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Abstract We consider scheduling a sequence of C-benevolent jobs on multiple
homogeneous machines. For two machines, we propose a 2-competitive Coopera-
tive Greedy algorithm and provide a lower bound of 2 for the competitive ratio of any
deterministic online scheduling algorithms on two machines. For multiple machines,
we propose a Pairing-m Greedy algorithm, which is deterministic 2-competitive for
even number of machines and randomized (2 + 2/m)-competitive for odd number of
machines. We provide a lower bound of 1.436 for the competitive ratio of any deter-
ministic online scheduling algorithms on three machines, which is the best known
lower bound for competitive ratios of deterministic scheduling algorithms on three
machines.

Keywords Online scheduling · C-benevolent jobs · Approximation algorithm

1 Introduction

The interval scheduling problem arises in many real-life applications, such as online
keyword auctions, memory caching, and time-constrained scheduling [9]. For an inter-
val scheduling problem, there is a sequence of jobs to be scheduled on a singlemachine
or multiple machines. Each job consists of the following characteristics: (a) an arrival
time; (b) an execution time; (c) a deadline; (d) a value, the reward to be obtained
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after a job is completed. We study the case where the deadline of a job is equal to the
sum of the arrival time and the execution time of the job, and hence, each job can be
represented by an interval along the time axis.

The interval scheduling problem and its many variations have been extensively
studied. The offline interval scheduling problem on non-identical machines is NP-
complete [1]. Other results for the offline interval scheduling problem can be found
in [2,7,8,15,16]. For the online scheduling problem for unweighted jobs, Faigle
and Nawijn [10] proposes a simple Greedy algorithm, GOL, which is optimal for
scheduling unweighted jobs on multiple identical machines. The general online inter-
val scheduling problem for weighted jobs does not have any approximation algorithms
with finite worst case guarantees [20]. Additional assumptions are needed in order to
obtain algorithms with finite competitive ratios. For a thorough review on results for
variations of interval scheduling problems, see [14].

One such example is given by [20], who considers scheduling f -benevolent jobs
on a single machine. The values and the execution times of f -benevolent jobs are
subject to a fixed function f , called f -benevolent cases. The C-benevolent jobs (see
Definition 2) we consider in this paper is a subclass of f -benevolent jobs. A Greedy
algorithm, HEU, is provided and proven to be 4-competitive for C-benevolent jobs.
This HEU algorithm achieves the best possible competitive ratio among deterministic
algorithms for scheduling C-benevolent jobs on a single machine. Lipton and Tomkins
[17] proposes a 2-competitive algorithm for scheduling jobs with only two possible
execution times and job values proportional to execution times. For job sequences with
arbitrary execution times, a Ω((logΔ)1+ε)-competitive algorithm is provided, where
Δ is the ratio of the longest to shortest execution times. Baruah et al. [3] proposes
a 4-competitive algorithm on a single machine, where job values are assumed to be
proportional to execution times.

Another widely used technique to reduce the competitive ratios of online schedul-
ing algorithms is randomization. Seiden [19] first proposes a randomized (2 +√
3)-competitive algorithm for scheduling C-benevolent jobs on a single machine.

Miyazawa and Erlebach [18] proposes a 3-competitive algorithm on a single machine
formonotone instances, where the order of right points of job intervals coincides with
the order of left points of jobs and job values are non-decreasing. Fung et al. [12] pro-
poses a barely random 3.5822-competitive algorithm for equal-execution-time jobs
with arbitrary values. Fung et al. [13] proposes 2-competitive barely random algo-
rithms for equal-execution-time and C-benevolent job sequences, respectively.

The general online interval scheduling problem on multiple machines is more
complicated than scheduling on a single machine, and hence, there does not exist
an approximation algorithm with finite worst-case guarantees [5]. The problem of
scheduling on two machines has been extensively studied over the years. Baruah et
al. [3] proposes a cooperative 2-competitive algorithm on two identical machines for
jobs with values uniformly proportional to execution times. Our Cooperative Greedy
algorithm for two machines is inspired by their algorithm. Fung et al. [12] proposes a
3.5822-competitive algorithmon twomachines for jobswith equal execution times and
arbitrary values. They provide a lower bound of 4/3 (2) for scheduling C-benevolent
jobs on multiple (two) machines. As for scheduling on more than two machines,
Epstein et al. [5] proposes a 4-competitive Greedy algorithm, ALG, for scheduling
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C-benevolent jobs on multiple uniformly related machines (i.e., each machine has a
service speed). Fung et al. [11] proposes a 2(2 + 2/(2m − 1))-competitive algorithm
for scheduling equal-execution-time jobs on even (odd) number of machines. Our pro-
posed algorithm follows a similar idea as [11], but we handle C-benevolent jobs with
variable execution times. The best lower bound for competitive ratios of randomized
algorithms for scheduling C-benevolent jobs on multiple machines is 1 + ln 2 [6],
which is proven for scheduling C-benevolent jobs on a single machine. Fung et al.
[11] point out that the lower bound of 1 + ln 2 also applies to multiple homogeneous
machines.We provide a lower bound for competitive ratios of deterministic algorithms
on two and three machines, respectively, using a different approach.

This paper considers scheduling a sequence of C-benevolent jobs on multiple
machines, generalizing the problem proposed by [20] on a single machine. Machines
are treated as homogeneous. For two machines, we propose a 2-competitive Coopera-
tive Greedy algorithm. We further generalize the algorithm to multiple machines and
propose a Pairing-m algorithm, which is deterministic 2-competitive for even number
of machines and randomized (2+2/m)-competitive for odd number of machines. The
Pairing-m algorithm improves the 4-competitive algorithm given by [5]. We provide
a lower bound of 2 and 1.436 for the competitive ratio of any deterministic online
scheduling algorithms on two and three machines, respectively. Therefore, the Coop-
erative Greedy algorithm achieves the best possible competitive ratio for scheduling
C-benevolent jobs on two machines.

The paper is organized as follows. Section 2 clarifies the basic variable definitions
and problem formulations for the online interval scheduling problem considered in
this paper. Section 3 provides the Cooperative Greedy algorithm for scheduling on
two machines. Section 4 proposes a Pairing-m Greedy algorithm for scheduling on
multiple machines. Section 5 provides a lower bound of 2 and 1.436 for competitive
ratios of any deterministic online algorithms for scheduling on two and threemachines,
respectively. Section 6 summarizes the paper with future research directions.

2 Preliminary

Consider a fixed set of machines available for executing jobs. Let m denote the total
number of machines. A sequence of N (unknown) jobs will arrive, one after another,
to be scheduled on one of the available machines. Let I = {J1, . . . , JN } denote the list
of arriving jobs, where Ji represents the i th arriving job. The scheduling of a job to a
machine is referred to as an assignment. One machine can execute at most one job at
a time and one job can be assigned to at most one machine. Each assignment should
be made online (i.e., the assignment is made immediately when a job arrives without
knowledge of jobs arriving in the future). The assignment is preemptive, which means
a job assigned to a machine can be terminated later in favor of a later arriving job,
but the terminated job cannot be reassigned. In this case, we say the terminated job is
aborted. A machine that is executing some job is said to be busy; otherwise, it is said
to be available.

A job vector is revealed upon each job arrival. Let Ji = (ai , li , vi ) denote the job
vector of the i th job arrival, for i = 1, 2, . . . , N . For each job vector, ai denotes the
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arrival time of the i th job, li denotes the execution time of the i th job, and vi denotes
the value of the i th job. Therefore, if a job is assigned to a machine, the completion
time, is given by fi = ai + li . Moreover, we refer to the interval defined by [ai , fi ) as
the job interval. We assume that no two jobs share the same arrival time. If two jobs
Ji1 and Ji2 satisfy [ai1 , fi1)

⋂[ai2 , fi2) �= ∅, then Ji1 and Ji2 are said to conflict with
each other.

The objective of this online scheduling problem is to maximize the total value of
completed jobs, subject to the constraint of the number of available machines.

Let OPT(I) denote the value of the optimal schedule for a job instance I, which is
obtained with the complete knowledge of I, and hence, is the optimal off-line reward.
Let A(I) denote the value obtained by algorithm A for a job instance I. We employ
the standard definition for competitive ratios in this work, as given in Definition 1.

Definition 1 An online algorithm A is said to have a competitive ratio of γ (i.e.,
γ -competitive) if A(I) ≥ OPT (I)/γ for any job instance I generated by an adapted
adversary.

By Definition 1, we must have γ ≥ 1. We focus on C-benevolent jobs, as defined
in Definition 2.

Definition 2 A job J = (a, l, v) is a C-benevolent job if v = f (l) and f (l) is a
positive, convex, strictly increasing and continuous function of l. In other words, the
convexity property of C-benevolent function f (l) implies that

f (a + ε) + f (b − ε) ≤ f (a) + f (b),

for 0 < ε ≤ a ≤ b.

The class of C-benevolent jobs embraces many applications (see [5,13,20]), including
the jobs with values proportional to execution times (see [3,4]).

3 Cooperative Greedy algorithm for two machines

This section considers two machines, which is the basic case for multiple machines.
The analysis method used here provides insights for multiple machines, and this algo-
rithm is later generalized to multiple machines in Sect. 4.

We propose a deterministic algorithm for two machines, referred to as the Coop-
erative Greedy algorithm. This algorithm is inspired by the 2-competitive algorithm
given by [3], which is designed for jobs with values proportional to execution times
(a special class of C-benevolent functions). Independent from our work, [13] uses
the same idea in proposing a randomized 2-competitive algorithm for scheduling C-
benevolent jobs on a single machine. The proof of Theorem 1 follows from the proof
of Theorem 3.3 [13], and hence, is omitted here.

Theorem 1 The Cooperative Greedy algorithm is 2-competitive for scheduling C-
benevolent jobs on two machines.
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Cooperative Greedy Algorithm
Arbitrarily pick one machine as the primary machine (PM) and the other one as the secondary machine
(SM).
for all job intervals Ji in an instance I do

if PM has just completed executing some job
Switch the role of PM and SM.
if PM is not executing any job
Assign Ji to PM, and let Ji be executed till it is completed.
else
Assign Ji to SM temporarily.
endif

elseif PM is executing some job while SM is not executing any job
Assign Ji to SM temporarily.

elseif PM is executing some job and SM is also executing some job J j
Abort and assign Ji to SM only if vi > v j .

endif
end for

4 Pairing-m algorithm for multiple machines

This section considers scheduling C-benevolent jobs on multiple machines (i.e., m ≥
3). We generalize the Cooperative Greedy algorithm for two machines to even and
odd number of machines, respectively. The algorithm is referred to as the Pairing-m
algorithm. We show that the Pairing-m algorithm is 2-competitive for even number of
machines and (2 + 2/m)-competitive for odd number of machines. For even number
of machines, the Pairing-m algorithm is deterministic. For odd number of machines,
the Pairing-m algorithm is randomized.

4.1 Pairing-m algorithm for even number of machines

Let m = 2k, where k ∈ Z
+. The Pairing-m algorithm works in a similar way as the

Cooperative Greedy algorithm. It dynamically pairs upm machines, k machines as the
primary machines (PM) and the other as the secondary machines (SM). The pairing
between machines is not fixed and changed at the completion of jobs assigned on
PMs. First, we divide the time axis into sections: the time interval starting from one
of PMs gets assigned a job till the first time all machines are available. Therefore, the
time axis can be divided into non-overlapping sections with no job arriving between
two successive sections. We describe how the Pairing-m algorithm assign jobs in each
section in the following.

Consider any section. In the beginning, we pick k machines as PMs and the other k
machines as SMs arbitrarily. Suppose M1 to Mk are PMs and Mk+1 to M2k are SMs.
The Pairing-m algorithm starts by assigning arriving jobs to an available PM until
all PMs are busy. If this never happens, then the Pairing-m algorithm completes all
arrived jobs in this section, and hence, is the same as the optimal schedule. Otherwise,
let J1, J2, . . . denote the jobs completed by the Pairing-m algorithm, indexed in the
increasing order of completion times.

We further divide the section into non-overlapping segments based on the comple-
tion times of jobs assigned to PMs: the first segment is defined as the time interval
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between the start of the section and the completion time of the J1; successive seg-
ments are defined as the time interval between two subsequent completion times of
jobs assigned on PMs. Therefore, for instance, [ f (Ji ), f (Ji+1)) is a segment for
i = 1, 2, . . .. In each segment, jobs assigned on the k PMs will be guaranteed com-
pletion (remain un-preempted). If there is at least one available PM in the segment,
then assign jobs arriving in this segment to these available PMs until all PMs are
busy. If there is no available PM in the segment, then the k SMs greedily schedule
jobs arriving in this segment: a newly arrived job J ′

j is only scheduled on some SM
if v(J ′

j ) > min v(JSM), where min v(JSM) is the minimum value of jobs executed
on SMs when J ′

j arrives (if a machine has no job assigned to it, we consider it as
executing a virtual job of value zero and length zero). In this way, the k SMs will be
assigned jobs with the top k values out of all the jobs arriving in the segment (if there
are k′ < k jobs arriving in the segment, we consider another k − k′ virtual jobs with
value zero and length zero arriving in this segment). At the beginning of each segment,
two machines (one PM and one SM) switch their roles: the PM which just completes
its assigned job becomes an available SM, and the SM assigned the largest-value job
among all jobs currently executed on SMs becomes an PM. Therefore, the Pairing-m
algorithm keeps k PMs and k SMs in each time segment. This process continues till
all 2k machines are available again, which is the end of a section. When the next job
arrives, a new section begins in the same way.

Theorem 2 The Pairing-m algorithm is 2-competitive for scheduling C-benevolent
jobs on even number of machines.

Proof Since a job sequence can be divided into non-overlapping sections, we compute
the competitive ratio of the Pairing-m algorithm in any section, which is the same as
the competitive ratio of the Pairing-m algorithm for the job sequence.

LetOPT(Mi , n)denote theoptimal schedule onmachineMi (with abuseof notation,
OPT(Mi , n) also denotes the value for the optimal schedule depending on the con-
text) when the Pairing-m algorithm completes n jobs in a section, for i = 1, 2, . . . ,m
and n ≥ 1. Let {OPTi (n)} denote the order statistics of {OPT (Mi , n)} such that
OPTi (n) ≤ OPTi−1(n) for i = 2, 3, . . . ,m. Let {J1, J2, . . . , Jn} denote jobs com-
pleted by the Pairing-m algorithm, indexed in the increasing order of completion times
with f (J1) ≤ f (J2) ≤ · · · ≤ f (Jn). Note that the index of these jobs may not coin-
cide with their arrival orders. Therefore, the completion time of the last job in the
optimal schedule OPT(Mi , n) is less than f (Jn) for i = 1, 2, . . . , n.

We prove
∑k

i=1 OPTi (n) ≤ ∑n
j=1 v(J j ) by induction on the total number of jobs

completed by the Pairing-m algorithm in a section. Consider the base case of n ≤ k.
Then, there are only k jobs arriving in this section, and all jobs are completed by PMs.
Therefore,

∑k
i=1 OPTi (n) ≤ ∑n

j=1 v(J j ) holds trivially.

Assume
∑k

i=1 OPTi (n) ≤ ∑n
j=1 v(J j ) holds for some n. We want to show that

∑k
i=1 OPTi (n + 1) ≤ ∑n+1

j=1 v(J j ) holds. Consider the last completed job Jn+1 by
the Pairing-m algorithm. We compare the set of jobs arriving in this section In+1
with {J1, J2, . . . , Jn+1} completed by the Pairing-m algorithm and another set of jobs
arriving in this section In constructed as follows, with In ⊂ In+1. Let Sn+1 denote the
segment where Jn+1 arrives and Is denote the set of jobs that arrive in segment Sn+1.
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Note that there is no job arriving after segment Sn+1. Then define In � In+1\Is . The
Pairing-m algorithm will complete at most n jobs for the set of jobs In in this section.
Let {J ′

1, J
′
2, . . . , J

′
n} denote the set of jobs (indexed in increasing order of completion

times) completed by the Pairing-m algorithm for In (if the number of completed jobs
is smaller than n, append virtual jobs with value zero and length zero to the end).

If Is = {Jn+1}, then Ji = J ′
i for i = 1, 2, . . . , n. By the induction assumption,

k∑

i=1

OPTi (n + 1) ≤
k∑

i=1

OPTi (n) + v(Jn+1) ≤
n+1∑

j=1

v(J j ).

Otherwise, Is contains more than one job. Let {K ′
1, K

′
2, . . . , K

′
k} ⊂ {J ′

1, J
′
2, . . . , J

′
n}

denote the k jobs assigned to the k SMs at the end of segment Sn+1 for In (if some SM
is available during this segment, then we consider this SM as executing a virtual job
with value zero and length zero). Then {K ′

1, K
′
2, . . . , K

′
k} will be completed by the

Pairing-m algorithm for In since there is nomore job arriving. However, for In+1, these
k SMs will be updated with jobs with the top k values out of Is

⋃{K ′
1, K

′
2, . . . , K

′
k}.

Let {K1, K2, . . . , Kk} denote the k jobs being executed on the k SMs at the end
of segment Sn+1 for In+1. Then Jn+1 ∈ {K1, K2, . . . , Kk}. Consider OPTi (n + 1),
for i = 1, 2, . . . , k. If there exists K j such that K j ∈ OPTi (n + 1), then define
OPT′

i (n + 1) � OPTi (n + 1)\K j . Otherwise, if OPTi (n + 1) does not contain any
K j , then if OPTi (n + 1) does not schedule any job that conflicts with any K j , then
OPT′

i (n+1) � OPTi (n+1). Otherwise, supposeOPTi (n+1) schedules a set of jobs

{Hi
j }
l j
i=1 (indexed by i in the increasing order of completion times), which conflict with

some K j . Then, the completion time of H
l j−1
j is within the segment Sn+1, since H

l j
j

arrives in the segment of Sn+1. By the scheduling policy of the Pairing-m algorithm,

v(Hi
j ) < v(K j ) for any i . Define OPT′

i (n + 1) � OPTi (n + 1)\Hl j
j . Consider the set

of schedules {OPT′
i (n+ 1)}ki=1. Then the largest completion time of jobs in schedules

{OPT′
i (n + 1)}ki=1 is within Sn+1. Therefore, from the induction assumption,

k∑

i=1

OPT′
i (n + 1) ≤

n∑

j=1

v
(
J ′
j

)
−

k∑

j=1

v
(
K ′

j

)
,

which follows from that the largest completion time of jobs in schedules
{OPT′

i (n + 1)}ki=1 is already covered by the job completed at the end of segment
Sn+1, and the completion times of {K ′

1, K
′
2, . . . , K

′
k} are all beyond Sn+1. Therefore,

k∑

i=1

OPTi (n + 1) ≤
k∑

i=1

OPT′
i (n + 1) +

k∑

j=1

v(K j )

≤
n∑

j=1

v
(
J ′
j

)
−

k∑

j=1

v
(
K ′

j

)
+

k∑

j=1

v(K j ) ≤
n+1∑

j=1

v(J j ),
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where: the first inequality follows from the construction of {OPT′
i (n + 1)}ki=1; the

last inequality follows from
∑k

j=1 v(K ′
j ) ≤ ∑k

j=1 v(K j ) and {J j }nj=1\{Ki }ki=1 =
{J ′

j }nj=1\{K ′
i }ki=1 from the construction of In . 
�

4.2 Pairing-m algorithm for odd number of machines

When the number of machines is odd, the Pairing-m algorithm for even number of
machines cannot be directly applied. To overcome this difficulty, we introduce ran-
domization and generalize the Pairing-m algorithm for even number of machines to
odd number of machines.

Let m = 2k + 1 for k ∈ Z
+. We create a virtual machine, add it to the pool of real

machines and treat this virtual machine the same as real machines. Then the Pairing-
m algorithm can be applied to these m + 1 machines. Let OPT(Mi , I) and P(Mi , I)
denote the optimal schedule and the schedule using the Pairing-(m+ 1) algorithm on
machine Mi for instance I, respectively, for i = 1, 2, . . . ,m+1 (machine Mm+1 is the
virtual machine). Then arbitrarily pick m schedules out of {P(Mi , I)}m+1

i=1 with equal
probability, and schedule jobs to the m real machines according to these m selected
schedules. This algorithm is referred to as the Pairing-m algorithm for odd-number of
machines.

Theorem 3 The Pairing-m algorithm is (2 + 2/m)-competitive for scheduling C-
benevolent jobs on odd number of machines.

Proof Let {OPTi (I)} denote the order statistics of {OPT (Mi , I)}, with OPTi (I) ≥
OPTi+1(I) for i = 1, 2, . . . ,m (with abuse of notation, {OPT (Mi , I)} also denotes
the value of the schedule depending on the context). Then from Theorem 2,

k+1∑

i=1

OPTi (I) ≤
m+1∑

i=1

v(P(Mi , I)),

where v(P(Mi , I)) denotes the total value of completed jobs by schedule P(Mi , I).
Since the Pairing-m algorithm randomly selectsm schedules from {P(Mi , I)}m+1

i=1 with
equal probability, then the expected reward using the Pairing-m algorithm, denoted by
Rm(I), is lower bounded by

Rm(I) = m

m + 1

m+1∑

i=1

v(P(Mi , I)) ≥ m

m + 1

k+1∑

i=1

OPTi (I).

The optimal reward onm machines for instance I, denoted by Om(I), is upper bounded
by

Om(I) ≤
m+1∑

i=1

OPTi (I) ≤ 2
k+1∑

i=1

OPTi (I).

Therefore, the competitive ratio for the Pairing-m algorithm on odd number machines
is given by 2(m + 1)/m = 2 + 2/m. 
�
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5 Lower bounds for deterministic algorithms

This section gives a lower bound of 2 and 1.436 for the competitive ratio of
any deterministic algorithm for scheduling C-benevolent jobs on two and three
machines, respectively. Since the Cooperative Greedy algorithm is 2-competitive for
two machines, it is the best obtainable deterministic algorithm for scheduling C-
benevolent jobs on two machines. From Theorem 3, the competitive ratio of the
Pairing-m algorithm on three machines is 2 + 2/3 = 2.67. Although there is still
a gap between the competitive ratio of our proposed algorithm and the lower bound
for three machines, the Pairing-m algorithm is the first-known 2.67-competitive ran-
domized algorithm for scheduling C-benevolent jobs on three machines.

Theorem 4 gives a lower bound for any deterministic algorithms on two machines.
The proof of Theorem 4 uses the same technique as the proof of Theorem 6 [12], and
hence, is omitted here.

Theorem 4 No deterministic algorithm for C-benevolent jobs on two machines can
achieve a competitive ratio lower than 2.

Theorem 5 provides a lower bound for any deterministic algorithm for scheduling
C-benevolent job sequences on three machines. We use a similar approach as that in
[12], but we handle more complicated cases for three machines.

We use the W-set, the job set originally defined in [20] to prove this upper bound.
A W-set of jobs is defined as a sequence of jobs that satisfy the following conditions:
(a) jobs arrive in sequence but conflict with one another within the set; (b) the value of
the first arriving job is set to be one; (c) the values of subsequent jobs differ from each
other by a small amount δ > 0 (monotonically increasing); (d) the arrival times of
subsequent jobs differ from each other by a small time ε > 0. Let v̄ denote the value
of the last job in a W-set (also the largest job value in this W-set by construction).
Note that by setting the values of ε and δ, then v̄ can be made to be arbitrarily large
for C-benevolent job sequences.

Theorem 5 No deterministic algorithm for C-benevolent job sequences on three
machines can achieve a competitive ratio lower than 1.436.

Proof We prove this lower bound by considering a sequential game between a deter-
ministic algorithm and an adaptive adversary. We will show that there exists a strategy
for the adversary to drive inverse of the competitive ratio of any deterministic algorithm
to 0.696 + ζ , where ζ > 0 can be arbitrarily small.

First, the adversary generates three identical W-sets, with sets arriving as one
slightly after another by a delay of ε′ � ε. We make this difference between these
three sets only to conform to the assumption that no two jobs share the same arrival
time; we will ignore this ε′ difference in the arrival times of two jobs in the following.
Now a deterministic algorithm, denoted by A, has several choices of which jobs to
assign to each machine. Let Jx (x), Jy(y), and Jz(z) denote the job (job value) that
A assigns to M1, M2, and M3, respectively. Let OPT denote the optimal reward and
r(A) denote the reward for algorithm A. Then inverse of the competitive ratio of A is
γA = r(A)/OPT. The adversary will react adaptively to different choices made by A,
as discussed case by case.
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Note that if at least one machine does not have any job that has been scheduled
by A, then γA should be no greater than 2/3 < 17/24. Moreover, each machine can
have at most one job from the three W-sets since jobs in these W-sets conflict with
each other. Therefore, we assume that all three machines have one job from the three
W-sets scheduled by A in the following.

Case 1 All of the scheduled jobs have a value of one. That is, x = y = z = 1. In this
case, the adversary generates no more jobs. Therefore,OPT = 3v̄, r(A) = 3,
and hence, γA = 1/v̄ ≤ 1/2, for v̄ ≥ 2.

Case 2 Two of the scheduled jobs have a value of one. Suppose x = y = 1 and z > 1.
In this case, the adversary generates no more jobs. Therefore, OPT = 3v̄,
r(A) = 2 + z, and hence, γA = (2 + z)/(3v̄) ≤ 1/3 + 2/(3v̄) ≤ 2/3, for
v̄ ≥ 2.

Case 3 One of the scheduled jobs has a value of one. Suppose x = 1. Then we have
two sub-cases for the other two scheduled jobs: (a) y = z and (b) the value
of one job is strictly smaller than the other. For sub-case (b), without loss
of generality, suppose y < z. If y ≤ v̄/2 and z ≤ v̄/2, then γA ≤ 1/2.
Therefore, we consider y = z > v̄/2 for case (a) and z > v̄/2 for case (b).
For Case 3 (a), the adversary generates three additional identical jobs that
arrive right before the completion time of Jy and Jz but after the completion
time of the preceding job in the W-set (Jobs that that arrive right before
the completion time of some job J but after the completion time of the job
preceding J in the W-set are referred to as the challenger jobs for J ). The
values of these three new jobs are all equal to y. Then, the reward for A
is at most r(A) = 1 + 3y (since job Jx does not conflict with the new
arrivals). However, the optimal reward isOPT = 3(2y− δ). Therefore, γA =
(1 + 3y)/ (3(2y − δ)) ≤ 2/3 + ζ , for δ sufficiently small and v̄ sufficiently
large.
For Case 3 (b), if y > z/2, then the adversary generates three additional
challenger jobs with value z for Jy . Then, the reward for A is at most
r(A) = 1 + 3z. However, the optimal reward is OPT = 3(y + z − δ).
Therefore, γA = (1 + 3z)/ (3(y + z − δ)) ≤ 2/3 + ζ , for δ suffi-
ciently small and v̄ sufficiently large. Otherwise, if y ≤ z/2, then the
adversary generates three additional challenger jobs with value z for Jz .
Then, the reward for A is at most r(A) = 1 + y + 3z. However, the
optimal reward is OPT = 3(z + z − δ). Therefore, γA = (1 + y +
3z)/ (3(z + z − δ)) ≤ 7/12 + ζ , for δ sufficiently small and v̄ sufficiently
large.

Case 4 None of the scheduled jobs has a value of one. That is, x, y, z > 1. In this
case, we have four sub-cases: (a) All the scheduled jobs have the same value,
x = y = z. (b) Two of the scheduled jobs have the same value, and this
value is greater than the other job value; suppose x < y = z. (c) Two of the
scheduled jobs have the same value, and this value is smaller than the other
job value; suppose x = y < z. (d) None of the scheduled jobs has the same
value; suppose x < y < z. We provide an upper bound for inverse of the
competitive ratio γA for each sub-case separately.
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For Case 4 (a), the adversary generates three additional challenger jobs with
value x for Jx . Then, the reward for A is at most r(A) = 3x . However, the
optimal reward is OPT = 3(2x − δ). Therefore, γA = 3x/ (3(2x − δ)) ≤
1/2 + ζ , for δ sufficiently small.
For Case 4 (b), if x > y/2, then the adversary generates three additional
challenger jobs with value y for Jx . Then, the reward for A is at most r(A) =
3y. However, the optimal reward is OPT = 3(x + y − δ). Therefore, γA =
3y/ (3(x + y − δ)) ≤ 2/3 + ζ , for δ sufficiently small and v̄ sufficiently
large. Otherwise, if x ≤ y/2, then the adversary generates three additional
challenger jobs with value y for Jy . Then, the reward for A is at most r(A) =
x + 3y. However, the optimal reward is OPT = 3(2y − δ). Therefore, γA =
(x + 3y)/ (3(2y − δ)) ≤ 7/12+ ζ , for δ sufficiently small and v̄ sufficiently
large.
For Case 4 (c), if x > z/2, then the adversary generates three additional
challenger jobs with value z for Jx . Then, the reward for A is at most r(A) =
3z. However, the optimal reward is OPT = 3(x + z − δ). Therefore, γA =
3z/ (3(x + z − δ)) ≤ 2/3 + ζ , for δ sufficiently small and v̄ sufficiently
large. Otherwise, if x ≤ z/2, then the adversary generates three additional
challenger jobs with value z for Jz . Then, the reward for A is at most r(A) =
2x + 3z. However, the optimal reward is OPT = 3(2z − δ). Therefore,
γA = (2x + 3z)/ (3(2z − δ)) ≤ 2/3 + ζ , for δ sufficiently small and v̄

sufficiently large.
For Case 4 (d), if x > z/2, then the adversary generates three additional
challenger jobs with value z for Jx . Then, the reward for A is at most r(A) =
3z. However, the optimal reward is OPT = 3(x + z − δ). Therefore, γA =
3z/ (3(x + z − δ)) ≤ 2/3+ζ , for δ sufficiently small and v̄ sufficiently large.
Otherwise, if x ≤ z/2 and y > 0.676z, then the adversary generates three
additional challenger jobs with value z for Jy . Then, the reward for A is at
most r(A) = x + 3z. However, the optimal reward is OPT = 3(y + z − δ).
Therefore, γA = (x + 3z)/ (3(y + z − δ)) ≤ 0.697 + ζ , for δ sufficiently
small and v̄ sufficiently large. Otherwise, if x ≤ z/2 and y ≤ 0.676z, then the
adversary generates three additional challenger jobswith value z for Jz . Then,
the reward for A is at most r(A) = x + y + 3z. However, the optimal reward
isOPT = 3(2z−δ). Therefore, γA = (x+ y+3z)/ (3(2z − δ)) ≤ 0.696+ζ ,
for δ sufficiently small and v̄ sufficiently large.
Summarizing all the possible cases, since ζ can be arbitrarily small, no deter-
ministic algorithm can achieve a competitive ratio lower than 1/0.696 =
1.436 on three machines for C-benevolent job sequences versus adaptive
adversaries.


�
6 Conclusion

We consider scheduling C-benevolent jobs on multiple machines. For scheduling on
even number of machines, we provide a 2-competitive Pairing-m algorithm. For odd
number of machines, we provide a (2+2/m)-competitive Pairing-m algorithm. Lower
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bounds of 2 and 1.436 for the competitive ratio of deterministic algorithms for schedul-
ing C-benevolent jobs on two and three machines are provided, respectively. We show
that the Cooperative Greedy algorithm is 2-competitive for scheduling C-benevolent
jobs on two machines, and hence, is the best obtainable deterministic online algorithm
for two machines.

There are several directions for future work. One direction under investigation is to
consider other classes of job sequences, such as D-benevolent job sequences [20] and
equal-execution-time arbitrary-value job sequences [12]. Another research direction
is to use other techniques to develope other algorithms with better competitive ratios,
such as the Primal-Dual method for linear programming.
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