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Abstract We introduce an interior-point algorithm for linear optimization, which is
based on a new technique for determining search directions. This method consists of
a new type of transformation on the centering equations of the system which charac-
terizes the central path. It can be shown that these new directions cannot be derived
from usual kernel functions. Therefore, we extend the concept of the kernel functions,
and we establish an equivalence between this approach and the proposed method for
obtaining search directions. Moreover, we prove the polynomial complexity of the
algorithm.

Keywords Interior-point algorithm · Linear optimization · Algebraic equivalent
transformation · Search direction · Newton’s method · Polynomial complexity

1 Introduction

Linear optimization (LO) problems have been extensively studied since Kar-
markar [19] introduced his well-known projective interior point method (IPM), which
enjoyed polynomial complexity. In the last decades several researchers published new
methods in this field. Themost important results were summarized in the bookswritten
by Roos et al. [33], Wright [41] and Ye [42]. Terlaky [36] presented an introduction
to the duality theory of LO from the point of view of the IPMs. In spite of the fact
that the simplex method introduced by Dantzig [8] proved to be efficient in practice,
Gondzio and Terlaky [13] and Andersen et al. [4] established that in several cases,
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especially when the size of the problem is large, IPMs can perform better. We mention
that in the case of the simplex algorithm we usually keep primal or dual feasibility.
The criss-cross methods represent other pivoting algorithms where the basic solutions
can be both primal and dual infeasible as in the papers published by Klafszky and
Terlaky [21] and Terlaky [35]. Illés and Terlaky [14] presented a detailed comparison
between the pivot algorithms and IPMs. The determination of the starting point is an
important question in the case of the IPMs. In theory, a good starting point can be
chosen by using the self-dual embedding model introduced by Jansen et al. [18] and
Ye et al. [43].

IPMs can be classified based on the length of the step and the used neighbourhood.
In this way the algorithms that generate the new iterates in a smaller neighbourhood
of the central path are named short-update methods, and the ones that use a wider
neighbourhood are called large-update algorithms. Large-update methods turned out
to be more efficient in practice, while the small-update ones have better theoretical
complexity. Peng et al. [28] developed the concept of self-regular proximities. Using
this notion, they introduced a new class of search directions in order to define polyno-
mial primal–dual IPMs for LO, semidefinite optimization (SDO), and second-order
cone optimization (SOCO). Besides, they reduced the above-mentioned gap between
the large-update and small-update methods. Later on, Later on, Potra [30] and Ai and
Zhang [3] introduced large-update IPMs for linear complementarity problems (LCPs)
that have the same complexity as the best small-update IPMs. Li and Terlaky [23] pro-
posed the first IPM for SDO, which works in a wide neighbourhood and has O(

√
nL)

iteration complexity.
The determination of the search directions plays a key role in case of the IPMs.

Therefore, the search directions can be obtained by using barrier functions based on
their corresponding kernel functions. Bai et al. [6,7] proposed a new type of barrier
function which has a finite value at the boundary of the feasible region. Beside this,
polynomial-time IPMs for convex optimization problems can be obtained by using
self-concordant barriers introduced by Nesterov and Nemirovskii [27].

Another method for defining search directions for LO was given by Darvay [9,10].
The main idea of this approach consisted in considering an algebraic equivalent trans-
formation on the system which characterizes the central path. Firstly, the centering
equations were divided by the barrier update parameter. After that the same continu-
ously differentiable and invertible functionϕwas applied to both sides of the previously
modified equation. In this way the equation ϕ(v) = ϕ(e) was obtained, where v is

the variance vector v =
√

xs
μ
; μ is the barrier parameter; and e is the n-dimensional

all-one vector (for details see Sect. 4). The new search directions were determined by
applying Newton’s method to this equation. Achache [1] generalized this approach to
convex quadratic optimization, while Zhang et al. [45] to linearly constrained convex
programming problems. Many IPMs were also extended to more general problems,
namely to different kind of LCPs. Kojima et al. [22] gave a unified approach to IPMs
for LCPs. Potra and Sheng [31,32] proposed predictor-corrector and infeasible IPMs
for P∗(κ)-LCPs. Moreover, Illés et al. [15–17] introduced a polynomial-time IPM
for general LCPs, which either gives an ε-solution or it proves that the matrix of the
problem does not have P∗(κ) property. Numerical results on LCPs based on Dar-
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vay’s technique were reported by Achache [2], Asadi andMansouri [5], Mansouri and
Pirhaji [24], and Kheirfam [20]. It can be observed that these results emphasize the
efficiency of this method. Other extensions based on the above-mentioned technique
were made to symmetric cone optimization (SCO) problems by Wang and Bai [40],
to SDO problems by Wang and Bai [38] and Mansouri et al. [25] and to SOCO by
Wang and Bai [39]. Furthermore, Wang [37] generalized this approach to monotone
LCPs over symmetric cones.

Recently, Zhang and Xu [44] proposed a specific search direction for LO. They
considered the equivalent form v2 = v of the centering equation, and they transformed
it into the form xs = μv. After that they assumed that the variance vector is fixed and
they used Newton’s method.

In this paper we propose a new method for obtaining a class of search directions
using a new type of transformation of the centering equations. First, we modify the
nonlinear equation v2 = v by applying componentwise the function ϕ to both sides
of this equation. Then, we apply Newton’s method in order to get the new search
directions. It is worth mentioning that by using the map ϕ(t) = t we do not obtain the
direction given in [44], because we do not consider the variance vector as constant. In
order to facilitate our analysis we restrict ourselves to the case ϕ(t) = t2 which yields
a new search direction. It turns out that the sum of the scaled directions is pv = v−v3

2v2−e
.

Therefore, the analysis of the algorithm becomes more difficult, because we have to
ensure that the vector pv is well defined. For this, during the whole process of the
algorithm we have to guarantee a plus condition, namely the inequality v > 1√

2
e. We

establish the equivalence between the new technique and a proper approach based on
kernel functions. It can be observed that the corresponding kernel function is not a

usual one, because it is defined only on the interval
(

1√
2
,∞

)
. In spite of these facts

we prove that the complexity of the algorithm coincides with the best known ones of
IPMs for LO.

The paper is organized as follows. In the following section the LO problem and
the notion of the central path are presented. In Sect. 3 we give an approach for the
determination of the search directions based on kernel functions. Section 4 lays out
the main idea of the new technique. Besides, the obtained generic algorithm is pre-
sented. Section 5 is devoted to the analysis of the complexity of the new method.
Section 6 contains numerical results. In the last section some concluding remarks are
enumerated.

The authors dedicate this paper to the honour of Tamás Terlaky on the occasion of
his 60th birthday and to the memory of his Phd supervisor, Emil Klafszky.

2 The linear optimization problem

Let us consider the following primal problem

min cT x,

Ax = b,

x ≥ 0, (P)
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and it’s dual

max bT y, (D)

AT y + s = c,

s ≥ 0,

where A ∈ R
m×n, rank(A) = m, c ∈ R

n and b ∈ R
m .

Without loss of generality we can assume that the interior-point condition (IPC)
holds for the primal and dual problems, which means that there exists (x0, y0, s0)
such that

Ax0 = b, x0 > 0,

AT y0 + s0 = c, s0 > 0.
(I PC)

An optimal solution of the primal–dual problem is given by the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0.

(1)

The first two equations of system (1) are called feasibility conditions and they serve
for maintaining feasibility. The third equation is named complementarity condition.
The primal–dual interior point methods usually replace the complementarity equation
with a parameterized equation. Using this, we obtain the following system:

Ax = b, x > 0,

AT y + s = c, s > 0,

xs = μe,

(2)

where μ > 0. If the interior-point condition holds, then for a fixed μ > 0 the μ-center
or analytic center given by Sonnevend [34] is the unique solution of system (2). For
the different values of μ we obtain the central path, which converges to an optimal

solution of the problem, if μ → 0. Let v =
√

xs
μ
. Using this, the third equation of (2)

can be written in the form: v = e.

3 Search directions using kernel functions

Peng et al. [28] introduced the class of self-regular barrier functions and defined
large-update IPMs for solving LO problems.

A function ψ is called kernel function if the following conditions hold:

i. ψ : R++ → R+ is twice continuously differentiable;
ii. ψ(1) = ψ ′(1) = 0;
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iii. ψ ′′(t) > 0 for all t > 0,

where R+ = {x ∈ R|x ≥ 0} and R++ = {x ∈ R|x > 0}. The kernel function is
called coercive if

iv. limt↓0 ψ(t) = limt→∞ ψ(t) = ∞.

Assuming that x and (y, s) are feasible solutions of the primal–dual pair, wewant to
define the search directions (Δx,Δy,Δs) in order to get the new vectors determined
by the algorithm.

The idea of introducing these new search directions is based on defining a gener-
alized barrier function Ψ (v), v ∈ R

n++. It should be mentioned that Rn++ = {x ∈
R
n|xi > 0, i = 1, . . . , n}. We assume that Ψ (v) is minimal at v = e, Ψ (e) = 0 and

Ψ is a strictly convex differentiable function.
Using a kernel function ψ , we can construct a barrier function in the following

form:

Ψ (v) =
n∑

i=1

ψ(vi ),

and we obtain the search directions:

AΔx = 0,

ATΔy + Δs = 0,

sΔx + xΔs = −√
μxs ∇Ψ

(√
xs

μ

)
.

(3)

In the following section we propose another method for introducing search direc-
tions.

4 New search directions using an equivalent algebraic transformation

In this section we modify the technique introduced by Darvay [10] in order to get new
search directions. Let us consider the function ϕ defined and continuously differen-
tiable on the interval (κ2,∞), where 0 ≤ κ < 1, such that 2tϕ′(t2)−ϕ′(t) > 0,∀t >

κ2. Using this, system (2) can be written in the following form:

Ax = b, x > 0,

AT y + s = c, s > 0,

ϕ

(
xs

μ

)
= ϕ(e).

(4)

In this paper we propose a new class of directions starting from a simple equivalence.
Using v > 0, we get:

xs = μe ⇔ v2 = e ⇔ v = e ⇔ v2 = v.
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Then, system (2) can be written in the following form:

Ax = b, x > 0,

AT y + s = c, s > 0,

ϕ

(
xs

μ

)
= ϕ

(√
xs

μ

)
.

(5)

If we consider the notation

f (x, y, s) :=
⎡
⎢⎣

Ax − b
AT y + s − c

ϕ
(
xs
μ

)
− ϕ

(√
xs
μ

)

⎤
⎥⎦ , (6)

then system (5) can be written in the form f (x, y, s) = 0. Applying Newton’s method
to this system we get

J f (x, y, s)

⎡
⎣

Δx
Δy
Δs

⎤
⎦ = − f (x, y, s),

where J f (x, y, s) denotes the Jacobianmatrix of f . After some calculations we obtain
Newton’s system:

AΔx = 0,

ATΔy + Δs = 0,

1

μ
(sΔx + xΔs) =

−ϕ
(
xs
μ

)
+ ϕ

(√
xs
μ

)

ϕ′
(
xs
μ

)
− 1

2
√

xs
μ

ϕ′
(√

xs
μ

) .

(7)

We introduce the following notations

dx = vΔx

x

and

ds = vΔs

s
,

hence we obtain
μv(dx + ds) = sΔx + xΔs (8)

and

dxds = ΔxΔs

μ
. (9)
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Using these notations we can give the scaled form of system (7):

Ādx = 0,

ĀTΔy + ds = 0,

dx + ds = pv,

(10)

where

pv = 2ϕ(v) − 2ϕ(v2)

2vϕ′(v2) − ϕ′(v)
,

Ā = 1

μ
Adiag

( x
v

)
.

If we use the function ϕ : ( 1
2 ,∞

) → R, ϕ(t) = t , then we have

pv = 2v − 2v2

2v − e
. (11)

It can be mentioned that the condition 2tϕ′(t2)−ϕ′(t) > 0,∀t > κ2 is satisfied in this
case, where κ = 1

2 . Darvay et al [11] considered another equivalent transformation of
the system which defines the central path. In system (5) we used the transformation
ϕ(v2) = ϕ(e). After that, we analysed the case, where ϕ(t) = t − √

t . It should be
mentioned, that we obtained the same vector pv as the one given in (11).

Furthermore, we will consider the case of the function ϕ :
(

1√
2
,∞

)
→ R, ϕ(t) = t2,

so we obtain

pv = v − v3

2v2 − e
. (12)

Observe that the condition 2tϕ′(t2) − ϕ′(t) > 0,∀t > κ2 is satisfied in this case,
where κ = 1√

2
.

We use a proximity measure to the central path

δ(v) = δ(x, s;μ) = ‖pv‖
2

= 1

2

∥∥∥∥
v − v3

2v2 − e

∥∥∥∥ .

Let qv = dx − ds . Then, dTx ds = 0 ⇒ ‖pv‖ = ‖qv‖.

dx = pv + qv

2
, ds = pv − qv

2
,

which implies

dxds = p2v − q2v
4

. (13)
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Primal-dual algorithm

Let 0 be the accuracy parameter and 0 < θ < 1 the update parameter (default θ = 1
12

√
n
).

We assume that the IPC holds for the initial feasible point (x0, y0, s0) , μ0 = (x0)T s0

n
and

v0 = x0s0

µ0 > e√
2
.

begin
x := x0; y = y0; s = s0; μ := μ0;
while xT do begin

μ := (1− θ)μ;
calculate (Δx, Δy, Δs) from (7)
x := x + Δx;
y := y + Δy;
s := s + Δs;

end
end.

Primal-dual algorithm

Let 0 be the accuracy parameter and 0 < θ < 1 the update parameter (default θ = 1
12

√
n
).

We assume that the IPC holds for the initial feasible point (x0, y0, s0) , μ0 = (x0)T s0

n
and

v0 = x0s0

µ0 > e√
2
.

begin
x := x0; y = y0; s = s0; μ := μ0;
while xT do begin

μ := (1− θ)μ;
calculate (Δx, Δy, Δs) from (7)
x := x + Δx;
y := y + Δy;
s := s + Δs;

end
end.

Fig. 1 Primal–dual algorithm

Observe that if we use the approach based on kernel functions, the third equation
of (3) is equivalent to

dx + ds = −∇Ψ (v),

where Ψ is the function defined in Sect. 3. Therefore, in case of applying the trans-
formation ϕ(v2) = ϕ(v), the appropriate kernel function can be defined as:

ψ(t) =
∫ t

1

2ϕ(η2) − 2ϕ(η)

2ηϕ′(η2) − ϕ′(η)
dη.

In the case of the function ϕ(t) = t2 we obtain the following kernel function:

ψ(t) = t2 − 1

4
− log(2t2 − 1)

8
.

Note that this kernel function is not a usual one, because it is not defined on the
whole interval (0,∞).
Now we are able to define the algorithm, which is given in Fig. 1.
In the following section we analyse the complexity of the algorithm.

5 Analysis of the algorithm

Let x+ = x + Δx and s+ = s + Δs be the generated point after a full-Newton step.
Bellow, we give a condition which guarantees the feasibility of these vectors.
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Lemma 1 Let δ = δ(x, s;μ) < 1 and v > 1√
2
e. Then,

x+ > 0 and s+ > 0,

which means that the full-Newton step is strictly feasible.

Proof For each 0 ≤ α ≤ 1 denote x+(α) = x + αΔx and s+(α) = s + αΔs.
Therefore,

x+(α)s+(α) = xs + α(sΔx + xΔs) + α2ΔxΔs.

From Eqs. (8) and (9), we obtain

1

μ
x+(α)s+(α) = v2 + αv(dx + ds) + α2dxds . (14)

Also using (10) and (13) we can write

1

μ
x+(α)s+(α) = (1 − α)v2 + α(v2 + vpv) + α2

(
p2v
4

− q2v
4

)
. (15)

Moreover, from (12) we obtain

v2 + vpv = v2 + (v2 − v4)

2v2 − e
= v4

2v2 − e
. (16)

On the other hand, (v2 − e)2 ≥ 0 implies

v4

2v2 − e
≥ e,

and for this reason
v2 + vpv ≥ e. (17)

Using these, we may write

1

μ
x+(α)s+(α) ≥ (1 − α)v2 + αe + α2

(
p2v
4

− q2v
4

)

≥ (1 − α)v2 + α

[
e −

(
(1 − α)

p2v
4

+ α
q2v
4

)]
. (18)
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If
∥∥∥(1 − α)

p2v
4 + α

q2v
4

∥∥∥∞ < 1, then the inequality x+(α)s+(α) > 0 holds, where

‖ · ‖∞ marks the Chebychev norm (or l∞ norm). In this way

∥∥∥∥(1 − α)
p2v
4

+ α
q2v
4

∥∥∥∥∞
≤ (1 − α)

‖p2v‖∞
4

+ α
‖q2v‖∞

4

≤ (1 − α)
‖pv‖2
4

+ α
‖qv‖2
4

= δ2 < 1.

Hence, for each 0 ≤ α ≤ 1 the inequality x+(α)s+(α) > 0 holds. This means, that
the linear functions of α, x+(α) and s+(α) do not change sign on the interval [0, 1].
Consequently, x+(0) = x > 0 and s+(0) = s > 0 yield x+(1) = x+ > 0 and
s+(1) = s+ > 0. This means that the full-Newton step is strictly feasible. ��

In the following lemma we analyse the conditions under which the Newton process
is quadratically convergent.

Lemma 2 Let δ = δ(x, s;μ) < 1√
2
and v > 1√

2
e. Then, v+ > 1√

2
e and

δ(x+, s+;μ) ≤ 5δ2

1 − 2δ2

√
1 − δ2,

which means that the full-Newton step enusures local quadratic convergence of the
proximity measure.

Proof We know from Lemma 1 that x+ > 0 and s+ > 0. We introduce the following
notation

v+ =
√
x+s+

μ
.

Also we know from (16) that v2 + vpv = v4

2v2−e
, which implies

v2 + vpv = e + (v2 − e)2

2v2 − e
. (19)

We consider the substitution α = 1 in (15) and we obtain

v2+ = v2 + vpv + p2v
4

− q2v
4

. (20)

Using (12) and (19) we may write
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v2+ = e + (v2 − e)2

2v2 − e
+ (v − v3)2

4(2v2 − e)2
− q2v

4

= e + (v2 − e)2

2v2 − e

(
e + v2

4(2v2 − e)

)
− q2v

4

= e + (v2 − e)2(9v2 − 4e)

4(2v2 − e)2
− q2v

4
. (21)

From (12) and (21) we obtain

e − v2+ = q2v
4

− (v2 − e)2(9v2 − 4e)

4(2v2 − e)2

= q2v
4

− (9v2 − 4e)

v2
· v2(e − v2)2

4(2v2 − e)2

= q2v
4

− (9v2 − 4e)

v2
· p2v
4

. (22)

We have 9v2−4e
v2

< 9e, for all v > 1√
2
e. Thus,

∥∥∥e − v2+
∥∥∥ ≤

∥∥∥∥
q2v
4

∥∥∥∥ +
∥∥∥∥
9v2 − 4e

v2
· p2v
4

∥∥∥∥ <
‖qv‖2
4

+ 9
‖pv‖2
4

= 10δ2. (23)

Beside these, we know that p2v
4 > 0 and we also have from (17) that v2 + vpv ≥ e, so

these imply that

v2+ = v2 + vpv + p2v
4

− q2v
4

≥ e − q2v
4

.

Therefore,
min(v+) ≥

√
1 − δ2. (24)

Using δ > 1√
2
we have

√
1 − δ2 > 1√

2
. From (24) and this we have v+ > 1√

2
,

which plays a key role, because during the whole process of the algorithm we have to
ensure that the variance vector v satisfies this condition. We have

δ(v+) = δ(x+, s+;μ) = 1

2

∥∥∥∥∥
v+ − v3+
2v2+ − e

∥∥∥∥∥ = 1

2

∥∥∥∥∥
v+

2v2+ − e
(e − v2+)

∥∥∥∥∥

Let us consider the function g(t) = t
2t2−1

for all t > 1√
2
. Because g′(t) < 0 we obtain

that the function g is a decreasing one for all t > 1√
2
. Using this and (24) and (23) we

get
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1110 Zs. Darvay, P.-R. Takács

δ(v+) = δ(x+, s+;μ) ≤ 1

2

√
1 − δ2

2(1 − δ2) − 1
· ‖e − v2+‖

≤ 5δ2

1 − 2δ2

√
1 − δ2.

This proves the lemma. ��
The next lemma shows how the full-Newton step effects the duality gap.

Lemma 3 Let δ = δ(x, s;μ). Then,

(x+)T s+ ≤ μ(n + 8δ2).

Proof We know from (16) that

v2 + vpv = v4

2v2 − e
= e + (v2 − e)2

2v2 − e

= e + 4(2v2 − e)

v2
· v2(e − v2)2

4(2v2 − e)2

= e +
(
8 − 4e

v2

)
· p2v
4

≤ e + 8
p2v
4

. (25)

This implies

(x+)T s+ ≤ μ(n + 8δ2),

which proves the lemma. ��
The fourth lemma shows that the algorithm is well defined.

Lemma 4 Let δ = δ(x, s;μ) < 1√
2
, v > 1√

2
e andμ+ = (1−θ)μ, where 0 < θ < 1.

Furthermore, let v� =
√

x+s+
μ+ . Then, v� > 1√

2
e and

δ(v�) = δ(x+, s+;μ+) <

√
1 − δ2

2
√
1 − θ(1 − 2δ2 + θ)

(θ
√
n + 10δ2).

If δ < 1
10 and θ = 1

12
√
n
, then δ(x+, s+;μ+) < 1

10 .

Proof Using Lemma 2 we have v+ > 1√
2
e. From v� =

√
x+s+
μ+ it follows that v� =

1√
1−θ

v+, v2� = 1
1−θ

v2+ and v� > 1√
2
e. Besides these, from the definition of the δ we

may write

δ(x+, s+;μ+) = 1

2

∥∥∥∥∥
v� − v3�

2v2� − e

∥∥∥∥∥ . (26)
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Then,

2v2� − e = 2v2+ − (1 − θ)e

1 − θ
(27)

and

v� − v3� = v�(e − v2� ) = 1√
1 − θ

v+
(
e − 1

1 − θ
v2+

)

= v+
(1 − θ)

√
1 − θ

[
(1 − θ)e − v2+

]
. (28)

From (27) and (28) it follows that

∥∥∥∥∥
v� − v3�

2v2� − e

∥∥∥∥∥ = v+
(1 − θ)

√
1 − θ

[
(1 − θ)e − v2+

] 1 − θ

2v2+ − (1 − θ)e

= 1√
1 − θ

· v+
2v2+ − (1 − θ)e

·
[
(1 − θ)e − v2+

]
. (29)

Besides, t
2t2−(1−θ)

is a decreasing function of t , for all t > 1√
2
. Using this and (29) it

follows that

δ(x+, s+;μ+) = 1

2

∥∥∥∥∥
v� − v3�

2v2� − e

∥∥∥∥∥ ≤
√
1 − δ2

2
√
1 − θ(1 − 2δ2 + θ)

‖(1 − θ)e − v2+‖. (30)

Using (23) we may write

‖(1 − θ)e − v2+‖ ≤ ‖ − θe‖ + ‖e − v2+‖ < θ
√
n + 10δ2. (31)

From (30) and (31) it follows that

δ(v�) = δ(x+, s+;μ+) <

√
1 − δ2

2
√
1 − θ(1 − 2δ2 + θ)

(θ
√
n + 10δ2),

which proves the first part of the lemma. For the proof of the second part suppose
that δ < 1

10 and θ = 1
12

√
n
. Using these and the inequalities

√
1 − δ2 < 1 and

θ > 0 we obtain δ(v�) <
θ
√
n+10δ2

2
√
1−θ(1−2δ2)

< 1
2
√
1−θ

50
49

( 1
12 + 1

10

)
. Using n ≥ 1 we

get 2
√
1 − θ ≥

√
11
3 . Taking all these inequalities into consideration we conclude

δ(x+, s+;μ+) < 5
√
33

294 < 1
10 . This proves the lemma. ��

The next lemma gives a bound on the number of iterations.
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Lemma 5 We suppose that (x0, s0) are strictly feasible, μ0 = (x0)T s0

n and
δ(x0, s0;μ0) < 1√

2
. Let xk and sk be the vectors obtained after k iterations. Then,

for every

k ≥
⌈
1

θ
log

μ0 (n + 4)

ε

⌉

we get (xk)T sk ≤ ε.

Proof From Lemma 3 and from δ(x, s;μ) < 1√
2
we get

(xk)T sk ≤ μk (n + 4) = (1 − θ)kμ0 (n + 4) .

In this way (xk)T sk ≤ ε stands if

(1 − θ)kμ0 (n + 4) ≤ ε.

We take logarithms, so we may write

k log(1 − θ) + log
(
μ0 (n + 4)

)
≤ log ε.

We know that − log(1 − θ) ≥ θ , so the inequality stands only if

kθ ≥ log
(
μ0 (n + 4)

)
− log ε = log

μ0 (n + 4)

ε
.

This proves the lemma. ��
Theorem 1 We assume that x0 = s0 = e. Using the default values for θ and τ we
obtain that the algorithm given in Fig. 1 demands no more then

O

(
1

θ
log

n + 4

ε

)

interior-point iterations.

Now we give a consequence of the previous lemmas when τ = 1
10 and θ = 1

12
√
n
.

Note that (x, y, s) is an ε-solution of the primal–dual pair if the following inequality
holds

max(xT s, ‖b − Ax‖, ‖c − AT y − s‖) ≤ ε.

Corollary 1 Let x0 = s0 = e. If τ = 1
10 and θ = 1

12
√
n
, then after at most

⌈
12

√
nlog

n + 4

ε

⌉
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interior-point iterations the algorithmfinds an ε-solution for (P) and (D). The resulting
vectors satisfy xT s ≤ ε.

6 Numerical results

In order to compare the efficiency of the algorithm to other methods, we implemented
the algorithm given in Fig. 1 in the C + + programming language. We analysed the
algorithm for five different search directions, including ours. Let SD1 be the method
working with the search direction introduced by us in this paper. Furthermore, we
denote by SD2 the algorithm which uses the classical search direction proposed by
Roos, Terlaky and Vial [33]. Let SD3 and SD4 be the algorithms that are based on the
search directions given in [10] and [11], respectively. Moreover, we denote by SD5 the
method which works with the trigonometric search direction introduced by Peyghami
and Hafshejani [29].

In each step we reduce the value of the barrier update parameter μ by the fac-
tor 1 − θ . We considered the following different values for the update parameter θ :
0.1, 0.2, 0.3, 0.4. We set the value for the accuracy parameter ε to 10−4.

We analysed two small-sized feasible problems where the starting points were
already given. After that, we solved the problemAFIRO from the Netlib test collection
[12]. Hereafter, we present the results obtained by solving these three problems.

Problem 1

Let us consider the problems proposed in this paper, where

A =

⎡
⎢⎢⎢⎢⎣

−8 −2 −8 6 −3 −1 7
−5 10 −2 −9 4 −4 −5
−8 1 −1 −3 −8 −6 −6
9 2 7 1 5 −4 −7

−4 −3 −4 −2 6 −3 −1

⎤
⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎣

−78
5

−137
121
−54

⎤
⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−22
−15
0
57

−64
−4
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We consider the following starting points: x0 = [9, 9, 1, 5, 5, 2, 1]T ,
y0 = [5, −3, 4, 2, −4]T and s0 = [1, 5, 8, 2, 9, 9, 6]T .

In Table 1 we summarize the obtained number of iterations for the specified search
directions and update parameters.

Table 1 Number of iterations
for Problem 1

SD1 SD2 SD3 SD4 SD5

θ = 0.1 60 78 78 76 73

θ = 0.2 7 37 37 36 35

θ = 0.3 22 24 23 24 22

θ = 0.4 7 17 16 17 15
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Table 2 Number of iterations
for Problem 2

SD1 SD2 SD3 SD4 SD5

θ = 0.1 58 61 61 58 55

θ = 0.2 21 29 29 29 26

θ = 0.3 18 18 18 18 17

θ = 0.4 8 13 13 13 12

Table 3 Number of iterations
for Problem AFIRO

SD1 SD2 SD3 SD4 SD5

θ = 0.1 119 137 137 132 131

θ = 0.2 62 68 65 61 62

θ = 0.3 39 51 41 38 39

θ = 0.4 28 34 28 27 27

Problem 2

Let us consider:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 4 8 0 −7 −4 −4
−3 0 9 0 5 5 3
−9 5 −5 8 −9 0 8
−3 2 −1 −1 −5 9 −8
9 10 10 9 3 8 9

−1 3 −7 −7 −4 −8 −2

⎤
⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

23
119
−23
56
380

−170

⎤
⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

53
169
90
201

−141
21
124

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The starting points are the following: x0 = [6, 10, 6, 6, 5, 11, 1]T , y0 =
[10, −7, 10, −1, 9, −4]T and s0 = [4, 3, 4, 11, 6, 1, 8]T .

In Table 2 we present the obtained number of iterations that refer to Problem 2.

Problem AFIRO

In this case for the choice of the initial points we used Mehrotra’s heuristic method
[26].

Table 3 contains the obtained results for the different cases.
We conclude that in some cases the proposed method solves the linear optimization

problem more efficiently than the one using other search directions presented in the
literature.

7 Conclusion

We proposed an IPM for LO based on a new method for defining search directions.
Using the variance vector v we found out that the centering equation is equivalent to
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v2 = v and we applied componentwise the function ϕ(t) = t2 to both sides of this
equation. After that, we used Newton’s method in order to get the search directions.
We showed that the obtained algorithm solves the problem in polynomial time and has
the same complexity as the best known IPMs for LO. Moreover, we presented some
numerical results that prove the efficiency of the proposed method.
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