ) = 2, val(Dμ) = −0.5.
Consequently, val(Pμ) > val(Dμ) and the weak duality between (Pμ) and (Dμ)

holds.

Theorem 3.2 The family ( f, g) satisfies the (FRC) if and only if the strong duality
between (Pμ) and (Dμ) holds.

Proof (⇒) Suppose that the family ( f, g) satisfies the (FRC). Then, the family ( f, g)
satisfies the (SFRC). By Theorem 3.1, val(Pμ) ≥ val(Dμ). So, it suffices to show
that val(Dμ) ≥ val(Pμ). If val(Pμ) = −∞, then we get strong duality for (Pμ) and
(Dμ) via weak duality. So, we assume that val(Pμ) = −α ∈ R. By (15),

(0, α) ∈ epi ( f − μg)∗.

Since the family ( f, g) satisfies the (FRC), we have (0, α) ∈ �. By Lemma 3.3, there

exists z∗ ∈ Z∗, such that for any v∗ ∈ dom
(
Lz∗

)∗
, satisfies

−
(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗) ≥ −α.

This follows that val(Dμ) ≥ −α. This means that the strong duality between (Pμ)

and (Dμ) holds.
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(⇐) Assume that the strong duality between (Pμ) and (Dμ) holds. By Theorem
3.1, we only need to prove that

epi ( f − μg)∗ ∩ ({0} × R) ⊆ � ∩ ({0} × R). (20)

In fact, let (0, α) ∈ epi ( f − μg)∗. By (15), val(Pμ) ≥ −α. Then, from the strong
duality, val(Dμ) = val(Pμ) ≥ −α. By Lemma 3.3, (0, α) ∈ � and (20) holds. The
proof is complete. ��

We are now in a position to prove the main results of this section. It serve as the
main tools for establishing alternative type theorem for (P) (see Corollary 3.1).

Theorem 3.3 If the family ( f, g) satisfies the (FRC), then the following statements
are equivalent:

i. x ∈ X �⇒ f (x)
g(x) ≥ μ.

ii. There exists z∗ ∈ Z∗, such that for any v∗ ∈ dom
(
Lz∗

)∗
, satisfies

−
(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗) ≥ 0. (21)

Proof Suppose that the family ( f, g) satisfies the (FRC). If (i) holds, then, val(P) ≥
μ. By Lemma 3.1, val(Pμ) ≥ 0. It follows from Theorem 3.2 that val(Dμ) =
val(Pμ) ≥ 0, which means that (ii) holds.

Conversely, assume that (ii) holds. Then, there exists z∗ ∈ Z∗, such that for any
v∗ ∈ dom (Lz∗)∗, we have (21) holds. Therefore, it comes that

sup
z∗∈Z∗

inf
v∗∈ dom

(
Lz∗ )∗

{
−

(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗)

}
≥ 0.

This means that val(Dμ) ≥ 0. By Theorem 3.2, we obtain that val(Pμ) ≥ 0. By
Lemma 3.1, we have val(P) ≥ μ, and then (i) holds. The proof is complete. ��

The previous result can be reformulated as a theorem of the alternative in the
following way.

Corollary 3.1 If the family ( f, g) satisfies the (FRC), then precisely one of the fol-
lowing statements is true

i. ∃x ∈ X, such that f (x)
g(x) < μ.

ii. There exists z∗ ∈ Z∗, such that for any v∗ ∈ dom
(
Lz∗

)∗
, satisfies

−
(
K z∗

)∗
(−μv∗) − μ

(
Lz∗

)∗
(v∗) ≥ 0.
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3.2 The case that µ is a non-negative value

For any real number μ ≥ 0, it is easy to see that the objective function of the problem
(Pμ) is a convex function. Then, the problem (Pμ) is a convex programming problem.
For given z∗ ∈ Z∗, denote (K + μL)z

∗
(x) = K (x, z∗) + μL(x, z∗). It is easy to see

that

inf
x∈X

{
K (x, z∗) + μL(x, z∗)

} = inf
x∈X

{
(K + μL)z

∗
(x)

}

= − sup
x∈X

{
−(K + μL)z

∗
(x)

}

= −
(
K z∗ + μLz∗

)∗
(0) .

Let

ψμ(z∗) = −
(
K z∗ + μLz∗

)∗
(0) . (22)

Then, we define the following dual problem of (Pμ) as follows:

(Dμ) sup
z∗∈Z∗

ψμ(z∗). (23)

In order to characterize the weak and strong dualities between (Pμ) and (Dμ), we
need to introduce some new regularity conditions. To this aim, we will make use of
the following characteristic set � defined by

� :=
⋃

z∗∈Z∗
epi

(
K z∗ + μLz∗

)∗
.

Comparing with the expressions of problems (Pμ) and (Dμ), it is easy to see that
� ∩ ({0} × R) is associated with (Dμ) and epi ( f − μg)∗ ∩ ({0} × R) is associated
with (Pμ). Considering the possible relationships between epi ( f − μg)∗ and �, we
introduce the following regularity conditions.

Definition 3.2 The family ( f, g) is said to satisfy

i. the further regularity condition (FRC), iff

epi ( f − μg)∗ ∩ ({0} × R) = � ∩ ({0} × R);

ii. the semi-(FRC) (SFRC), iff

epi ( f − μg)∗ ∩ ({0} × R) ⊇ � ∩ ({0} × R).

Remark 3.2 One should notice that when μ < 0, Lemma 3.2 shows that � is equal

to
⋃

z∗∈Z∗ epi
(
K z∗ + μLz∗

)∗
. So, if we do not consider the sign of μ, the notions
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(FRC) and (SFRC) of Definition 3.2 coincide with corresponding ones of Definition
3.1.

Now, we use these regularity conditions to completely characterize weak and strong
parametrized Lagrange dualities between (Pμ) and (Dμ).

Theorem 3.4 The family ( f, g) satisfies the (SFRC) if and only if the weak duality
between (Pμ) and (Dμ) holds.

Proof (⇒) Suppose that the weak duality between (Pμ) and (Dμ) does not hold.
Then, there exist α ∈ R such that val(Pμ) < −α < val(Dμ). By (22) and (23), there

exists z∗ ∈ Z∗, such that −
(
K z∗ + μLz∗

)∗
(0) ≥ −α. This means that (0, α) ∈ �.

Since the family ( f, g) satisfies the (SFRC), we get (0, α) ∈ epi ( f −μg)∗. By (15),
val(Pμ) ≥ −α. This contradicts val(Pμ) < −α. Thus, the weak duality between
(Pμ) and (Dμ) holds.

(⇐) Suppose that the weak duality between (Pμ) and (Dμ) holds. Let (0, α) ∈ �.
Then, there exists z∗ ∈ Z∗, such that

(0, α) ∈ epi
(
K z∗ + μLz∗

)∗
,

which means that

−
(
K z∗ + μLz∗

)∗
(0) ≥ −α.

Then, val(Dμ) ≥ −α. So, val(Pμ) ≥ val(Dμ) ≥ −α. which implies that (0, α) ∈
epi ( f − μg)∗ in terms of (15). Thus, the family ( f, g) satisfies the (SFRC). The
proof is complete. ��
Theorem 3.5 The family ( f, g) satisfies the (FRC) if and only if the strong duality
between (Pμ) and (Dμ) holds.

Proof (⇒) Suppose that the family ( f, g) satisfies the (FRC). Then, the family ( f, g)
satisfies the (SFRC). By Theorem 3.4, val(Pμ) ≥ val(Dμ). So, it suffices to show
that val(Dμ) ≥ val(Pμ). If val(Pμ) = −∞, then we get strong duality for (Pμ)

and (Dμ) via weak duality. So, we assume that val(Pμ) = −α ∈ R. By (15), we
get (0, α) ∈ epi ( f − μg)∗. Since the family ( f, g) satisfies the (FRC), we have

(0, α) ∈ �. Then, there exists z∗ ∈ Z∗, such that −
(
K z∗ + μLz∗

)∗
(0) ≥ −α. This

follows that val(Dμ) ≥ −α. This means that the strong duality between (Pμ) and
(Dμ) holds.

(⇐) Assume that the strong duality between (Pμ) and (Dμ) holds. By Theorem
3.4, we only need to prove that

epi ( f − μg)∗ ∩ ({0} × R) ⊆ � ∩ ({0} × R). (24)

In fact, let (0, α) ∈ epi ( f − μg)∗. By (15), val(Pμ) ≥ −α. Then, from the strong
duality, val(Dμ) = val(Pμ) ≥ −α. This follows that there exists z∗ ∈ Z∗, such that
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−
(
K z∗ + μLz∗

)∗
(0) ≥ −α, which means that (0, α) ∈ � and (24) holds. The proof

is complete. ��
Now, we give an example to explain Theorem 3.5.

Example 3.2 Let X = Y = Z = R and μ = 1. Define f, g : R → R by f = δ[1,+∞)

and

g(x) =
{−2x, if x ≥ 1,

+∞, otherwise.

Then, it is easy to see that

( f − μg)∗(x∗) =
{
x∗ − 2, if x∗ ≤ 2,
+∞, otherwise.

So,

epi ( f − μg)∗ =
{
(x∗, r) ∈ R2 : x∗ ≤ 2, r ≥ x∗ − 2

}
.

On the other hand, let F(x, z) = f (x) + z and G(x, z) = −g(x) + z. Obviously,
F(x, 0) = f (x) and G(x, 0) = −g(x). Moreover, we have

K (x, z∗) =
⎧⎨
⎩
0, if x ≥ 1, z∗ = −1,
−∞, if x ≥ 1, z∗ = −1,
+∞, otherwise,

and

L(x, z∗) =
⎧
⎨
⎩
2x, if x ≥ 1, z∗ = −1,
−∞, if x ≥ 1, z∗ = −1,
+∞, otherwise.

Then,

(
K z∗ + μLz∗

)∗
(x∗) =

{
x∗ − 2, if x∗ ≤ 2, z∗ = −1,
+∞, otherwise.

So,

� =
{
(x∗, r) ∈ R

2 : x∗ ≤ 2, r ≥ x∗ − 2
}

.

Obviously,

epi ( f − μg)∗ ∩ ({0} × R) = � ∩ ({0} × R),
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and then the further regularity condition (FRC) holds. It is also easy to see that
val(Pμ) = val(Dμ) = 2. Consequently, the strong duality between (Pμ) and (Dμ)

holds.

Now, we prove the main results of this subsection. It serve as the main tools for
establishing alternative type theorem for (P) (see Corollary 3.2).

Theorem 3.6 If the family ( f, g) satisfies the (FRC), then the following statements
are equivalent:

i. x ∈ X �⇒ f (x)
g(x) ≥ μ.

ii. There exists z∗ ∈ Z∗, such that

−
(
K z∗ + μLz∗

)∗
(0) ≥ 0. (25)

Proof Suppose that the family ( f, g) satisfies the (FRC). If (i) holds, then, val(P) ≥
μ. By Lemma 3.1, val(Pμ) ≥ 0. It follows from Theorem 3.5 that val(Dμ) =
val(Pμ) ≥ 0, which means that (ii) holds.

Conversely, assume that (ii) holds. Then, there exists z∗ ∈ Z∗, satisfies (25).

Therefore, it comes that supz∗∈Z∗
{
−

(
K z∗ + μLz∗

)∗
(0)

}
≥ 0. This means that

val(Dμ) ≥ 0. By Theorem 3.5, we obtain that val(Pμ) ≥ 0. By Lemma 3.1, we get
val(P) ≥ μ, and then (i) holds. The proof is complete. ��
The previous result can be reformulated as a theorem of the alternative in the following
way.

Corollary 3.2 If the family ( f, g) satisfies the (FRC), then precisely one of the fol-
lowing statements is true

i. ∃x ∈ X, such that f (x)
g(x) < μ.

ii. There exists z∗ ∈ Z∗, such that −
(
K z∗ + μLz∗

)∗
(0) ≥ 0.

4 Applications

In this section, we apply the approaches of the previous sections to a special case of
our general results, which has been treated in the previous papers.

Let g(x) = 1. (P) becomes the following convex optimization problem:

(P1) inf
x∈X f (x).

By using the similar approach presented in Sect. 3.2, we have the following Lagrange
dual problem

(DL) sup
z∗∈Z∗

inf
x∈X K (x, z∗).

123



1418 X. Sun et al.

Remark 4.1 One should note that since K (x, z∗) = inf z∈Z {F(x, z)+ z∗(z)}, we can
easily get

inf
x∈X K (x, z∗) = − sup

x∈X,z∈Z
{〈−z∗, z〉 − F(x, z)} = −F∗(0,−z∗).

And the Lagrange dual problem (DL) becomes

sup
z∗∈Z∗

{−F∗(0, z∗)},

which is called Fenchel conjugate dual problem and has been investigated in [15,27].

Similarly, we introduce the following regularity conditions in order to investigate the
duality and Farkas-type results for (P1).

Definition 4.1 We say that

i. the further regularity condition (FRC)1 holds, iff

epi f ∗ ∩ ({0} × R) =
⋃

z∗∈Z∗
epi

(
K z∗

)∗ ∩ ({0} × R);

ii. the semi-(FRC)1 (SFRC)1 holds, iff

epi f ∗ ∩ ({0} × R) ⊇
⋃

z∗∈Z∗
epi

(
K z∗

)∗ ∩ ({0} × R).

As some consequences of the results which have been treated in Sect. 3.2, we obtain
the following results for (P1).

Theorem 4.1 The (SFRC)1 holds if and only if the weak duality between (P1) and
(DL) holds.

Theorem 4.2 The (FRC)1 holds if and only if the strong duality between (P1) and
(DL) holds.

Theorem 4.3 If the (FRC)1 holds, then the following statements are equivalent:

i. x ∈ X �⇒ f (x) ≥ 0.
ii. There exist z∗ ∈ Z∗ and x ∈ X, such that K (x, z∗) ≥ 0.

Corollary 4.1 If the (FRC) holds, then precisely one of the following statements is
true

i. ∃x ∈ X, such that f (x) < 0.
ii. There exist z∗ ∈ Z∗ and x ∈ X, such that K (x, z∗) ≥ 0.
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5 Conclusions

In this paper, we present some sufficient conditions, which ensure that the optimal
objective value of a fractional programming problem is greater than or equal to a given
real constant. The desired results are obtained using the parametrized Lagrange duality
approach applied to an optimization problem with convex or DC objective functions.
Our results are new and different from some existing ones in the literature. Moreover,
the results obtained here underline the connections that exist between Farkas-type
results and alternative type theorems and, on the other hand, the duality.
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