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Abstract In this paper we are concerned with the Split Feasibility Problem (SFP)
in which there are given two Hilbert spaces H1 and H2, nonempty, closed and convex
sets C ⊆ H1 and Q ⊆ H2, and a bounded and linear operator A : H1 → H2. The SFP
is then to find a point x∗ ∈ C such that its image under A belongs to Q, meaning that
Ax∗ ∈ Q. This reformulation was employed successfully for solving many inverse
problems: for example, in intensity-modulated radiation therapy treatment planning.
One of the typical classes of methods that have been used to solve the SFP is the class
of projection method. This note focuses on the modified relaxation CQ algorithm
with the Armijo-line search rule for solving the SFP. Under common and standard
assumptions, we show that the proposed method weakly converges to a solution of
the SFP. Numerical examples illustrating our method’s efficiency are presented for
solving the LASSO problem in which the goal is to recover a sparse signal from a
limited number of observations.
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1 Introduction

In this paper we focus on the Split Feasibility Problem (SFP), which is formulated as
follows.

Find a point x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where A : H1 → H2 is a bounded and linear operator, C ⊆ H1 and Q ⊆ H2 are
nonempty, closed and convex sets. The split feasibility problem was first introduced
by Censor and Elfving [1] in Euclidean spaces, and later was employed for solving
an inverse problem in intensity-modulated radiation therapy (IMRT) treatment plan-
ning, see [2]. A more general problem in this area is the Split Inverse Problem (SIP)
introduced by Censor et al. [3] as well as Byrne et al. [4]. Observe that in the spe-
cial case where H1 = H2 and A = I , that is the identity operator, the SFP (1.1)
reduces to the well-known, two-sets Convex Feasibility Problem (CFP). The SFP can
be reformulated as the following constrained minimization.

min
x∈C ‖PQ(Ax) − Ax‖ (1.2)

Due to this reformulation, Byrne [5,6] introduced the CQ algorithm which is based
on the projected gradient method, see e.g., Goldstein [7]. The iterative step of the CQ
algorithm has the following nature:

xk+1 = PC
(
xk − γ AT (I − PQ)Axk

)
(1.3)

where AT stands for the transpose of A. This method has been studied extensively and
several generalizations were introduced in the literature. For example, Xu [8] showed
that the CQ algorithm converges weakly in real Hilbert spaces; this has been shown
using the fixed point and the projected gradient approaches. Since the CQ algorithm
requires calculating the orthogonal projections onto the setsC and Q per each step, this
can be applied only whenever an explicit formula for these projections exist and this
is mainly the case when the sets are “simple”. For solving the variational inequality
problem, Fukushima in [9] introduced a way which does not require to compute
orthogonal projection onto sets, but subgradient projections onto super-sets C ⊂ Ck

and Q ⊂ Qk . Following this idea, Yang in [10], proposed the relaxed CQ algorithm
for solving the SFP (1.1), in which PCk and PQk are orthogonal projections onto the
half-spaces Ck and Qk , respectively. Since these projections are easily calculated,
this method appears to be very practical. On the other hand, the convergence theorem
requires to calculate the spectral norm of the operator A. Hence, one way to avoid
this estimation was proposed by Qu and Xiu [11] by adopting an Armijo-line search.
Wang et al. [12] proposed an inexact projection method for solving the SFP (1.1)
which converges strongly in Euclidean spaces. Lopez et al. [13] studied the SFP in
real Hilbert spaces and presented a weak convergence algorithm that does not require
evaluating the spectral norm of the operator A. Several other extensions for example,
are Dong et al. [14] and Tang et al. [15]. For further projection methods for solving
the SFP (1.1) consult [16,17] and the references therein.
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Our work in this paper focuses on the modified relaxation CQ algorithm with the
Armijo-line search of Qu and Xiu [11] in real Hilbert spaces. Under mild assupmtions,
we present a simple and novel approach to prove the weak convergence of the algo-
rithm. To illustrate the method’s efficiency, we present a comparison with the Yang’s
[10] relaxed CQ algorithm for solving the LASSO problem (4.1).

The paper is organized as follows. In Sect. 2, definitions and notions which will be
useful for our analysis are presented. In Sect. 3, we analyze the weak convergence of
the modified relaxation CQ algorithm. And finally, in Sect. 4, we present numerical
examples comparing themodified relaxationCQalgorithm and theYang’s [10] relaxed
CQ algorithm for solving the LASSO problem.

2 Preliminaries

Throughout this paper, H denotes a real Hilbert space endowed with a scalar product
〈·, ·〉 and its associated norm ‖ · ‖, and I is the identity operator on H . We denote by
� the solution set of the SFP (1.1). Moreover, xk → x (xk ⇀ x) represents that the
sequence {xk} converges strongly (weakly) to x . Finally, we denote by ωw(xk) all the
weak cluster points of {xk}.

Recall that the orthogonal projection PCx from H onto the nonempty, closed and
convex set C ⊂ H is defined as follows:

PCx = argmin
y∈C ‖x − y‖. (2.1)

It is well known that the orthogonal projection operator satisfies the following
properties (see for example [18]).

Lemma 2.1 Let C be a nonempty, closed and convex subset of H. Then for any x ∈ H,
the following assertions hold:

(i) 〈x − PCx, z − PCx〉 ≤ 0 for all z ∈ C;
(ii) ‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉 for all x, y ∈ H;
(iii) ‖PCx − z‖2 ≤ ‖x − z‖2 − ‖PCx − x‖2 for all z ∈ C.

Definition 2.1 ([18]) A mapping T : H → H is said to be

(i) nonexpansive, if and only if ‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ H ;
(ii) firmly nonexpansive, if and only if 〈x− y, T x−T y〉 ≥ ‖T x−T y‖2, ∀x, y ∈ H .

From Lemma 2.1, it can be seen that the projection operator PC is nonexpansive
and even firmly nonexpansive (this can be easily proved by the Cauchy-Schwartz
inequality). In addition, the operator I − PC is also firmly nonexpansive, where I
denotes the identity operator, i.e., for any x, y ∈ H ,

〈(I − PC )x − (I − PC )y, x − y〉 ≥ ‖(I − PC )x − (I − PC )y‖2 . (2.2)

We shall make full use of the following lemma to facilitate our proof.

Lemma 2.2 ([19]) Let D be a nonempty, closed and convex subset of H and {xn} be
a sequence in H that satisfies the following properties:
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(i) limn→∞ ‖xn − x‖ exists for each x ∈ D;
(ii) ωw(xn) ⊂ D.

Then {xn} converges weakly to a point in D.

For the convergence proof of the modified relaxation CQ algorithm, we assume
that the following two conditions hold.

(A1) The sets C and Q can be presented as follows.

C = {x ∈ H1|c(x) ≤ 0}, (2.3)

and
Q = {y ∈ H2|q(y) ≤ 0}, (2.4)

where c : H1 → R and q : H2 → R are convex and subdifferential functions on H1
and H2, respectively. Assume also that the subdifferential operators ∂c and ∂q of c
and q are bounded, i.e., bounded on bounded sets.

(A2) For any x ∈ H1 and y ∈ H2, at least one subgradient ξ ∈ ∂c(x) and η ∈ ∂q(y)
can be calculated, where ∂c(x) and ∂q(y) are the subdifferentials of c(x) and q(y) at
the points x and y, respectively.

∂c(x) = {ξ ∈ H1|c(z) ≥ c(x) + 〈ξ, z − x〉, ∀z ∈ H1}, (2.5)

and
∂q(y) = {η ∈ H2|q(u) ≥ q(y) + 〈η, u − y〉, ∀u ∈ H2}. (2.6)

Now, we define the sets Ck and Qk :

Ck =
{
x ∈ H1|c(xk) + 〈ξ k, x − xk〉 ≤ 0

}
, (2.7)

where ξ k ∈ ∂c(xk), and

Qk =
{
y ∈ H2|q(Axk) + 〈ηk, y − Axk〉 ≤ 0

}
, (2.8)

where ηk ∈ ∂q(Axk). Observe that if ξ k �= 0 and ηk �= 0 thenCk and Qk , respectively,
are half-spaces. Otherwise, they are the whole space.

Remark 2.1 By the definition of the subgradient, it is clear thatC ⊆ Ck , Q ⊆ Qk , and
the orthogonal projections onto Ck and Qk can be directly calculated. For example,
for ξ k ∈ ∂c(xk)

PCk x
k :=

{
xk − c(xk)

‖ξ k‖2 ξ
k if ξ k �= 0,

xk otherwise.
(2.9)

The following lemma is essential for the algorithm’s analysis.

Lemma 2.3 ([20]) Let f : Rn → R be a convex function, then f is subdifferentiable
everywhere and its subdifferentials are uniformly bounded on any bounded subset of
R
n.
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3 Convergence of the modified relaxation CQ algorithm

In this section, we first recall the modified relaxation CQ algorithm with an Armijo-
line search of [11] and afterwards prove its convergence. For the convenience of the
reader we define the function Fk : H1 → H1 by

Fk(x) = A∗(I − PQk )Ax (3.1)

where A∗ stands for the conjugate of A (transpose in finite dimensional spaces). Next
we present the algorithm.

3.1 The modified relaxation CQ algorithm with Armijo-line search

Given constants γ > 0, l ∈ (0, 1) and μ ∈ (0, 1). Let x0 be arbitrary. For k ≥ 1,
calculate

xk = PCk

(
xk − αk Fk(x

k)
)

, (3.2)

where αk = γ lmk and mk is the smallest nonnegative integer m such that

αk‖Fk(xk) − Fk(x
k)‖ ≤ μ‖xk − xk‖. (3.3)

Construct the next iterative step xk+1 by

xk+1 = PCk

(
xk − αk Fk(x

k)
)

. (3.4)

The next lemma shows that the algorithm is well-defined.

Lemma 3.1 ([11]) The Armijo-line search (3.3) terminates after a finite number of
steps. In addition,

μl

L
< αk ≤ γ, for all k ≥ 0 (3.5)

where L = ‖A‖2.
Now, we are finally ready to present our main result, which is the establishment of

the weak convergence of the modified relaxation CQ algorithm.

Theorem 3.1 Assume that the solution set� of the SFP (1.1) is nonempty (consistent)
and that assumptions (A1) and (A2) hold. Then any sequence {xk} generated by (3.4)
converges weakly to a solution of the SFP (1.1).

Proof Let x∗ be a solution of the SFP. Since C ⊆ Ck , Q ⊆ Qk , then x∗ = PC (x∗) =
PCk (x

∗) and Ax∗ = PQ(Ax∗) = PQk (Ax
∗).

These facts imply that Fk(x∗) = 0. Following Lemma 2.1(iii), we have

‖xk+1 − x∗‖2 =
∥∥∥PCk

(
xk − αk Fk(x

k)
)

− x∗
∥∥∥
2

≤
∥∥∥xk − αk Fk(x

k) − x∗
∥∥∥
2 −

∥∥∥xk+1 − xk + αk Fk(x
k)

∥∥∥
2
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=
∥∥∥xk − x∗

∥∥∥
2 − 2αk

〈
Fk(x

k), xk − x∗〉 −
∥∥∥xk+1 − xk

∥∥∥
2

− 2αk

〈
Fk(x

k), xk+1 − xk
〉

=
∥∥∥xk − x∗

∥∥∥
2 − 2αk

〈
Fk(x

k), xk − xk
〉
− 2αk

〈
Fk(x

k), xk − x∗〉

−
∥∥∥xk+1 − xk

∥∥∥
2 − 2αk

〈
Fk(x

k), xk+1 − xk
〉

=
∥∥∥xk − x∗

∥∥∥
2 − 2αk

〈
Fk(x

k), xk − x∗〉 − 2αk

〈
Fk(x

k), xk+1 − xk
〉

−
∥∥∥xk+1 − xk + xk − xk

∥∥∥
2

=
∥∥∥xk − x∗

∥∥∥
2 − 2αk

〈
Fk(x

k), xk − x∗〉 −
∥∥∥xk+1 − xk

∥∥∥
2

−
∥∥∥xk − xk

∥∥∥
2 − 2

〈
xk − xk + αk Fk(x

k), xk+1 − xk
〉
. (3.6)

It follows from (2.2) and Fk(x∗) = 0 that

2αk

〈
Fk(x

k), xk − x∗〉 = 2αk

〈
Fk(x

k) − Fk(x
∗), xk − x∗〉

= 2αk〈A∗(I − PQk )Ax
k − A∗(I − PQk )Ax

∗, xk − x∗〉
= 2αk

〈
(I − PQk )Ax

k − (I − PQk )Ax
∗, Axk − Ax∗〉

≥ 2
μl

L

∥∥∥(I − PQk )Ax
k
∥∥∥
2
. (3.7)

Using Lemma 2.1(i) and the definition of xk (xk ∈ Ck) , we have

〈
xk − xk + αk Fk(x

k), xk+1 − xk
〉
≥ 0. (3.8)

By virtue of the above inequality, for the last term of (3.6), we have

− 2
〈
xk − xk + αk Fk(x

k), xk+1 − xk
〉

≤ 2
〈
xk − xk − αk Fk(x

k), xk+1 − xk
〉
+ 2

〈
xk − xk + αk Fk(x

k), xk+1 − xk
〉

= 2αk

〈
Fk(x

k) − Fk(x
k), xk+1 − xk

〉

≤ 2αk

∥∥∥Fk(xk) − Fk(x
k)

∥∥∥
∥∥∥xk+1 − xk

∥∥∥

≤ α2
k

∥∥∥Fk(xk) − Fk(x
k)

∥∥∥
2 +

∥∥∥xk+1 − xk
∥∥∥
2

≤ μ2
∥∥∥xk − xk

∥∥∥
2 +

∥∥∥xk+1 − xk
∥∥∥
2
. (3.9)
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Combining (3.7)–(3.9) and (3.6), we obtain

∥∥∥xk+1 − x∗
∥∥∥
2 ≤

∥∥∥xk − x∗
∥∥∥
2 − 2μl

L

∥∥∥(I − PQk )Ax
k
∥∥∥
2

− (1 − μ2)

∥∥∥xk − xk
∥∥∥
2
, (3.10)

which implies that

∥∥∥xk+1 − x∗
∥∥∥ ≤

∥∥∥xk − x∗
∥∥∥ .

Thus limk→∞ ‖xk − x∗‖ exists and moreover, {xk} is bounded.
Now, from (3.10), it follows that

lim
k→∞

∥∥∥xk − xk
∥∥∥ = 0, (3.11)

and
lim
k→∞

∥∥∥(I − PQk )Ax
k
∥∥∥ = 0. (3.12)

Furthermore,

∥∥∥xk+1 − xk
∥∥∥ ≤

∥∥∥xk+1 − xk
∥∥∥ +

∥∥∥xk − xk
∥∥∥

=
∥∥∥PCk

(
xk − αk Fk(x

k)
)

− PCk

(
xk − αk Fk(x

k)
)∥∥∥ +

∥∥∥xk − xk
∥∥∥

≤ αk

∥∥∥Fk(xk) − Fk(x
k)

∥∥∥ +
∥∥∥xk − xk

∥∥∥
≤ (1 + μ)

∥∥∥xk − xk
∥∥∥ . (3.13)

By taking k → ∞ in the above inequality and using (3.11), we obtain

lim
k→∞

∥∥∥xk+1 − xk
∥∥∥ = 0. (3.14)

Since {xk} is bounded, the set ωw(xk) is nonempty. Let x̂ ∈ ωw(xk), then there
exists a subsequence {xkn } of {xk} such that xkn ⇀ x̂ . Next, we show that x̂ is a solution
of the SFP (1.1), which will show that ωw(xk) ⊆ �. In fact, since xkn+1 ∈ Ckn , then
by the definition of Ckn , we have

c(xkn ) +
〈
ξ kn , xkn+1 − xkn

〉
≤ 0, (3.15)

where ξ kn ∈ ∂c(xkn ). Following the assumption (A1) on the boundedness of {ξ kn }
and (3.14), we have
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c(xkn ) ≤
〈
ξ kn , xkn − xkn+1

〉

≤ ‖ξ kn‖
∥∥∥xkn − xkn+1

∥∥∥
→ 0, as kn → ∞. (3.16)

From the weak lower-semicontinousness of the convex function c(x) and since xkn ⇀

x̂ , we deduce from (3.16) that,

c(̂x) ≤ lim inf
kn→∞ c(xkn ) ≤ 0, (3.17)

i.e., x̂ ∈ C .
The fact that I − PQk is nonexpansive, together with (3.11) and (3.12), we get that

∥∥∥(I − PQk )Ax
k
∥∥∥

≤
∥∥∥(I − PQk )Ax

k − (I − PQk )Ax
k
∥∥∥ +

∥∥∥(I − PQk )Ax
k
∥∥∥

≤ ‖A‖
∥∥∥xk − xk

∥∥∥ +
∥∥∥(I − PQk )Ax

k
∥∥∥

→ 0, as k → ∞. (3.18)

Since PQkn
(Axkn ) ∈ Qkn , we have

q(Axkn ) +
〈
ηkn , PQkn

(Axkn ) − Axkn
〉
≤ 0, (3.19)

where ηkn ∈ ∂q(Axkn ). From the boundedness assumption (A1) of {ηkn } and (3.18),
we have

q(Axkn ) ≤ ‖ηkn‖
∥∥∥Axkn − PQkn

(Axkn )
∥∥∥ → 0, as kn → ∞. (3.20)

Similarly, we obtain that q(Ax̂) ≤ 0, which means that Ax̂ ∈ Q. Using Lemma 2.2,
we conclude that the sequence {xk} converges weakly to a solution of the SFP (1.1),
and the desired result is obtained. ��
Remark 3.1 (1) Theorem 3.1 extends the main result of Qu and Xiu [11] to infinite

dimensional Hilbert spaces. For Euclidean spaces, our proof coincides with the
proof of Qu and Xiu.

(2) For the special case where Q = Qk = {b}, (3.18) reduces to ‖Axk − b‖ → 0 as
k → ∞, which means that the sequences {Axk} converge to (data vector) b.

4 Applications and numerical experiments

In this section, we apply the modified relaxation CQ algorithm with an Armijo-line
search to solve the LASSO problem. Let us first recall the LASSO problem [21] which
is the following.
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min
x∈Rn

1

2
‖Ax − b‖22,

s.t. ‖x‖1 ≤ t,
(4.1)

where A ∈ Rm×n , b ∈ Rm and t > 0 is a given constant. This problem, (4.1) exhibits
the potential of finding a sparse solution of the SFP (1.1) due to the 
1 constraint. The
LASSO problem is strongly related to the Basis Pursuit denosing problem [22] which
has wide application in signal processing theory.

Let C := {x |‖x‖1 ≤ t} and Q = {b}, then the minimization problem (4.1) can be
seen as an SFP (1.1). So, we define the convex function c(x) = ‖x‖1 − t and denote
the level set Ck by,

Ck =
{
x |c(xk) + 〈ξ k, x − xk〉 ≤ 0

}
, (4.2)

where ξ k ∈ ∂c(xk). The orthogonal projection onto Ck can be calculated by the
following,

PCk (y) =
{
y, if c(xk) + 〈ξ k, y − xk〉 ≤ 0,

y − c(xk )+〈ξ k ,y−xk 〉
‖ξ k‖2 ξ k, otherwise.

(4.3)

The subdifferential ∂c at xk is

∂c(xk) =

⎧⎪⎨
⎪⎩

1, xk > 0,

[ − 1, 1], xk = 0,

−1, xk < 0.

(4.4)

It follows fromRemark 3.1(2) that the modified relaxation CQ algorithm converges
to the solution of the LASSO problem (4.1) and moreover, due to the formulas of
PCk (y) and ∂c(xk), the modified relaxation CQ algorithm can be easily implemented.
In the following, we present a sparse signal recovery experiment to demonstrate the
efficiency of the modified relaxation CQ algorithm. We also compare the modified
relaxation CQ algorithm with the relaxed CQ iterative algorithm proposed by Yang
[10]. We would also like to point out that the projected gradient method is also an
efficient way to solve the LASSO problem (4.1). Although it requires projection onto
the 
1 constraint set, and there exists no close formula for it, still it can be evaluated in
a polynomial time. There is also commercial software, based on the projected gradient
method for solving the LASSO problem, for example SPGL1 [23] and FASTA [24],
but this is beyond the scope of this paper. Since the relaxed CQ algorithm [10] and
the modified relaxation CQ algorithm with an Armijo-line search use subgradient
projection, they both propose an alternative way to solve the LASSO problem and
their natures also differ from the projected gradient method.

4.1 Numerical results

In this subsection,wepresent numerical examples comparing the relaxedCQalgorithm
[10] and themodified relaxationCQ algorithmwithArmijo-line search. For simplicity,
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Fig. 1 The recovered sparse signal versus the original K -sparse signal, where m = 120, n = 512 and
K = 30
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Fig. 2 The recovered sparse signal vs the original K -sparse signal, wherem = 240, n = 1024 and K = 60

we call the modified relaxation CQ algorithm with Armijo-line search the modified
CQ algorithm.

We are given the following data. The vector x ∈ Rn is a K -sparse signal that is
generated from uniform distribution in the interval [−2, 2]with K non-zero elements.
The matrix A ∈ Rm×n is generated from a normal distribution with mean zero and
one variance. The vector b is taken as equal to Ax , so no noise is assumed. The goal
is then to recover the K -sparse signal x by solving the LASSO problem (4.1). All the
numerical results are completed on a standard Lenovo laptop with Intel(R) Core(TM)
i7-4712MQ CPU 2.3GHz with 4 GB memory. The programme is implemented in
MATLAB 2013a.

For the modified CQ algorithm, we set the corresponding iterative parameters γ =
1, l = μ = 0.5. We choose the constant stepsize 0.9 ∗ (2/L) for the relaxed CQ
algorithm [10]. We define the stopping criteria,

‖xk+1 − xk‖ ≤ ε, (4.5)

where ε > 0 is a given small constant. The iteration numbers (“I ter”), the objective
function value (“Obj”) and the 2-norm error between the recovered solution and the
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Fig. 3 The objective function value versus the iteration numbers. Left the objective function value is taken
from the results of Table 1 when K = 30. Right the objective function value is taken from the results of
Table 2 when K = 60

true K -sparse solution (“Err”) are reported when the stopping criteria is reached. The
obtained numerical results are listed in Tables 1 and 2, and show that for the given
example, both methods are very effective. In Figs. 1 and 2 we plot the exact K -sparse
signal against the recovered signals obtained by the two methods when the stopping
criteria ε = 10−8. In Fig. 3 we also plot the objective functions value per iterations. It
can be seen in Fig. 3 that the objective function values obtained by the modified CQ
algorithm decrease faster than the values obtained by the relaxed CQ algorithm.

5 Conclusions

In this note we study the modified relaxation CQ algorithm which is designed to solve
the split feasibility problem (1.1) in real Hilbert spaces.We show in a simple and novel
way how the sequence generated by the method weakly converges to a solution of the
SFP. The effectiveness of the method is illustrated for solving the LASSO problem
(4.1) of recovering a K -sparse signal from a limited number of observations. All the
results are compared with the Yang’s [10] relaxed CQ algorithm. For future directions
of researchwe aim to study themethod inBanach spaceswith other kind of projections;
for example Bregman projections, see [25,26].
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