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Abstract We propose a weighting subgradient algorithm for solving multiobjective
minimization problems on a nonempty closed convex subset of an Euclidean space.
This method combines weighting technique and the classical projected subgradient
method, using a divergent series steplength rule. Under the assumption of convexity,
we show that the sequence generated by this method converges to a Pareto optimal
point of the problem. Some numerical results are presented.

Keywords Pareto optimality · Multiobjective optimization ·
Projected subgradient method · Weighting method

1 Introduction

The multiobjective optimization, also known as multicriteria optimization, refers to
the process of simultaneously optimizing two or more real-valued objective functions.
The multiobjective optimization problem has applications in the economy, industry,
agriculture, and others fields. For more details see, for example, Luc [11], Miettinen
[13], and Pappalardo [14]. Among the strategies that can be used to find one solution
of a smooth multiobjective optimization problem, we mention the weighting methods,
steepest descent methods and Newton methods. On weighting methods, which are
very simple and easy to implement, we refer the reader to Graña Drummond et al.
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[9], Burachik et al. [5] and references therein. See Fliege and Svaiter [7] and Fukuda
and Graña Drummond [8] for more details on the steepest descent method, and to
Fliege et al. [6] and references therein for more details on the Newton method. An
interesting alternative for the nondifferentiable case is the use of subgradients. See,
for example, Alber et al. [1] for the scalar case, Bello Cruz [2], Bento and Cruz Neto
[3], and references therein. In the present work, we propose a combination of the
weighting technique and the projected subgradient method for finding one solution of
a nonsmooth constrainedmulticriteria optimization problem, where themultiobjective
function is component-wise convex. Our aim is to provides an easily implementable
scheme with a low-cost iteration. We emphasize that an essential difference between
our approach and the projected subgradient method proposed in [2] is that, in [2] the
author does not use scalarizations.

Our approach considers a scalarization process to obtain total convergence to a
Pareto optimal point, even if the solution set is not a singleton. Furthermore, we
present some numerical experiments in order to demonstrate the performance of our
method. The rest of this paper is organized as follows. In Sect. 2, we recall some useful
basic notions. In Sect. 3, we define the algorithm, and study its convergence properties.
In Sect. 4, we present some computational experiments. In Sect. 5, we provide some
concluding remarks.

2 Preliminaries

The following notation is used throughout our presentation. We denote by 〈 · , · 〉 the
usual inner product of Rn , and by ‖ · ‖ its corresponding norm. Furthermore, we use
the Pareto order, that is, let I = {1, . . . ,m}, Rm+ = {x ∈ R

m :xi ≥ 0, i ∈ I } and
R
m++ = {x ∈ R

m :xi > 0, i ∈ I }. For x, y ∈ R
m+, y � x (or x � y) means that

y − x ∈ R
m+ and y 	 x (or x ≺ y) means that y − x ∈ R

m++.
Consider the function F :Rn → R

m , given by F(x) = (F1(x), . . . , Fm(x)). We are
interested in the multiobjective optimization problem

{
min
x∈C F(x), (1)

where C ⊂ R
n is assumed to be a nonempty closed convex set.

Throughout this paper we assume that each component Fi of F is a convex function
on an open subset � containing C .

We recall some basic properties of convex functions, where ∂Fi denotes the
Fenchel–Moreau subdifferential of Fi .

Proposition 1 (See [17]) For each i ∈ {1, . . . ,m}, we have the following:
(i) ∂Fi (x) is nonempty and compact, for all x ∈ C;
(ii) ∂Fi carries bounded on bounded sets.

Definition 1 A point x̄ ∈ C ⊂ R
n is called a weak Pareto optimal point for problem

(1) if there exists no other x ∈ C such that F(x) ≺ F(x̄). In this case, we will employ
the notation x̄ ∈ WS(F,C). If there exists no other x ∈ C with F(x) � F(x̄) and
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F(x) 
= F(x̄), then x̄ is said to be a Pareto optimal point for problem (1), and we will
denote this by x̄ ∈ S(F,C).

Lemma 1 Assume that x̄ ∈ C satisfies maxi (Fi (x) − Fi (x̄)) ≥ 0 for all x ∈ C.
Then, x̄ ∈ WS(F,C).

Proof This is straightforward consequence of Definition 1. ��
Let x ∈ R

n , and let D ⊂ R
n be a closed convex set. We recall that the orthogonal

projection onto D, denoted by PD(x), is the unique point in D such that ‖PD(x)−y‖ ≤
‖x − y‖ for all y ∈ D. Moreover, PD(x) satisfies

〈x − PD(x), y − PD(x)〉 ≤ 0, ∀ y ∈ D. (2)

Finally, we conclude this section by presenting a well-known result that will be useful
in our convergence analysis.

Lemma 2 (See [16]) Let {νk} and {δk} be nonnegative sequences of real numbers
satisfying νk+1 ≤ νk+δk with

∑+∞
k=1 δk < +∞. Then, the sequence {νk} is convergent.

3 The algorithm

In this section we define our proposed algorithm, and demonstrate that it is well
defined.

Weighting Subgradient Algorithm (WSA)
Let {λki } ⊂ [0, 1], ∑m

i=1 λki = 1 ∀ k ∈ N, {γk} ⊂ (0, 1), and {αk} ⊂ R+, with

+∞∑
k=0

γkαk = +∞,

+∞∑
k=0

α2
k < +∞. (3)

Step 0: Choose x0 ∈ C . Set k = 0.
Step 1: Take ski ∈ ∂Fi (xk). If mini=1,...,m ‖ski ‖ = 0, STOP.

Otherwise, obtain ηk = max
i=1,...,m

{1, ‖ski ‖}, define hxk (v) = αk
ηk

〈∑m
i=1 λki s

k
i , v

〉 + ‖v‖2
2

and compute vk :
vk := arg min

v∈C−xk
hxk (v). (4)

If vk = 0, STOP. Otherwise,
Step 2: Compute xk+1:

xk+1 := xk + γkv
k . (5)

Remark 1 (i) Let us note thatWSAuses exogenousweightsλki for the subgradients s
k
i

in a manner reminiscent of a weighted-gradient method. See, for example, Graña
Drummond et al. [9], Marler and Arora [12].

(ii) Following [15], the use of weighted method is well acceptable in applications, and
is favorable for mathematical analysis. Actually, the a priori selection of weights
allows the resulting scalar objective function to be solved for a singlePareto optimal
solution that represents the preference of the human decision maker.
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In view of the strong convexity of hxk , the direction vk is well defined, and problem
(4) has a quadratic (scalar-valued) objective function.
Now, we show that the stop criteria is well-defined.

Proposition 2 If the algorithm stops at iteration k, then xk ∈ WS(F,C).

Proof Take k ∈ N, and let us suppose that there exists i0 ∈ {1, . . . ,m} such that ski0 =
0. Hence, taking into account that Fi0 is a convex function on C , from subgradient’s
inequality we get that

Fi0(y) ≥ Fi0(x
k), y ∈ C.

Then, it follows that xk ∈ WS(F,C). Now, assume that vk = 0. From (4), combined
with the definition of hxk , we have

vk = argminv∈C−xk

{
αk

ηk

〈
m∑
i=1

λki s
k
i , v

〉
+ ‖v‖2

2

}

= argminv∈C−xk

{〈
αk

ηk

m∑
i=1

λki s
k
i , v

〉
+ 1

2

{
‖v‖2 + ‖αk

ηk

m∑
i=1

λki s
k
i ‖2

}}

= argminv∈C−xk
1

2

∥∥∥∥∥v −
(

−αk

ηk

m∑
i=1

λki s
k
i

)∥∥∥∥∥
2

= PC−xk

(
−αk

ηk

m∑
i=1

λki s
k
i

)
. (6)

Using (2) together with D = C − xk = {x − xk : x ∈ C} and x = −αk
ηk

m∑
i=1

λki s
k
i , and

taking into account that vk = 0, last equality implies that〈
αk

ηk

m∑
i=1

λki s
k
i , v

〉
≥ 0, ∀ v ∈ C − xk .

That is,

αk

ηk

〈
m∑
i=1

λki s
k
i , y − xk

〉
≥ 0, ∀ y ∈ C.

Now, from the above inequality, there exists j ∈ {1, . . . ,m} such that

〈skj , y − xk〉 ≥ 0, ∀ y ∈ C.

Using that Fi is convex on C for each i , we get that

max
i

(
Fi (y) − Fi (x

k)
)

≥ Fj (y) − Fj (x
k) ≥ 〈skj , y − xk〉 ≥ 0, ∀ y ∈ C.
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By combining this with Lemma 1, it follows that xk ∈ WS(F,C). ��
From now on, we assume that {xk} is infinite.

4 Convergence analysis

We begin this section by showing that our method is feasible.

Lemma 3 xk ∈ C, for all k ∈ N.

Proof The proof is constructed by induction on k. Note that x0 ∈ C , by the initial-
ization of the algorithm (WSA). Take a fixed k ∈ N, and let us suppose that xk ∈ C .
Then, xk+1 = xk + γkv

k , which can be rewritten as

xk+1 = (1 − γk)x
k + γk

(
xk + vk

)
.

Since vk ∈ C − xk , we have in particular that xk + vk ∈ C . Hence, from the last
equality combined with the convexity of C , we conclude the induction process, and
the desired result is proved. ��
Now, we present three preliminary results that will be useful for our convergence
analysis.

Lemma 4 For all k ∈ N, the following statements hold:

(i) ‖vk‖ ≤ 2αk;
(ii) ‖xk+1 − xk‖ ≤ 2αk .

Proof (i) From Lemma 3, we have 0 ∈ C−xk . Using (4), for a fixed k ∈ Nwe obtain
that

hxk
(
vk

)
≤ hxk (0) = 0.

That is,

αk

ηk

〈
m∑
i=1

λki s
k
i , v

k

〉
+ ‖vk‖2

2
≤ 0.

Therefore, by using the Cauchy–Schwarz inequality in the second inequality, and
by recalling that ‖ski ‖ ≤ ηk in the third, we have

‖vk‖2 ≤ −2αk
ηk

〈∑m
i=1 λki s

k
i , v

k
〉 ≤ 2αk

ηk

m∑
i=1

λki ‖ski ‖‖vk‖

≤ 2αk
ηk

m∑
i=1

λki ηk‖vk‖ = 2αk‖vk‖

since
∑m

i=1 λki = 1 for each k ∈ N.
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(ii) The result follows from (5) and (i):

‖xk+1 − xk‖ = γk‖vk‖ ≤ ‖vk‖ ≤ 2αk . ��

��
Lemma 5 Let y ∈ C. It holds that

〈vk, xk − y〉 ≤ αk

ηk

m∑
i=1

λki

〈
ski , y − xk

〉
+ 2α2

k , k = 0, 1, . . . .

Proof From (6), we have

vk = PC−xk

(
−αk

ηk

m∑
i=1

λki s
k
i

)
, k = 0, 1 . . . .

Therefore, by using (2) with x = −αk
ηk

∑m
i=1 λki s

k
i and D = C − xk , it is easy to see

that
〈

−αk

ηk

m∑
i=1

λki s
k
i − vk, w − vk

〉
≤ 0, w ∈ C − xk, k = 0, 1, . . . .

Note that for each k ∈ N, we have w = y − xk ∈ C − xk . Thus, for this particular
choice of w and for k = 0, 1, . . ., the last inequality implies that

〈
vk, xk − y

〉 ≤ −‖vk‖2 + αk
ηk

∑m
i=1 λki

〈
ski , y − xk

〉 − αk
ηk

〈∑m
i=1 λki s

k
i , v

k〉
≤ αk

ηk

∑m
i=1 λki

〈
ski , y − xk

〉 + αk
ηk

‖∑m
i=1 λki s

k
i ‖‖vk‖

≤ αk
ηk

∑m
i=1 λki 〈ski , y − xk〉 + αk

ηk

(
ηk‖vk‖

)
,

(7)

where the last inequality follows from that fact that
∑m

i=1 λki ‖ski ‖ ≤ ηk . Therefore, by
combining (7) with item (i) of Lemma 4, we obtain the desired result. ��
Lemma 6 For all y ∈ C, the following inequality holds:

‖xk+1−y‖2 ≤ 8α2
k +‖xk−y‖2+2

γkαk

ηk

m∑
i=1

λki

(
Fi (y) − Fi

(
xk

))
, ∀ k ∈ N. (8)

Proof Let k ∈ N, by using Lemmas 4 and 5, and (5), it follows that

‖xk+1 − y‖2 = ‖xk+1 − xk‖2 + ‖xk − y‖2 + 2
〈
xk+1 − xk, xk − y

〉
≤ 4α2

k + ‖xk − y‖2 + 2γk〈vk, xk − y〉
≤ 4α2

k + ‖xk − y‖2 + 2 γkαk
ηk

∑m
i=1 λki 〈ski , y − xk〉 + 4γkα2

k

≤ 4(1 + γk)α
2
k + ‖xk − y‖2 + 2 γkαk

ηk

m∑
i=1

λki

〈
ski , y − xk

〉
.
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From γk ∈ (0, 1), last inequality becomes

‖xk+1 − y‖2 ≤ 8α2
k + ‖xk − y‖2 + 2

γkαk

ηk

m∑
i=1

λki

〈
ski , y − xk

〉
. (9)

Now, taking into account that F is convex, we have

〈
ski , y − xk

〉
≤ Fi (y) − Fi

(
xk

)
, i = 1, . . . ,m.

Thus, by applying last inequality, (9) yields

‖xk+1 − y‖2 ≤ 8α2
k + ‖xk − y‖2 + 2

γkαk

ηk

m∑
i=1

λki

(
Fi (y) − Fi

(
xk

))
,

and the desired result is proved. ��
We attain stronger convergence results, by assuming the following property.

R1. The set T := {z ∈ C : F(z) � F(xk), k ∈ N} is nonempty.

Remark 2 This assumption it appeared in scalar case in Alber et al. [1] and which has
been assumed in Bello Cruz [2] on vector optimization setting. Condition R1 extends
R
m+-completeness for the constrained case. When C = R

n , it is a standard assumption
of ensuring the existence of Pareto optimal points for vector optimization problems.
See, for example, [11]. Furthermore, we know that if {F(xk)} is a decreasing sequence,
then {xk} ⊂ C\S(F,C), which is a standard result from the extension of classical
methods to vector optimization. For more details see, for example, [6]. Finally, R1
holds if S(F,C) is nonempty, for scalar case.

Theorem 1 Assume R1, and let z ∈ T . Then, {‖xk − z‖} is a convergent sequence.
Moreover, {xk} is bounded.
Proof Since z ∈ T , it holds that

Fi (z) − Fi
(
xk

)
≤ 0, i = 1, . . . ,m.

Using this inequality and (8), we obtain that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + 8α2
k .

From (3) and Lemma 2, we conclude the proof. ��
A natural choice for the parameters {λki } is given by λki = 1/m, for i ∈ {1, . . . ,m}.
More generally, we obtain the convergence of the whole sequence by assuming the
following requirement.

R2. There exists a vector λ ∈ R
m such that 0 ≺ λ � λk for all k ∈ N.
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Theorem 2 Assume that R1 and R2 hold. Then, the whole sequence {xk} converges
to x∗ ∈ S(F,C).

Proof Firstly, we show that {xk} converges to x∗ ∈ T .
Let us consider z ∈ T , from Theorem 1, it follows that {xk} is a bounded sequence.
Therefore, by using (8), we can write

2
γkαk

ηk

m∑
i=1

λki

[
Fi (x

k) − Fi (z)
]

≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + 8α2
k . (10)

Applying the sum from k = 0 to k = l in (10), we obtain

2
l∑

k=0

γkαk

ηk

(
m∑
i=1

λki [Fi (xk) − Fi (z)]
)

≤ ‖x0 − z‖2 − ‖xl+1 − z‖2 + 8
l∑

k=0

α2
k .

Moreover, there exists an L > 0 such that ηk ≤ L , then

1

L

+∞∑
k=0

γkαk ≤
+∞∑
k=0

γkαk

ηk
.

By letting l go to +∞, it holds that

+∞∑
k=0

γkαk

ηk

(
m∑
i=1

λki [Fi (xk) − Fi (z)]
)

< +∞. (11)

From (3), (11) and last inequality, we obtain

lim inf
k→+∞

m∑
i=1

λki

(
Fi (x

k) − Fi (z)
)

≤ 0.

Therefore, owing to the fact that z ∈ T , we get

lim inf
k→+∞

m∑
i=1

λki

(
Fi (x

k) − Fi (z)
)

= 0.

By taking a subsequence {xk j } ⊂ {xk} that satisfies the limit above, we obtain

− Fp(z) + lim
j→+∞ Fp(x

k j ) = 0 ⇔ lim
j→+∞ Fp(x

k j ) = Fp(z), 1 ≤ p ≤ m. (12)

Hence, we have

0 ≤ −Fp(z) + Fp(x
k j ) ≤

m∑
i=1

[
−Fi (z) + Fi (x

k j )
]
, 1 ≤ p ≤ m.
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Table 1 Iterations and CPU time results for three simple problems

Problem, [L,U] WSA RPM SMVO

Iter. (k) CPU (s) Iter. (k) CPU (s) Iter. (k) CPU (s)

SP1, [−5, 5] 46.96 0.004 52 0.007 66.3 149.307

JOS1, [−2, 2] 15.4 0.001 14.2 0.002 15.8 41.524

LTDZ1, [0, 1] 10.24 0.001 200 0.033 18.14 26.725

Without loss of generality, there exists an x∗ ∈ C such that xk j → x∗. Because Fp

is continuous, we have that Fp(xk j ) → Fp(x∗). Then, it follows that x∗ ∈ T . By
using Theorem 1, with z = x∗, we conclude that lim j→+∞ ‖xk j − x∗‖ = 0. From
Theorem 1, we achieve our desired result.
Finally, we show that x∗ ∈ S(F,C).
In fact, take y ∈ C such that F(y) � F(x∗). So, y ∈ T . Hence, by using (12), we
have F(y) = F(x∗). The proof is completed. ��

5 Numerical results

In this section, two numerical tests are used for the purpose of illustrating the algo-
rithm performance. The algorithm was coded in SCILAB 5.5.2 on a 8GB RAM
1.60GHz i5 notebook. For these tests, we adopt the stop condition ‖vk‖ < 10(−8)

or number of iterations equals to 200. We show a comparison among WSA and two
other subgradient-type algorithms. The subgradient method for Vector optimization
(SMVO), given by [2], does not use scalarizations and at each iteration, solves a non
quadratic problem on C . The relaxed projection method for multiobjective optimiza-
tion (RPM), given in [4] at each iteration, performs a finite number of projections on
suitable halfspaces that contain C .

To apply WSA, the scalarized problem is defined by

f : Rn → R, f (x) = λ1F1(x) + λ2F2(x) + . . . + λmFm(x),

where λ j ∈ (0, 1), j = 1, . . . ,m.

Example 1 In this example, we present the results obtained byWSA,RPMand SMVO
for three known problems given at [10]. We solved the problem using 100 starting
points fromauniform randomdistributionover the interval (L ,U ) andλ1 = λ2 = 1/2.
Average number of iterations and CPU time are reported in Table 1.

In this example, the stepsize sequence was defined using αk = 9/(k + 1), 13/(k +
1), 12/(k + 1), respectively, with γk = 0.95, for all k ∈ N. By using the same
notation of each bibliographical reference, SMVO, given by [2], uses the stepsize
βk = 19/(k + 1), for all three problems, and RPM considers the stepsize βk =
14/(k + 1), 14/(k + 1), 0.1/(k + 1), respectively.

In this test, note that WSA has shown the better behavior in terms of computational
time.
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Table 2 Average of results for different weight values

n λ Iter. (k) CPU time (s) ‖vk‖ F(xk ) min ‖ski ‖
2 0.5 16.71 0.0027 6.500D-09 (−2.6450,−1.3549) 3.1622

0.7 32.71 0.0044 3.662D-09 (−9.8367, 6.5714) 1.6288

0.9 20.37 0.0029 4.786D-09 (−10.2222, 8) 1.0540

20 0.5 27 0.0143 3.700D-16 (−61.2309, 21.2309) 10.

0.7 36 0.0193 5.009D-09 (−98.3673, 65.7142) 5.1507

0.9 45 0.0242 1.239D-09 (−102.2222, 80) 3.3333

200 0.5 71 0.3439 2.686D-09 (−738.7919, 338.7919) 31.6227

0.7 94 0.4581 8.207D-09 (−983.6734, 657.1428) 16.2882

0.9 116.19 0.5668 8.608D-09 (−1022.2222, 800) 10.5409

Fig. 1 A comparison among subgradient-type algorithms, with n = 2

Example 2 Consider a nondifferentiable multiobjective problem defined byC = {x ∈
R
n : − 10 ≤ x j ≤ 10, j = 1, . . . , n} and

F(x) =
⎛
⎝n−1∑

j=1

[
|x j − x j+1| + x2j+1 − 2x j

]
,

n−1∑
j=1

[|x j − x j+1| − 2x j+1
]
⎞
⎠ .

We solved the problem using 100 starting points from a uniform random distribution
in (−10, 10). Weight value λ, average number of iterations, CPU time, average of
‖vk‖ and F(xk), which is the last iteration, are reported in Table 2.

In this example, the stepsize sequence was defined using αk = 20/(k + 1) with
γk = 0.9 for all k ∈ N. By using the same notation of each bibliographical reference,
SMVO, given by [2], uses the stepsize βk = 20/(k+1) and RPM consider the stepsize
βk = 35/(k+1). In Fig. 1, we plot the objective function space and the Pareto optimal
front set to confirm our results.

Observe that, as intended, WSA finds a subset of the Pareto frontier.
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6 Conclusion

In this work we have presented an implementable algorithm for solving constrained
multiobjective optimization problems, which requires only one projection at each iter-
ation. In the convergence analysis, we relaxed the standard hypotheses, and established
several results according to the requirements imposed on F and C . First, we found
that {xk} is bounded. Second, we considered the boundedness of exogenous param-
eters in order to prove the convergence of the whole sequence {xk} to a solution of
the problem, without requiring a uniqueness assumption (see [2]). We illustrated the
numerical behavior of the algorithm by considering four problems. An interesting
future direction would be to consider a more detailed computational experiment.
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