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Abstract We consider non-zero-sum regular-singular stochastic differential games,
where the informations available to the two players are asymmetry partial informa-
tions. The control strategy of each player consists of two components: regular control
and singular control. Applying the Malliavin calculus approach, we establish a nec-
essary maximum principle for the games, where the adjoint processes are explicitly
represented by the parameters and the states of the system.

Keywords Maximum principle · Stochastic differential game · Regular-singular
control · Malliavin calculus · Asymmetric partial informations

1 Introduction

Stochastic systems with both regular controls and singular controls have numerous
applications in finance and insurance, including: portfolio optimization with transac-
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tion cost [8], optimal investment and dividend problem [1] and optimal reinsurance
and dividend problem [5,12,13]. Recently, the importance ofmodel uncertainty is well
recognized in modeling financial and insurance dynamic. With the presence of model
uncertainty, these regular-singular problems can be formulated as regular-singular
stochastic differential games [9], which motivates our work. In this paper, we study
two-person non-zero-sum regular-singular stochastic differential games, where the
state process is described by a controlled singular Itô–Lévy process. The informations
available to the two players are asymmetry partial informations and the control of each
player consists of both regular control and singular control. We attempt to establish
the associated maximum principle for their Nash equilibrium points.

The first version of stochastic maximum principle that covers singular control
problem was obtained by Cadenillas and Haussmann [4]. Since then, there has been
extensive literature on the maximum principles for singular control problems under
more general assumptions (see, for example, [3,6,10,19] and the references therein).
For regular-singular control problem, a maximum principle was established by the
relaxed control approach in [22], where the control system evolved by forward–
backward stochastic differential equation (SDE) driven by Brownian motion. Hafayed
et al. [11] considered a similar problem in the partial information case, where the
system was governed by mean-field controlled SDE driven by Teugels martingales
associated with some Lévy processes and an independent Brownian motion. Hu et al.
[9] derived maximum principles for regular-singular mean-field stochastic differential
games. In the above-mentioned maximum principles, the adjoint processes are defined
in terms of backward SDEs, which are usually hard to solve.

In order to avoid solving the backward SDEs, Øksendal and Sulèm [16] applied the
Malliavin calculus approach to establish maximum principle for optimal control of a
forward–backward stochastic system, where the adjoint processes are given directly in
terms of the parameters and the states of the system, not by backward SDEs.Moreover,
the concavity conditions are not required in their maximum principle. Afterwards,
the Malliavin calculus approach was widely used to derive maximum principles for
various control problems and games, such as singular control problem [17], mean-
field control problem [14], partial observation control problem [20], regular-impulse
control problem [21], partial information stochastic differential games [2], stochastic
differential games with insider information [15] and forward–backward stochastic
differential games [18].

Our aim in this paper is to follow theMalliavin calculus approach used byØksendal
and Sulèm [16] and to derive necessary optimality conditions in the form of stochastic
maximum principle for Nash equilibrium point of the regular-singular games. In our
formulation, the adjoint processes are explicitly represented by the parameters and the
states of the system, instead of backwardSDEs. Since the control strategy includes both
regular control and singular control, our results can be regarded as the generalization
of [16] to regular-singular games.
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2 Problem formulation

We start with a complete filtered probability space
(
Ω,F , {F}t≥0 , P

)
. Suppose that

the state process X (t) = X (t, ω); t ∈ [0, T ], ω ∈ Ω , is described by the following
controlled singular jump diffusion:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX (t) = b (t, X (t), u1(t), u2(t), ω) dt + σ (t, X (t), u1(t), u2(t), ω) dB(t)

+ ∫
R0

γ (t, X (t), u1(t), u2(t), z, ω) Ñ (dt, dz)

+λ1(t, X (t), ω)dξ1(t) + λ2(t, X (t), ω)dξ2(t),

X (0) = x ∈ R,

(1)

where b : [0, T ] × R × U1 × U2 × Ω → R, σ : [0, T ] × R × U1 × U2 × Ω → R,
γ : [0, T ] × R × U1 × U2 × R0 × Ω → R and λ1, λ2 : [0, T ] × R × Ω → R

are given functions, R0 := R \ {0} and Ui are given nonempty open convex subsets
of R. Here B(t) is Brownian motion and Ñ (dt, dz) is compensated Poisson random
measure defined as Ñ (dt, dz) = N (dt, dz) − ν(dz)dt where ν is the Lévy measure
of a Lévy process η with jump measure N . The process ui (t) = ui (t, ω) ∈ Ui is
regular stochastic control, while ξi (t) = ξi (t, ω) ∈ R is singular control, assumed to
be càdlàg and non-decreasing for each ω, with ξi (0−) = 0, i = 1, 2.

We consider two-person stochastic differential games. For t ∈ [0, T ], the player
i intervenes on the system with regular-singular control (ui , ξi ), i = 1, 2. Suppose
that the informations available to the two players are asymmetric partial informations.
This means there are two subfiltrations G(1)

t and G(2)
t of Ft satisfying

G(i)
t ⊆ Ft , t ∈ [0, T ], i = 1, 2.

The player i decides his strategy (ui (t), ξi (t)) based on the partial information G(i)
t

and the regular-singular control (ui (t), ξi (t)) is G(i)
t −adapted. For example, let

G(1)
t = F(t−δ1)+ and G(2)

t = F(t−δ2)+ , t ∈ [0, T ],

where δ1 > 0 and δ2 > 0 are constants. Then the players 1 and 2 get asymmetric
delayed informations compared to Ft and there is a delay δi for the player i . Assume
in addition that t → λi (t, x) is continuous G(i)

t −adapted.
Let fi : [0, T ] × R × U1 × U2 × Ω → R, hi : [0, T ] × R × Ω → R, ki :

[0, T ] ×R× Ω → R be given Ft−predictable processes and let gi : R× Ω → R be
an FT—measurable random variable for each x . Then we define the utility functional
associated with the player i is of the form

Ji (u1, ξ1; u2, ξ2) = E

[∫ T

0
fi (t, X (t), u1(t), u2(t), ω) dt + gi (X (T ), ω)

+
∫ T

0
hi (t, X (t), ω)dξ1(t) +

∫ T

0
ki (t, X (t), ω)dξ2(t)

]
,

where E is the expectation with respect to P , i = 1, 2.
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Let A(i)
G denote a given family of controls (ui , ξi ), contained in the set of

G(i)
t −adapted (ui , ξi ) such that the system (1) has a unique strong solution. Then

A(i)
G is called the admissible control set of the player i , i = 1, 2.
As the games are typically non-zero-sum, we seek a Nash equilibrium point(

û1, ξ̂1; û2, ξ̂2
)

∈ A(1)
G × A(2)

G such that

J1

(
u1, ξ1; û2, ξ̂2

)
≤ J1

(
û1, ξ̂1; û2, ξ̂2

)
for all (u1, ξ1) ∈ A(1)

G (2)

J2

(
û1, ξ̂1; u2, ξ2

)
≤ J2

(
û1, ξ̂1; û2, ξ̂2

)
for all (u2, ξ2) ∈ A(2)

G . (3)

The existence of Nash equilibrium point shows that the strategy
(
û1, ξ̂1

)
is the best

response of the player 1 to the player 2’s use of the control
(
û2, ξ̂2

)
and vice verse.

3 Maximum principle via Malliavin calculus

In this section, we use the Malliavin calculus approach to derive stochastic maximum
principle for the games (2)–(3). Let D1,2 denote the set of all random variables which
are Malliavin differentiable with respect to both B(·) and Ñ (·, ·). For F ∈ D1,2, let
Dt F denote the Malliavin derivative of F with respect to B(·) at t and let Dt,z denote
the Malliavin derivative with respect to Ñ (·, ·) at t, z of F . We refer to [7] for the
background on Malliavin calculus.

For the sake of simplicity, we use the following short hand notations:

X (t) = X (t, u1, ξ1, u2, ξ2)

X (t, u1 + y1β1, ξ1 + y1ς1) = X (t, u1 + y1β1, ξ1 + y1ς1, u2, ξ2) ,

X (t, u2 + y2β2, ξ2 + y2ς2) = X (t, u1, ξ1, u2 + y2β2, ξ2 + y2ς2) ,

∂b

∂x
(t) = ∂b

∂x
(t, X (t), u1(t), u2(t), ω) ,

∂b

∂ui
(t) = ∂b

∂ui
(t, X (t), u1(t), u2(t), ω)

and similarly for other derivatives.

Definition 1 For i = 1, 2, we define the Hamiltonian function as follows:

Hi (t, x, u1, u2, pi , qi , ri ) = fi (t, x, u1, u2)+b (t, x, u1, u2) pi + σ (t, x, u1, u2) qi

+
∫

R0

γ (t, x, u1, u2, z) ri (t, z)ν(dz)]dt,

where the adjoint processes pi (t), qi (t) and ri (t, z) are given by

pi (t) = Ri (t) +
2∑

j=1

∫ T

t
Mi, j (t, s)dξ j (s), (4)
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qi (t) = Dt Ri (t) +
2∑

j=1

∫ T

t
Dt Mi, j (t, s)dξi (s), (5)

ri (t, z) = Dt,z Ri (t) +
2∑

j=1

∫ T

t
Dt,zMi, j (t, s)dξi (s) (6)

with

Ri (t) = Υi (t) +
∫ T

t
Fi (t, s)ds, (7)

Υi (t) =
∫ T

t

∂ fi
∂x

(s)ds + g′
i (X (T ))

+
∫ T

t

∂hi
∂x

(s)dξ1(s) +
∫ T

t

∂ki
∂x

(s)dξ2(s), (8)

Fi (t, s) = G(t, s)
∂Φi

∂x
(s), (9)

Mi, j (t, s) = G(t, s)Υi (s)
∂λ j

∂x
(s), i, j = 1, 2, (10)

Φi (s, x, u1, u2) = Υi (s)b(s, x, u1, u2) + DsΥi (s)σ (s, x, u1, u2)

+
∫

R0

Ds,zΥi (s)γ (s, x, u1, u2, z)ν(dz), (11)

and

G(t, s) = exp

{∫ s

t

(
∂b

∂x
(r) − 1

2

(
∂σ

∂x
(r)

)2
)

dr +
∫ s

t

∂σ

∂x
(r)dB(r)

+
∫ s

t

∫

R0

ln

(
1 + ∂γ

∂x
(t, z)

)
Ñ (dr, dz)

+
∫ s

t

∫

R0

[
ln

(
1 + ∂γ

∂x
(t, z)

)
− ∂γ

∂x
(t, z)

]
ν(dz)dr

+
∫ s

t

∂λ2

∂x
(r)dξ2(r) +

∫ s

t

∂λ1

∂x
(r)dξ1(r)

}
, 0 ≤ t ≤ s ≤ T . (12)

Assumption 1 We make the following assumptions:

(1) The functions b, σ , γ , λi , fi , gi , hi and ki are continuously differentiable with
respect to x and ui for each t ∈ [0, T ] and almost all ω ∈ Ω .

(2) For all t, h satisfying 0 ≤ t < t + h ≤ T and all bounded G(i)
s —measurable

random variables θi (ω), s ∈ [0, T ], the control (βi (s), 0) belongs to A(i)
G , where

βi (s) = θi (ω)χ[t,t+h](s) and χ[t,t+h] is the indicator function of [t, t + h], i.e.,
χ[t,t+h](s) =

{
1, s ∈ [t, t + h]
0, else

, t ∈ [0, T ], i = 1, 2.
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(3) For all (ui , ξi ) ∈ A(i)
G and all bounded (βi , ςi ) ∈ A(i)

G , there exists δ > 0 such that

(ui (t) + yiβi (t), ξi (t) + yiςi (t)) ∈ A(i)
G for all yi ∈ (−δ, δ), t ∈ [0, T ],i = 1, 2.

(4) For all (ui , ξi ) ∈ A(i)
G , the processes Υi (t), DtΥi (t), Dt,zΥi (t), Φi (t), G(t, s),

pi (t), qi (t) and ri (t, z) exist for 0 ≤ t ≤ s ≤ T , z ∈ R0, i = 1, 2.

For a bounded (βi , ςi ), we define the derivative process X̆ (βi ,ςi )(t) as

X̆ (βi ,ςi )(t) := lim
yi→0+

1

yi
[X (t, ui + yiβi , ξi + yiςi ) − X (t)] .

Then it follows from (1) that X̆ (βi ,ςi )(t) satisfies the following singular SDEs:

d X̆ (βi ,ςi )(t) = βi (t)

[
∂b

∂ui
(t)dt + ∂σ

∂ui
(t)dB(t) +

∫

R0

∂γ

∂ui
(t, z)Ñ (dt, dz)

]

+ X̆ (βi ,ςi )(t)

[
∂b

∂x
(t)dt + ∂σ

∂x
(t)dB(t) +

∫

R0

∂γ

∂x
(t, z)Ñ (dt, dz)

+∂λ1

∂x
(t)dξ1(t) + ∂λ2

∂x
(t)dξ2(t)

]
+ λi (t, x)dςi (t) (13)

with X̆ (βi ,ςi )(0) = 0.
Now we are ready to state and prove the maximum principle to characterize the

Nash equilibrium point of the games (2)–(3).

Theorem 2 Let (u1, ξ1; u2, ξ2) ∈ A(1)
G × A(2)

G be a Nash equilibrium point of the
games (2)–(3). Let ξ ci (t) denote the continuous part of ξi (t) and let �ξi (t) = ξi (t) −
ξi (t−) denote the purely discontinuous part of ξi (·) at time t, i = 1, 2. Assume that
X (t) and X̆ (ui ,ξi )(t) are the solutions of (1) and (13) corresponding to (u1, ξ1; u2, ξ2)
and pi (t), qi (t), ri (·)(t, z) are the corresponding adjoint processes (4)–(6). Suppose
that g′

i (X (T )), ∂ fi
∂x (t), ∂hi

∂x (t) and ∂ki
∂x (t) are Malliavin differentiable at t ∈ [0, T ].

Suppose in addition that for all (ui , ξi ) ∈ A(i)
G and (βi , ςi ) ∈ A(i)

G ,

∂ fi
∂x

(t, X (t), u1, u2) X̆
(βi ,ςi )(t) + ∂ fi

∂ui
(t, X (t), u1, u2) βi (t)

is m × P−uniformly integrable, where m is Lebesgue measure,

E

[∫ T

0

∣∣
∣∣
∂h1
∂x

(t, X (t))X̆ (β1,ς1)(t)

∣∣
∣∣ dξ1(t)

+
∫ T

0
|h1(t, X (t))| dς1(t) +

∫ T

0

∣∣∣
∣
∂k1
∂x

(t, X (t))X̆ (β1,ς1)(t)

∣∣∣
∣ dξ2(t)

]
< +∞,

E

[∫ T

0

∣∣∣
∣
∂h2
∂x

(t, X (t))X̆ (β2,ς2)(t)

∣∣∣
∣ dξ1(t)

+
∫ T

0
|k2(t, X (t))| dς2(t) +

∫ T

0

∣∣∣∣
∂k2
∂x

(t, X (t))X̆ (β2,ς2)(t)

∣∣∣∣ dξ2(t)

]
< +∞
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and
g′
i (X (T ))X̆ (β1,ς1)(T )

is P-uniformly integrable. Set

U1(t) = h1(t, X (t)) +
(

Υ1(t) +
∫ T

t+
G(t, s)dQ1(s)

)
λ1(t, X (t)), (14)

V1(t) = h1(t, X (t)) +
(

Υ1(t) + (1 + ε(t))
∫ T

t+
G(t, s)dQ1(s)

)
λ1(t, X (t)), (15)

U2(t) = k2(t, X (t)) +
(

Υ2(t) +
∫ T

t+
G(t, s)dQ2(s)

)
λ2(t, X (t)),

V2(t) = k2(t, X (t)) +
(

Υ2(t) + (1 + ε(t))
∫ T

t+
G(t, s)dQ2(s)

)
λ2(t, X (t)),

where

ε(s) = − ∫
R0

∂γ
∂x (s, z)N ({s}, dz) − ∂λ1

∂x (t)�ξ1(t) − ∂λ2
∂x (t)�ξ2(t)

1 + ∫
R0

∂γ
∂x (s, z)N ({s}, dz) + ∂λ1

∂x (t)�ξ1(t) + ∂λ2
∂x (t)�ξ2(t)

,

∫

R0

∂γ

∂x
(s, z)N ({s}, dz) :=

{
∂γ
∂x (s, z), if Lévy process η has a jump of z at s,

0, else.

(16)

and

dQi (t) = ∂Φi

∂x
(t)dt + Υi (t)

∂λ1

∂x
(t)dξ1(t) + Υi (t)

∂λ2

∂x
(t)dξ2(t). (17)

Then the following holds for almost all t ∈ [0, T ],

E

[
∂H1

∂u1
(t, X (t), u1, u2, p1, q1, r1(·))

∣∣∣∣G(1)
t

]
= 0, (18)

E

[
∂H2

∂u2
(t, X (t), u1, u2, p2, q2, r2(·))

∣∣
∣∣G(2)

t

]
= 0, (19)

E
[
U1(t)|G(1)

t

]
≤ 0 and E

[
U1(t)|G(1)

t

]
dξ c1 (t) = 0, (20)

E
[
U2(t)|G(2)

t

]
≤ 0 and E

[
U2(t)|G(2)

t

]
dξ c2 (t) = 0, (21)

E
[
V1(t)| G(1)

t

]
≤ 0 and E

[
V1(t)| G(1)

t

]
�ξ1(t) = 0, (22)

E
[
V2(t)| G(2)

t

]
≤ 0 and E

[
V2(t)| G(2)

t

]
�ξ2(t) = 0. (23)

Proof Suppose that (u1, ξ1; u2, ξ2) ∈ A(1)
G × A(2)

G is a Nash equilibrium point of the
game (2)–(3). Then we have
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lim
y1→0+

1

y1
[J1 (u1 + y1β1, ξ1 + y1ς1; u2, ξ2) − J1 (u1, ξ1; u2, ξ2)] ≤ 0 (24)

holds for all bounded (β1, ς1) ∈ A(1)
G . It follows from J1 (u1, ξ1; u2, ξ2) that (24)

gives

E

[∫ T

0

{
∂ f1
∂x

(t, X (t), u1, u2) X̆
(β1,ς1)(t) + ∂ f1

∂u1
(t, X (t), u1, u2) β1(t)

}
dt

+ g′
1(X (T ))X̆ (β1,ς1)(T ) +

∫ T

0

∂h1
∂x

(t, X (t))X̆ (β1,ς1)(t)dξ1(t)

+
∫ T

0
h1(t, X (t))dς1(t) +

∫ T

0

∂k1
∂x

(t, X (t))X̆ (β1,ς1)(t)dξ2(t)

]
≤ 0, (25)

where g′
1(x) is the derivative of g1(x).

By the duality formulas of Malliavin calculus (see Theorem 3.14 and Theorem
12.10 in [7]), (13) and the Fubini theorem, we get

E

[∫ T

0

∂ f1
∂x

(t)X̆ (β1,ς1)(t)dt

]

= E

[∫ T

0

{[∫ T

t

∂ f1
∂x

(s)ds

(
∂b

∂x
(t)X̆ (β1,ς1)(t) + ∂b

∂u1
(t)β1(t)

)

+ Dt

(∫ T

t

∂ f1
∂x

(s)ds

) (
∂σ

∂x
(t)X̆ (β1,ς1)(t) + ∂σ

∂u1
(t)β1(t)

)

+
∫

R0

Dt,z

(∫ T

t

∂ f1
∂x

(s)ds

) (
∂γ

∂x
(t, z)X̆ (β1,ς1)(t) + ∂γ

∂u1
(t)β1(t)

)
ν(dz)

]
dt

+
(∫ T

t

∂ f1
∂x

(s)ds

)
X̆ (β1,ς1)(t)

(
∂λ1

∂x
(t)dξ1(t) + ∂λ2

∂x
(t)dξ2(t)

)

+
(∫ T

t

∂ f1
∂x

(s)ds

)
λ1(t, X (t))dς1(t)

}]
.

Similarly we apply the duality formulas of Malliavin calculus and the Fubini

theorem to E
[
g′
1(X (T ))X̆ (β1,ς1)(T )

]
, E

[∫ T
0

∂h1
∂x (t)X̆ (β1,ς1)(t)dξ1(t)

]
and

E
[∫ T

0
∂k1
∂x (t)X̆ (β1,ς1)(t)dξ2(t)

]
in (25). Then (25) can be written as

E

[∫ T

0
X̆ (β1,ς1)(t)

(
∂Φ1

∂x
(t)dt + Υ1(t)

∂λ1

∂x
(t)dξ1(t) + Υ1(t)

∂λ2

∂x
(t)dξ2(t)

)

+
∫ T

0
(h1(t, X (t)) + Υ1(t)λ1(t, X (t))) dς1(t) +

∫ T

0
β1(t)

(
∂b

∂u1
(t)Υ1(t)

+ ∂σ

∂u1
(t)DtΥ1(t) +

∫

R0

∂γ

∂u1
(t, z)Dt,zΥ1(t)ν(dz) + ∂ f1

∂u1
(t)

)
dt

]
≤ 0, (26)
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where Υ1(t) and Φ1(t) are given by (8) and (11).
Since the inequality (26) holds for all bounded (β1, ς1) ∈ A(1)

G , we can choose
ς1 = 0 and β1 = 0 to prove (18), (20) and (22), respectively.

In order to prove (18), we let ς1 = 0 in (26) and have

E

[∫ T

0
X̆ (β1,0)(t)

(
∂Φ1

∂x
(t)dt + Υ1(t)

∂λ1

∂x
(t)dξ1(t) + Υ1(t)

∂λ2

∂x
(t)dξ2(t)

)

+
∫ T

0
β1(t)

(
∂ f1
∂u1

(t) + ∂b

∂u1
(t)Υ1(t) + ∂σ

∂u1
(t)DtΥ1(t)

+
∫

R0

∂γ

∂u1
(t, z)Dt,zΥ1(t)ν(dz)

)
dt

]
≤ 0, (27)

where X̆ (β1,0)(t) is given by

d X̆ (β1,0)(t) = X̆ (β1,0)(t)

[
∂b

∂x
(t)dt + ∂σ

∂x
(t)dB(t) +

∫

R0

∂γ

∂x
(t, z)Ñ (dt, dz)

+∂λ1

∂x
(t)dξ1(t) + ∂λ2

∂x
(t)dξ2(t)

]
+ β1(t)

[
∂b

∂u1
(t)dt

+ ∂σ

∂u1
(t)dB(t) +

∫

R0

∂γ

∂u1
(t, z)Ñ (dt, dz)

]
(28)

with X̆ (β1,0)(0) = 0.
Since (27) holds for all β1 ∈ A(1)

G , we set

βθ
1 = βθ

1 (s) = θ(ω)χ(t,t+h](s), 0 ≤ t ≤ t + h ≤ T,

where θ(ω) isG(1)
t —measurable randomvariable.And it is obvious that X̆ (β1,0)(s) = 0

for 0 ≤ s ≤ t . Then (27) can be written as

L1(h) + L2(h) + L3(h) ≤ 0,

where

L1(h) = E

[∫ T

t
X̆

(
βθ
1 ,0

)
(s)

∂Φ1

∂x
(s)ds

]
,

L2(h) = E

[∫ t+h

t
θ

(
∂ f1
∂u1

(s) + ∂b

∂u1
(s)Υ1(s) + ∂σ

∂u1
(s)DsΥ1(s)

+
∫

R0

∂γ

∂u1
(s, z)Ds,zΥ1(s)ν(dz)

)
ds

]
,

L3(h) = E

[∫ T

t
X̆

(
βθ
1 ,0

)
(s)

(
Υ1(s)

∂λ1

∂x
(s)dξ1(s) + Υ1(s)

∂λ2

∂x
(s)dξ2(s)

)]
.

123



1310 Y. Wang et al.

Differentiating L1(h) and L2(h) with respect to h at h = 0, we obtain

d

dh
L1(h)

∣∣∣∣
h=0

= E

[
θ

{
∂b

∂u1
(t)

∫ T

t
F1(t, s)ds + ∂σ

∂u1
(t)Dt

∫ T

t
F1(t, s)ds

+
∫

R0

∂γ

∂u1
(t, z)Dt,z

∫ T

t
F1(t, s)dsν(dz)

}]
, (29)

where F1(t, s) is given by (9), and

d

dh
L2(h)

∣∣
∣∣
h=0

= E

[
θ

(
Υ1(t)

∂b

∂u1
(t) + DtΥ1(t)

∂σ

∂u1
(t)

+
∫

R0

Dt,zΥ1(t)
∂γ

∂u1
(t, z)ν(dz) + ∂ f1

∂u1
(t)

)]
. (30)

The proofs of (29) and (30) are similar to that of Theorem 4.1 in [16], we omit the
detail. Now we consider L3(h). Differentiating L3(h) with respect to h at h = 0 gives

d

dh
L3(h)

∣∣∣∣
h=0

= Π1 + Π2, (31)

where

Π1 = d

dh
E

[∫ t+h

t
X̆

(
βθ
1 ,0

)
(s)

(
Υ1(s)

∂λ1

∂x
(s)dξ1(s) + Υ1(s)

∂λ2

∂x
(s)dξ2(s)

)]

h=0

= 0

and

Π2 = d

dh
E

[∫ T

t+h
X̆

(
βθ
1 ,0

)
(s)Υ1(s)

(
∂λ1

∂x
(s)dξ1(s) + ∂λ2

∂x
(s)dξ2(s)

)]

h=0

=
2∑

j=1

E

[∫ T

t

d

dh

{
X̆

(
βθ
1 ,0

)
(t + h)G(t, s)Υ1(s)

∂λ j

∂x
(s)

}

h=0
dξ j (s)

]
. (32)

By (28) we have

X̆
(
βθ
1 ,0

)
(t + h) =

∫ t+h

t
θ

[
∂b

∂u1
(r)dr + ∂σ

∂u1
(r)dB(r) +

∫

R0

∂γ

∂u1
(r, z)Ñ (dr, dz)

]

+
∫ t+h

t
X̆

(
βθ
1 ,0

)
(r)

[
∂b

∂x
(r)dr + ∂σ

∂x
(r)dB(r) + ∂λ2

∂x
(r)dξ2(r)

+
∫

R0

∂γ

∂x
(r, z)Ñ (dr, dz) + ∂λ1

∂x
(r)dξ1(r)

]
. (33)

123



Maximum principle via Malliavin calculus for regular… 1311

Substituting (33) in (32), we have, by the duality formulas of Malliavin calculus,

d

dh
L3(h)

∣∣∣
∣
h=0

=
2∑

j=1

E

[
θ

{
∂b

∂u1
(t)

∫ T

t
M1, j (t, s)dξ j (s)

+ ∂σ

∂u1
(t)

∫ T

t
Dt M1, j (t, s)dξ j (s)

+
∫

R0

∂γ

∂u1
(t, z)

∫ T

t
Dt,zM1, j (t, s)dξ j (s)ν(dz)

}]
, (34)

where M1, j (t, s) are given by (10). Combining (29), (34) and (31), we obtain

d

dh
L1(h)

∣∣∣∣
h=0

+ d

dh
L2(h)

∣∣∣∣
h=0

+ d

dh
L3(h)

∣∣∣∣
h=0

= E

[
θ
∂H1

∂u1
(t, x, u1, u2, p1, q1, r1(·))

]
(35)

holds for all bounded G(1)
t —measurable random variable θ . Therefore, we conclude

that (18) holds for almost all t ∈ [0, T ].
It remains to prove (20) and (22). Since the inequality (26) holds for all bounded

(β1, ς1) ∈ A(1)
G , one can choose β1 = 0 and has

E

[∫ T

0
X̆ (0,ς1)(t)dQ1(t) +

∫ T

0
(h1(t, X (t)) + Υ1(t)λ1(t, X (t))) dς1(t)

]
≤ 0,

(36)

where Q1(t) is given by (17) and X̆ (0,ς1)(t) is described by the following SDE:

d X̆ (0,ς1)(t) = X̆ (0,ς1)(t)

[
∂b

∂x
(t)dt + ∂σ

∂x
(t)dB(t) +

∫

R0

∂γ

∂x
(t, z)Ñ (dt, dz)

+∂λ1

∂x
(t)dξ1(t) + ∂λ2

∂x
(t)dξ2(t)

]
+ λ1(t, X (t))dς1(t) (37)

with X̆ (0,ς1)(0) = 0. Then it is easy to obtain the solution of (37) as follows:

X̆ (0,ς1)(t) = G(0, t)

[∫ t

0
G−1(0, s−)λ1(s, X (s))dς1(s)

+
∑

0<s≤t

G−1(0, s−)λ1(s, X (s))ε(s)�ς1(s)

⎤

⎦ , t ∈ [0, T ], (38)
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where ε(s) is given by (16) (see Lemma 2.1 in [17]). Substituting (38) into (36), we
have, by the Fubini Theorem,

E

⎡

⎣
∫ T

0
U1(t)dςc

1 (t) +
∑

0<t≤T

V1(t)�ς1(t)

⎤

⎦ ≤ 0, (39)

where U1(t) and V1(t) are defined by (14) and (15).
We firstly choose ς1 such that

dς1(t) = a1(t)dt, t ∈ [0, T ],

where a1(t) ≥ 0 is continuous G(1)
t −adapted stochastic process. Then it follows from

(39) that

E
[
U1(t)| G(1)

t

]
≤ 0, for almost all t ∈ [0, T ].

Moreover, by choosing ς1(t) = ξ c1 (t) and ς1(t) = −ξ c1 (t), together with (39), we
have

E
[
U1(t)|G(1)

t

]
dξ c1 (t) = 0, t ∈ [0, T ].

Next we fix t ∈ [0, T ] and choose ς1 such that

dς1(s) = a1(ω)δt (s), s ∈ [0, T ],

where a1(ω) ≥ 0 is bounded G(1)
t —measurable and δt (s) is the unit point mass at t .

In this case, we obtain by (39) that

E
[
V1(t)|G(1)

t

]
≤ 0.

Let ξd1 (t) denote the purely discontinuous part of ξ1(t). Letting ς1(t) = ξd1 (t) and
ς1(t) = −ξd1 (t), we conclude from (39) that

E
[
V1(t)| G(1)

t

]
�ξ1(t) = 0 for all t ∈ [0, T ].

Therefore we obtain (20) and (22).
On the other hand, proceeding in the same way by letting

lim
y2→0+

1

y2
[J2 (u1, ξ1; u2 + y2β2, ξ2 + y2ς2) − J2 (u1, ξ1; u2, ξ2)] ≤ 0

holds for all bounded (β2, ς2) ∈ A(2)
G , we have (19), (21) and (23), which completes

the proof.
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Remark 1 Suppose thatG(1)
t = G(2)

t = Gt ⊂ Ft for all t ∈ [0, T ]. Then the games (2)–
(3) are simplified to the regular-singular stochastic differential games with symmetric
partial informations. Especially, in the case of G(1)

t = G(2)
t = Ft for all t ∈ [0, T ],

the games (2)–(3) can be regarded as the regular-singular games under symmetric full
informations. With the help of Theorem 2, the Nash equilibrium point (u1, ξ1; u2, ξ2)
satisfies

∂H1

∂u1
(t, X (t), u1, u2, p1, q1, r1(·)) = ∂H2

∂u2
(t, X (t), u1, u2, p2, q2, r2(·)) = 0,

U1(t) ≤ 0, U1(t)dξ c1 (t) = 0, V1(t) ≤ 0 and V1(t)�ξ1(t) = 0,

U2(t) ≤ 0, U2(t)dξ c2 (t) = 0, V2(t) ≤ 0 and V2(t)�ξ2(t) = 0.

4 Conclusion

Wederive amaximum principle for non-zero-sum regular-singular stochastic differen-
tial games with asymmetry partial informations. The approach we apply is Malliavin
calculus approach, with which the adjoint processes are explicitly represented by the
parameters and the states of the system, not by backward SDEs. In our maximum prin-
ciple, we give the necessary optimality conditions, which are not sufficient, for Nash
equilibrium point of the games. The sufficient and necessary optimality conditions for
Nash equilibrium point will be explored in our subsequent work.
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