
Optim Lett (2018) 12:1079–1097
https://doi.org/10.1007/s11590-017-1170-5

ORIGINAL PAPER

An efficient parameterized logarithmic kernel function
for linear optimization

Mousaab Bouafia1,2 · Djamel Benterki3 ·
Adnan Yassine2

Received: 13 August 2016 / Accepted: 15 July 2017 / Published online: 20 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract The introduction of kernel function in primal-dual interior point methods
represents not only a measure of the distance between the iterate and the central path,
but also plays an important role in the amelioration of the computational complexity
of an interior point algorithm. In this work, we present a primal-dual interior point
method for linear optimization problems based on a new kernel function with an
efficient logarithmic barrier term. We derive the complexity bounds for large and
small-update methods respectively. We obtain the best known complexity bound for
large-update given by Peng et al., which improves significantly the so far obtained
complexity results based on a logarithmic kernel function given by El Ghami et al.
The results obtained in this paper are the first with respect to the kernel function with
a logarithmic barrier term.

Keywords Linear optimization · Kernel function · Interior point methods ·
Complexity bound

B Mousaab Bouafia
mousaab84@yahoo.fr

Djamel Benterki
dj_benterki@yahoo.fr

Adnan Yassine
adnan.yassine@univ-lehavre.fr

1 LabCAV, Laboratory of Advanced Control, University of Guelma, BP 401, 24000 Guelma,
Algeria

2 Normandie University, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France

3 LMFN, Laboratory of Fundamental and Numerical Mathematics, University Setif 1, 19000 Setif,
Algeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-017-1170-5&domain=pdf


1080 M. Bouafia et al.

1 Introduction

In 1984, Karmarkar [1] proposed a new polynomial method for solving linear optimiza-
tion problems (LO). This method, and its variants that were developed subsequently,
are now called interior-point methods (IPMs). For a survey, we refer to recent books
on the subject [2–4]. In order to describe the idea of this paper, we need to recall
some ideas underlying new primal-dual IPMs. Recently, Peng et al. [2] introduced
the so-called self-regular barrier functions for primal-dual IPMs for linear optimiza-
tion. Each such barrier function is determined by its univariate self regular kernel
function.

Most of IPMs for LO are based on the logarithmic barrier function [3,5]. In 2001,
Peng et al. [6] proposed new variants of IPMs based on a new nonlogarithmic kernel
functions. Such a function is strongly convex and smooth coercive on its domain:
the positive real axis. They obtained the best known complexity results for large and
small-update methods.

In 2004, Bai et al. [7] proposed new kernel function with an exponential bar-
rier term, and introduced the first new kernel function with a trigonometric barrier
term.

In 2008, El Ghami et al. [8] proposed parameterized kernel function with a log-
arithmic barrier term. This function generalized the kernel functions given in [3,5].
In the same year, Bai et al. [9] proposed parameterized kernel function which is not
a logarithmic barrier term in the general case. This function generalized the kernel
functions given in [2,3,5,8,10].

In 2012, El Ghami et al. [11] evaluated the first new kernel function with a trigono-
metric barrier term given by Bai et al. [7]. Since then, research on giving new kernel
function with a trigonometric barrier term continued for improving the complexity
bound obtained by El Ghami et al. [11].

In 2016, Bouafia et al. [12,13] proposed two parameterized kernel function for
primal-dual IPMs for LO. They obtained the best known complexity results for large
and small-update methods. The first function in [12] generalizes the kernel function
given by Bai et al. [7], whereas the second in [13] is the first kernel function with
trigonometric barrier term primal-dual IPMs for LO. This last function generalized
and improved the complexity bound based on a new kernel function with trigonomet-
ric barrier term obtained in [11,14–18]. The objective of this work is to generalize
and improve the complexity bound based on a new kernel function with logarithmic
barrier term.

The paper is organized as follows. In Sect. 2, we start with some notations and
preliminaries. In Sect. 3, we present some properties of the new kernel function,
as well as several properties and the growth behavior of the barrier function based
on this kernel function. The estimate of the step size and the decrease behavior
of the new barrier function are discussed in Sect. 4 where we present the inner
iteration bound as well as the iteration bound of the algorithm. In Sect. 5, we
offer a compared results of the algorithm given by El Ghami et al. [8] and the
results of our algorithm. Finally, concluding remarks are given in the last sec-
tion.
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2 Notations and preliminaries

2.1 Notations

Let Rn be the n-dimensional Euclidean space with the inner product 〈., .〉 and ‖.‖ be
2-norm.Rn+ andRn++ denote the set of n-dimensional nonnegative vectors and positive
vectors respectively. For x, s ∈ R

n , xmin and xs denote the smallest component of
the vector x and the componentwise product of the vector x and s respectively. We
denote by X = diag(x) the n × n diagonal matrix with components of the vector
x ∈ R

n are the diagonal entries. Finally, e denotes the n-dimensional vector of ones.
For f (x) , g (x) : Rn++ → R

n++, f (x) = O (g (x)) if f (x) ≤ C1g (x) for some
positive constant C1and f (x) = � (g (x)) if C2g (x) ≤ f (x) ≤ C3g (x) for some
positive constant C2 and C3.

2.2 Preliminaries

In this paper, we deal with primal-dual methods for solving the standard LO:

min{〈c, x〉 : Ax = b, x ≥ 0}, (P)

where A ∈ R
m×n , rank(A) = m, b ∈ R

m and c ∈ R
n , and its dual problem

max{〈b, y〉 : AT y + s = c, s ≥ 0}. (D)

In 1984, Karmarkar [1] proposed a new polynomial-time method for solving LO. This
method and its variants that were developed subsequently are now called IPMs. For a
survey, we refer to recent books on the subject as Peng et al. [2], Roos et al. [3], Ye
[4] and Bai et al. [19]. Without loss of generality, we assume that (P) and (D) satisfy
the interior-point condition (IPC), i.e. there exist (x0,y0,s0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0. (1)

It is well known that finding an optimal solution of (P) and (D) is equivalent to solving
the following system

Ax = b, x ≥ 0, AT y + s = c, s ≥ 0, xs = 0. (2)

The basic idea of primal-dual IPMs is to replace the third equation in (2), the so-called
complementarity condition for (P) and (D), by the parameterized equation xs = μe,
with μ > 0. Thus we consider the system

Ax = b, x ≥ 0, AT y + s = c, s ≥ 0, xs = μe. (3)

Surprisingly enough, if the IPC is satisfied, then there exists a solution for each μ > 0,
and this solution is unique. It is denoted as (x(μ), y(μ), s(μ)), and we call x(μ) the
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μ-center of (P) and (y(μ), s(μ)) the μ-center of (D). The set of μ-centers (with μ

running through all positive real numbers) gives a homotype path, which is called the
central path of (P) and (D). The relevance of the central path for LO was recognized
first by Megiddo [20] and Sonnevend [21]. If μ → 0, then the limit of the central
path exists, and since the limit points satisfy the complementarity condition, the limit
yields optimal solutions for (P) and (D). From a theoretical point of view, the IPC
can be assumed without loss of generality. In fact we may, and will, assume that
x0 = s0 = e. In practice, this can be realized by embedding the given problems (P)
and (D) into a homogeneous self-dual problem, which has two additional variables
and two additional constraints. For this and the other properties mentioned above, see
[3]. The IPMs follow the central path approximately. We describe briefly the usual
approach. Without loss of generality, we assume that (x(μ), y(μ), s(μ)) is known
for some positive μ. For example, due to the above assumption, we may assume this
for μ = 1, with x(1) = s(1) = e. We then decrease μ to (1 − θ)μ for some fixed
θ ∈]0, 1[, and we solve the following Newton system:

AΔx = 0, ATΔy + Δs = 0, sΔx + xΔs = μe − xs. (4)

This system defines uniquely a search direction (Δx,Δy,Δs). By taking a step along
the search direction, with the step size defined by some line search rules, we construct
a new triple (x, y, s). If necessary, we repeat the procedure until we find iterates that
are “close” to (x(μ), y(μ), s(μ)). Then μ is again reduced by the factor 1 − θ , and
we apply Newton’s method targeting the new μ−centers, and so on. This process is
repeated until μ is small enough, say until nμ ≤ ε; at this stage we have found an
ε−solution of problems (P) and (D). The result of a Newton step with step size α is
denoted as

x+ = x + αΔx, s+ = s + αΔs, y+ = y + αΔy. (5)

where the step size α satisfies 0 < α ≤ 1. Now, we introduce the scaled vector v and
the scaled search directions dx and ds as follows:

v =
√

xs
μ

, dx = vΔx
x , ds = vΔs

s . (6)

System (4) can be rewritten as follows:

Adx = 0, A
T
Δy + ds = 0, dx + ds = v−1 − v, (7)

where A = 1
μ
AV−1X, V = diag(v), X = diag(x). Note that the right-hand side

of the third equation in (7) is equal to the negative gradient of the logarithmic barrier
function �L (v) , i.e., dx + ds = −∇�L (v), system (7) can be rewritten as follows:

Adx = 0, A
T
Δy + ds = 0, dx + ds = −∇�L (v) , (8)
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where the barrier function �L(v) : R
n++ → R+ is defined as follows:

�L (v) = �L (x, s;μ) =
n∑

i=1

ψL (vi ) , (9)

ψL (vi ) = v2
i − 1

2
− log vi . (10)

We use �L (v) as the proximity function to measure the distance between the current
iterate and the μ−center for given μ > 0. We also define the norm-based proximity
measure, δ(v) : R

n++ → R+, as follows

δ (v) = 1

2
‖∇�L (v)‖ = 1

2
‖dx + ds‖ . (11)

We call ψ (t) the kernel function of the logarithmic barrier function � (v). In this paper,
we replace ψ (t) by a new kernel function ψLB (t) and � (v) by a new barrier function
�LB (v), which will be defined in Sect. 3. Note that the pair (x, s) coincides with the
μ−center (x(μ), s(μ)) if and only if v = e. It is clear from the above description
that the closeness of (x, s) to (x(μ), s(μ)) is measured by the value of �LB (v) with
τ > 0 as a threshold value. If �LB (v) ≤ τ , then we start a new outer iteration
by performing a μ−update; otherwise, we enter an inner iteration by computing the
search directions at the current iterates with respect to the current value of μ and apply
(5) to get new iterates. If necessary, we repeat the procedure until we find iterates that
are in the neighborhood of (x(μ), s(μ)). Then μ is again reduced by the factor 1 − θ

with 0 < θ < 1, and we apply Newton’s method targeting the new μ−centers, and so
on. This process is repeated until μ is small enough, say until nμ < ε; at this stage
we have found an ε−approximate solution of LO. The parameters τ, θ and the step
size α should be chosen in such a way that the algorithm is optimized in the sense
that the number of iterations required by the algorithm is as small as possible. The
choice of the so-called barrier update parameter θ plays an important role in both
theory and practice of IPMs . Usually, if θ is a constant independent of the dimension
n of the problem, for instance, θ = 1/2, then we call the algorithm a large-update (or
long-step) method. If θ depends on the dimension of the problem, such as θ = 1/n ,
then the algorithm is called a small-update (or short-step) method. The generic form
of the algorithm is shown in Fig. 1.

In most cases, the best complexity result obtained for small-update IPMs is
O(

√
n log n

ε
). For large-update methods the best obtained bound isO(

√
n log n log n

ε
),

which until now has been the best known bound for such methods [6,7].
In this paper, we define a new kernel function with logarithmic barrier term and

propose primal–dual interior point methods which improve all the results of the com-
plexity bound for large-update methods based on a logarithmic kernel function for
LO. More precisely, based on the proposed kernel function, we prove that the corre-

spondent algorithm has O
(
qn

q+1
2q log n

ε

)
complexity bound for large-update method

and O
(
q2√n log n

ε

)
for small-update method. Another interesting choice is q depen-
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Generic Primal-dual IPMs for LO
Input:
A proximity the function ΦLB(v);
a threshold parameter τ > 1;
an accuracy parameter 0;
a fixed barrier update parameter θ, 0 < θ < 1;
begin
x = e; s = e; μ = 1; v = e.
while nμ ≥ do
begin (outer iteration)

μ = (1 − θ)μ;
while ΦLB (x, s;μ) > τ do
begin (inner iteration)

solve the system (8), Φ (v) replaced by ΦLB (v) to obtain (Δx, Δy, Δs);
choose a suitable step size α;

x = x + αΔx; y = y + αΔy; s = s + αΔs;
v = xs

µ
;

end (inner iteration)
end (outer iteration)
end.

Fig. 1 Generic algorithm

dent with n, which minimizes the iteration complexity bound. In fact, if we take
q = log n

2 , we obtain the best known complexity bound for large-update methods
namely O

(√
n log n log n

ε

)
. This bound improves the so far obtained complexity

results for large-update methods based on a logarithmic kernel function given by
El Ghami et al. [8].

3 Properties of the kernel function and the barrier function

3.1 Properties of the new kernel function

In this section, we investigate some properties of the new kernel function with a
logarithmic barrier term which are essential to our complexity analysis. We call ψ (t):
R++ → R+ a kernel function if ψ is twice differentiable and satisfies the following
conditions:

ψ ′(1) = ψ(1) = 0, ψ ′′(t) > 0, lim
t↓0+ ψ (t) = lim

t→+∞ ψ (t) = +∞.

Now, we define a new function ψLB (t) as follows:

ψLB (t) = t2 − 1 − log t

2
+ t1−q − 1

2 (q − 1)
, q > 1. (12)
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For convenience of reference, we give the first three derivatives with respect to t as
follows:

ψ ′
LB(t) = t − 1

2t − 1
2 t

−q ,

ψ ′′
LB (t) = 1 + 1

2t2
+ q

2 t
−q−1,

ψ ′′′
LB (t) = − 1

t3
− q(q+1)

2 t−q−2.

(13)

Obviously, ψLB (t) is a kernel function and

ψ ′′
LB (t) > 1 (14)

In this paper, we replace the function � (v) in (8) with the function �LB (v) as follows:

dx + ds = −∇�LB (v) , (15)

where

�LB (v) =
n∑

i=1

ψLB (vi ) , (16)

and ψLB (t) is defined in (12). Hence, the new search direction (Δx,Δy,Δs) is
obtained by solving the following modified Newton system:

Adx = 0,

A
t
Δy + ds = 0,

dx + ds = −∇�LB (v) .

(17)

Note that dx and ds are orthogonal because the vector dx belongs to null space and
vector ds to the row space of the matrix A.

Since dx and ds are orthogonal, we have

dx = ds = 0 ⇐⇒ ∇�LB (v) = 0

⇐⇒ v = e

⇐⇒ �LB (v) = 0

⇐⇒ x = x(μ), s = s(μ).

We use �LB (v) as the proximity function to measure the distance between the current
iterate and the μ−center for given μ > 0. We also define the norm-based proximity
measure, δ(v): R++ → R+, as follows:

δ(v) = 1
2 ‖∇�LB (v)‖ = 1

2 ‖dx + ds‖ . (18)

Lemma 3.1 For ψLB (t), we have the following.
ψLB (t) is exponentially convex for all t > 0; that is,

ψLB
(√

t1t2
) ≤ 1

2
(ψLB (t1) + ψLB (t2)) . (a)

123
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ψ ′′
LB (t) is monotonically decreasing for all t > 0. (b)

tψ ′′
LB (t) − ψ ′

LB (t) > 0 for all t > 0. (c)

ψ ′′
LB (t) ψ ′

LB (βt) − βψ ′
LB (t) ψ ′′

LB (βt) > 0, t > 1, β > 1. (d)

Proof For (a), using (13), we have

tψ ′′
LB (t) + ψ ′

LB (t) = t

(
1 + 1

2t2 + q

2
t−q−1

)

+
(
t − 1

2t
− 1

2
t−q

)
> 0 f or all t > 0.

And by Lemma 2.1.2 in [2], we have the result.
For (b), using (13), we have ψ ′′′

LB (t) < 0, so we have the result.
For (c), using (13), we have

tψ ′′
LB (t) − ψ ′

LB (t) = t

(
1 + 1

2t2 + q

2
t−q−1

)
−

(
t − 1

2t

−1

2
t−q

)
> 0 f or all t > 0.

For (d), using Lemma 2.4 in [7], (b) and (c), we have the result. This completes the
proof. ��
Lemma 3.2 For ψLB (t), we have

1

2
(t − 1)2 ≤ ψLB (t) ≤ 1

2

[
ψ ′
LB (t)

]2
, t > 0. (19)

ψLB (t) ≤ q + 3

4
(t − 1)2 , t > 1. (20)

Proof For (19), using (14), we have

ψLB (t) =
t∫

1

x∫

1

ψ ′′
LB (y) dydx ≥

t∫

1

x∫

1

1dydx = 1

2
(t − 1)2

ψLB (t) =
t∫

1

x∫

1

ψ ′′
LB (y) dydx

≤
t∫

1

x∫

1

ψ ′′
LB (y) ψ ′′

LB (x) dydx
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=
t∫

1

ψ ′′
LB (x) ψ ′

LB (x) dx

=
t∫

1

ψ ′
LB (x) dψ ′

LB (x)

= 1

2

[
ψ ′
LB (t)

]2
.

For (20), since ψLB (1) = ψ ′
LB (1) = 0, ψ ′′′

LB (t) < 0, ψ ′′
LB (1) = q+3

2 , and by using
Taylor’s Theorem, we have

ψLB (t) = ψLB (1) + ψ ′
LB (1) (t − 1) + 1

2
ψ ′′
LB (1) (t − 1)2 + 1

6
ψ ′′′
LB (ξ) (t − 1)3

= 1

2
ψ ′′
LB (1) (t − 1)2 + 1

6
ψ ′′′
LB (ξ) (t − 1)3

≤ 1

2
ψ ′′
LB (1) (t − 1)2

= q + 3

4
(t − 1)2 .

for some ξ, 1 ≤ ξ ≤ t. This completes the proof. ��
Let σ : [0,+∞[→ [1,+∞[ be the inverse function of ψLB (t) for t ≥ 1 and ρ :
[0,+∞ [→] 0, 1] be the inverse function of −1

2 ψ ′
LB (t) for all t ∈]0, 1]. Then we have

the following lemma.

Lemma 3.3 For ψLB (t), we have

1 +
√

4

q + 3
s ≤ σ (s) ≤ 1 + √

2s, s ≥ 0. (21)

ρ (z) >
1

(4z + 2)
1
q

, z ≥ 0. (22)

Proof For (21), let

s = ψLB (t) , t ≥ 1 , i.e. σ (s) = t, t ≥ 1.

By (19), we have

ψLB (t) ≥ 1

2
(t − 1)2 .

then

s ≥ 1

2
(t − 1)2 , t ≥ 1.
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which implies that

t = σ (s) ≤ 1 + √
2s.

By (20), we have

s = ψLB (t) ≤ q + 3

4
(t − 1)2 ,

so

t = σ (s) ≥ 1 +
√

4

q + 3
s.

For (22), let

z = −1

2
ψ ′
LB (t) , t ∈

]
0, 1

]
.

By the definition of:

ρ : ρ (z) = t, t ∈] 0, 1] .

and by the definition of ψLB (t), we have

z = − 1
2

(
t − 1

2t − 1
2 t

−q
)

> 1
4

(
t−q − 2t

)
> 1

4

(
t−q − 2

)
,

which implies that

t = ρ (z) >
1

(4z + 2)
1
q

.

This completes the proof. ��
Lemma 3.4 Let σ : [0,+∞[→ [1,+∞[ be the inverse function ofψLB (t) for t ≥ 1.
Then we have

�LB (βv) ≤ nψLB

(
βσ

(
�LB (v)

n

))
, v ∈ R++, β ≥ 1.

Proof Using (d), and Theorem 3.2 in [7], we can get the result. This completes the
proof. ��
Lemma 3.5 Let 0 ≤ θ < 1, v+ = v√

1−θ
, If �LB (v) ≤ τ, then we have

�LB (v+) ≤
(
θn + 2τ + 2

√
2τn

)

2 (1 − θ)
.
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An efficient parameterized logarithmic kernel function for linear… 1089

Proof Since 1√
1−θ

≥ 1 and σ
(

�LB (v)
n

)
≥ 1, then

σ
(

�LB (v)

n

)
√

1−θ
≥ 1.

And for t ≥ 1, we have

ψLB (t) ≤ t2 − 1

2
.

Using Lemma 3.4 with β = 1√
1−θ

, (21), and �LB (v) ≤ τ, we have

�LB (v+) ≤ nψLB

(
1√

1 − θ
σ

(
�LB (v)

n

))

≤ n

2

([
1√

1 − θ
σ

(
�LB (v)

n

)]2

− 1

)

= n

2 (1 − θ)

([
σ

(
�LB (v)

n

)]2

− (1 − θ)

)

≤ n

2 (1 − θ)

⎛
⎝

[
1 +

√
2
�LB (v)

n

]2

− (1 − θ)

⎞
⎠

= n

2 (1 − θ)

([
1 + 2

�LB (v)

n
+ 2

√
2
�LB (v)

n

]
− (1 − θ)

)

≤ n

2 (1 − θ)

(
θ + 2

τ

n
+ 2

√
2
τ

n

)

= θn + 2τ + 2
√

2τn

2 (1 − θ)
.

This completes the proof. ��
Denote

(�LB)0 = θn + 2τ + 2
√

2τn

2 (1 − θ)
= L (n, θ, τ ) ; (23)

then (�LB)0 is an upper bound for �LB (v+) during the process of the algorithm.

3.2 An estimation for the step size

In this section, we compute a default step size α and the resulting decrease of the
barrier function. After a damped step we have

x+ = x + αΔx; y+ = y + αΔy; s+ = s + αΔs.
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Using (6), we have

x+ = x
(
e + α Δx

x

) = x
(
e + α dx

v

)
= x

v
(v + αdx ) ;

s+ = s
(
e + α Δs

s

) = s
(
e + α ds

v

)
= s

v
(v + αds) .

So, we have v+ =
√

x+s+
μ

= √
(v + αdx ) (v + αds).

Define, for α > 0, f (α) = �LB (v+) − �LB (v) .

Then f (α) is the difference of proximities between a new iterate and a current
iterate for fixed μ. By (a), we have

�LB (v+) = �LB

(√
(v + αdx ) (v + αds)

)
≤ �LB (v + αdx ) + �LB (v + αds)

2
.

Therefore, we have f (α) ≤ f1 (α), where

f1 (α) = �LB (v + αdx ) + �LB (v + αds)

2
− �LB (v) . (24)

Obviously, f (0) = f1 (0) = 0. Taking the first two derivatives of f1 (α) with respect
to α, we have

f ′
1 (α) = 1

2

n∑
i=1

(
ψ ′
LB (vi + αdxi ) dxi + ψ ′

LB (vi + αdsi ) dsi
)
,

f ′′
1 (α) = 1

2

n∑
i=1

(
ψ ′′
LB (vi + αdxi ) d

2
xi + ψ ′′

LB (vi + αdsi ) d
2
si

)
.

Using (8) and (11), we have

f ′
1 (0) = 1

2
〈∇�LB (v) , (dx + ds)〉 = −1

2
〈∇�LB (v) ,∇�LB (v)〉 = −2δ(v)2.

For convenience, we denote v1 = min (v) , δ = δ(v), �LB = �LB (v).

Lemma 3.6 Let δ(v) be as defined in (11). Then we have

δ(v) ≥
√

1

2
�LB (v). (25)

Proof Using (19), we have

�LB (v) =
n∑

i=1

ψLB (vi ) ≤
n∑

i=1

1

2

(
ψ ′
LB (vi )

)2 = 1

2
‖∇�LB (v)‖2 = 2δ(v)2,

so δ(v) ≥
√

1
2�LB (v). This completes the proof. ��

123



An efficient parameterized logarithmic kernel function for linear… 1091

Remark 3.1 Throughout the paper, we assume that τ ≥ 1. Using Lemma 3.6 and the

assumption that �LB (v) ≥ τ, we have δ(v) ≥
√

1
2 .

From Lemmas 4.1–4.4 in [7], we have the following Lemmas 3.7–3.10, because
ψLB(t) is kernel function and ψ ′′

LB(t) is monotonically decreasing.

Lemma 3.7 ([7]) Let f1 (α) be as defined in (24) and δ(v) be as defined in (11).
Then we have f ′′

1 (α) ≤ 2δ2ψ ′′
LB (vmin − 2αδ). Since f1 (α) is convex, we will have

f ′
1 (α) ≤ 0 for all α less than or equal to the value where f1 (α) is minimal, and vice

versa.

The previous Lemma leads to the following three Lemmas:

Lemma 3.8 ([7]) f ′
1 (α) ≤ 0 certainly holds if α satisfies the inequality

ψ ′
LB (vmin) − ψ ′

LB (vmin − 2αδ) ≤ 2δ, (26)

Lemma 3.9 ([7]) The largest step size α holding (26) is given by α = ρ(δ)−ρ(2δ)
2δ

.

Lemma 3.10 ([7]) Let α be as defined in Lemma 3.9. Then α ≥ 1
ψ ′′
LB (ρ(2δ))

.

Lemma 3.11 Let ρ and α be as defined in Lemma 3.10. If �LB (v) ≥ τ ≥ 1, then we
have α ≥ 2

2+(q+1)(8δ+2)
q+1
q

.

Proof Using Lemma 3.10, (13) and (22) we have

α ≥ 1
ψ ′′
LB (ρ(2δ))

= 1
1+ 1

2ρ(2δ)2
+ q

2 (ρ(2δ))−(q+1)

≥ 1

1+ 1
2 (4(2δ)+2)

2
q + q

2 (4(2δ)+2)
q+1
q

≥ 2

2+(q+1)(8δ+2)
q+1
q

.

This completes the proof. ��
Denoting

α̃ = 2

2 + (q + 1) (8δ + 2)
q+1
q

; (27)

we have that α̃ is the default step size and that α̃ ≤ α.

Lemma 3.12 (Lemma 3.12 in [2]) Let h be a twice differentiable convex function with
h(0) = 0, h′(0) < 0, which attains its minimum at t∗ > 0. If h′′ is increasing for
t ∈ [0, t∗], then

h(t) ≤ th(0)

2
, 0 ≤ t ≤ t∗.

In this respect the next result is important.
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Lemma 3.13 (Lemma 4.5 in [7]) If the step size α satisfies α ≤ α, then

f (α) ≤ −αδ2.

Lemma 3.14 Let α̃ be the default step size as defined in (27) and let

�LB (v) ≥ 1.

Then

f (̃α) ≤ −
√

2

(q + 1) 148
[�LB (v)]

q−1
2q

. (28)

Proof Since �LB (v) ≥ 1, then from (25), we have

δ ≥
√

1

2
�LB (v) ≥

√
1

2
.

Using Lemma 3.13 (4.5 in [7]) with α = α̃ and (27), we have

f (̃α) ≤ −α̃δ2

= − 2δ2

2 + (q + 1) (8δ + 2)
q+1
q

≤ − 2δ2

2 (2δ) + (q + 1) (4 (2δ) + 2 (2δ))
q+1
q

≤ − 2δ2

2 (2δ)

q+1
q + (q + 1) (12δ)

q+1
q

= − 2δ2

(
2 (2)

q+1
q + (q + 1) (12)

q+1
q

)
(δ)

q+1
q

≤ − 2δ
2− q+1

q

(
2 (2)2 + (q + 1) (12)

2
)

≤ − 2δ
q−1
q

(q + 1) 148

≤ −
√

2

(q + 1) 148
[�LB (v)]

q−1
2q

This completes the proof. ��
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4 Complexity of the algorithm

4.1 Inner iteration bound

After the update of μ to (1 − θ) μ, we have

�LB (v+) ≤ (�LB)0 =
(
θn + 2τ + 2

√
2τn

)

2 (1 − θ)
= L (n, θ, τ ) .

We need to count how many inner iterations are required to return to the situation
where �LB (v) ≤ τ . We denote the value of �LB (v) after the μ update as (�LB)0; the
subsequent values in the same outer iteration are denoted by (�LB)k , k = 1, 2, ..., K ,
where K denotes the total number of inner iterations in the outer iteration. The decrease
in each inner iteration is given by (28). In [7], we can find the appropriate values of κ

and γ ∈ ]0, 1]:

κ =
√

2

(q + 1) 148
, γ = 1 − q − 1

2q
= q + 1

2q
.

Lemma 4.1 Let K be the total number of inner iterations in the outer iteration. Then
we have

K ≤
(

148
√

2q
) [

(�LB)0
] q+1

2q .

Proof By Lemma 1.3.2 in [2], we have K ≤ (�LB )
γ
0

κγ
=

(
148

√
2q

) [
(�LB)0

] q+1
2q .

This completes the proof. ��

4.2 Total iteration bound

The number of outer iterations is bounded above by
log n

ε

θ
(see [3] Lemma II.17, page

116). By multiplying the number of outer iterations by the number of inner iterations,
we get an upper bound for the total number of iterations, namely,

(
148

√
2q

) [
(�LB)0

] q+1
2q

log n
ε

θ
. (29)

For large-update methods with τ = O (n) and θ = � (1), we have

O
(
qn

q+1
2q log

n

ε

)
iterations complexity.

In case of a small-update methods, we have τ = O (1) and θ = �
(

1√
n

)
. Substitution

of these values into (28) does not give the best possible bound. A better bound is
obtained as follows.

123



1094 M. Bouafia et al.

By (20), with

ψLB (t) ≤ q + 3

4
(t − 1)2 , t > 1,

we have

�LB (v+) ≤ nψLB

(
1√

1 − θ
σ

(
�LB (v)

n

))

≤ n (q + 3)

4

(
1√

1 − θ
σ

(
�LB (v)

n

)
− 1

)2

= n (q + 3)

4 (1 − θ)

(
σ

(
�LB (v)

n

)
− √

1 − θ

)2

Using (21), we have

n (q + 3)

4 (1 − θ)

(
σ

(
�LB (v)

n

)
− √

1 − θ

)2

≤ n (q + 3)

4 (1 − θ)

((
1 +

√
2
�LB (v)

n

)
− √

1 − θ

)2

= n (q + 3)

4 (1 − θ)

((
1 − √

1 − θ
)

+
√

2
�LB (v)

n

)2

≤ n (q + 3)

4 (1 − θ)

(
θ +

√
2
τ

n

)2

= (q + 3)

4 (1 − θ)

(
θ
√
n + √

2τ
)2 = (�LB)0 .

where we also used that 1 − √
1 − θ = θ

1+√
1−θ

≤ θ and �LB(v) ≤ τ , using this
upper bound for (�LB)0, we get the following iteration bound:

(
148

√
2q

) [
(�LB)0

] q+1
2q

log n
ε

θ
.

note now (�LB)0 = O (q), and the iteration bound becomes O
(
q2√n log n

ε

)
iteration

complexity.

5 Comparison of algorithms

To prove the effectiveness of our new kernel function and evaluate its effect on the
behavior of the algorithm, we offer a comparison between the following two kernel
functions with a logarithmic barrier term and the results of their correspondent IPMs
algorithms.
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1) The first kernel function, given by El Ghami et al. [8], is noted kernel function
LE , defined by

ψLE (t) = t1+p − 1

1 + p
− log t, p ∈ [0, 1], t > 0.

2) Our new kernel function is noted kernel function LB, defined in (12) by

ψLB (t) = t2 − 1 − log t

2
+ t1−q − 1

2 (q − 1)
, q > 1, t > 0.

We summarize these results in the Tables 1, 2 and 3.

Table 1 The conditions (a), (b) and (c)

ψi LE LB

ψ ′
i (t) t p − 1

t t − 1
2t − 1

2 t
−q

ψ ′′
i (t) pt p−1 + 1

t2
> 0 1 + 1

2t2
+ q

2 t
−q−1 > 1

ψ ′′′
i (t) −p(1 − p)t p−2 − 2

t3
< 0 − 1

t3
− q(q+1)

2 t−q−2 < 0

tψ ′′
i (t) + ψ ′

i (t) (1 + p)t p > 0 t (1 + 1
2t2

+ q
2 t

−q−1) + (t − 1
2t − 1

2 t
−q ) > 0

tψ ′′
i (t) − ψ ′

i (t) −(1 − p)t p + 2
t t

(
1 + 1

2t2
+ q

2 t
−q−1

)
−

(
t − 1

2t − 1
2 t

−q
)

> 0

is not always positive

Table 2 The estimated bound terms of the algorithm

ψi LE LB

σ (s) for s ≥ 0 1 + s −
√
s2 + 2s ≤ σ (s) ≤ 1 + s +

√
s2 + 2s 1 +

√
4

q+3 s ≤ σ (s) ≤ 1 + √
2s

ρ (z) for z ≥ 0 ρ (z) ≥ 1
2z+1 ρ (z) > 1

(4z+2)
1
q

L (n, θ, τ ) ≤
(θ

√
n+ τ√

n
+

√
τ2
n +2τ )2

1−θ
θn+2τ+2

√
2τn

2(1−θ)

α̃ 1
2+(4δ+1)2

2

2+(q+1)(8δ+2)
q+1
q

κ 1
512

√
2

(q+1)148

γ 1 q+1
2q

Table 3 Complexity results for large- and small-update methods

Complexity bound LE LB

Large-update methods O
(
n log n

ε

)
O

(
qn

q+1
2q log n

ε

)

Small-update methods O
(√

n log n
ε

)
O

(
q2√

n log n
ε

)
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6 Conclusion

In this paper, our objective is to propose a new efficient parameterized logarithmic
kernel function for developing a new descent direction and improve the algorithmic
complexity of the interior-point method proposed. We have analyzed large-update and
small-update versions of the primal-dual interior algorithm described in Fig. 1 which
is based on the new kernel functions defined by (12). The results obtained in this paper
represent important contributions to improve the convergence and the complexity
analysis of primal-dual IPMs for LO. So far, and to our knowledge, these results are
the best known complexity bound for large-update with a logarithmic barrier term.

Acknowledgements The authors are very grateful and would like to thank the anonymous referees for
their suggestions and helpful comments which significantly improved the presentation of this paper.
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