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Abstract The proximal point method for a special class of nonconvexmultiobjective
functions is studied in this paper. We show that the method is well defined and that
the accumulation points of any generated sequence, if any, are Pareto–Clarke critical
points. Moreover, under additional assumptions, we show the full convergence of the
generated sequence.
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1 Introduction

Multiobjective optimization is the process of simultaneously optimizing two or more
real-valued objective functions. Usually, no single point will minimize all the given
objective functions at once (i.e., there is no ideal minimizer), and so the concept of
optimality has to be replaced by the concept of Pareto optimality or as we will see,
Pareto–Clarke critical; see [11]. These types of problems have applications in the
economy, industry, agriculture, and other fields; see [13]. Bonnel et al. [6] considered
extensions of the proximal point method to the multiobjective setting, see also [1–
4,7–9,20] and references therein.
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Our goal is to study the proximal point method introduced in [6] for the multi-
objective problems, where each component function is lower-C1, a special class of
nonconvex functions. Over the last four decades, several authors have proposed gen-
eralized proximal point methods for certain nonconvex minimization problems. As far
as we know, the first generalization was performed in [12], see also [15] for a review.
Our approach extends to the multiobjective context the results of [15]. More precisely,
we show that the method is well defined and that the accumulation points of any
generated sequence, if any, are Pareto–Clarke critical for the multiobjective function.
Moreover, under some additional assumptions, we show the full convergence of the
generated sequence.

The organization of the paper is as follows. In Sect. 2, some notation and basic
results used throughout the paper are presented. In Sect. 3, the main results are stated
and proved. Some final remarks are made in Sect. 4.

2 Preliminaries

In this section, we present some basic results and definitions.
We denote I := {1, . . . , m}, R

m+ := {
x ∈ R

m : x j ≥ 0, j ∈ I
}
, and R

m++ :={
x ∈ R

m : x j > 0, j ∈ I
}
. For y, z ∈ R

m, z � y (or y � z )means that z−y ∈ R
m+ and

z � y (or y ≺ z ) means that z − y ∈ R
m++. We consider the unconstrained multiobjec-

tive problem: minx∈Rn F(x), where F : Rn → R
m , with F(x) = ( f1(x), . . . , fm(x)).

Given a nonempty set C ⊂ R
n , a point x∗ ∈ C is said to be a weak Pareto solution of

the problemminw{F(x): x ∈ C} if, and only if, there is no x ∈ C with F(x) ≺ F(x∗).
We denote as argminw{F(x): x ∈ C} the weak Pareto solutions set. In particular, when
C = R

n , we denote this set as U∗. Assume that C is convex. F is called ν-strongly
convex (or simply strongly convex) onC, ν ∈ R

m++, if, and only if, for every x, y ∈ C ,

F ((1 − t)x + t y) � (1 − t)F(x) + t F(y) − νt (1 − t)‖x − y‖2, t ∈ [0, 1].

F is said to be convex when ν = 0 in the above inequality. Note that F is convex (resp.
strongly convex) if, and only if, F is component-wise convex (resp. strongly convex).
Moreover, this definition generalizes the definition of a convex function in the scalar
case. The proof of the next proposition can be found in [16, p. 95].

Proposition 1 If C is a convex set and F is a convex function, then

⋃

z∈Rm+\{0}
argmin

x∈C
〈F(x), z〉 = argmin

w
{F(x): x ∈ C} .

If m = 1, f is L-strongly convex on Ω ⊂ R
n with constant L if, and only if,

〈u − v, x − y〉 ≥ L‖u − v‖2, u ∈ ∂ f (x), v ∈ ∂ f (y), (1)

whenever x, y ∈ Ω , where ∂ f denotes the subdifferential.
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Remark 1 Let f1, f2: Rn → R be convex on Ω . Thus, ∂ f1(x) and ∂ f2(x) are
nonempty, convex, and compact for x ∈ Ω . Moreover, if λ1, λ2 ≥ 0 then
∂(λ1 f1 + λ2 f2)(x) = λ1∂ f1(x) + λ2∂ f2(x), for x ∈ Ω; see [19, Theorem 23.8].

Let C ⊂ R
n be nonempty, closed, and convex. The normal cone is defined by

NC (x) := {
v ∈ R

n : 〈v, y − x〉 ≤ 0, y ∈ C
}
. (2)

Remark 2 If g: Rn → R is convex, then the first-order optimality condition for
minx∈C g(x) is 0 ∈ ∂g(x) + NC (x). If g is the maximum of a finite collection of
continuously differentiable functions, then this constraint qualification is satisfied.

Let f : Rn → R be locally Lipschitz at x ∈ R
n and d ∈ R

n . The Clarke directional
derivative [10, p. 25] of f at x in the direction d is defined as

f ◦(x, d) := lim sup
t↓0 y→x

f (y + td) − f (y)

t
,

and the Clarke subdifferential of f at x , denoted by ∂◦ f (x), is defined as

∂◦ f (x) := {
w ∈ R

n : 〈w, d〉 ≤ f ◦(x, d), ∀ d ∈ R
n}

.

The previous definition can be found in [10, p. 27]. If f is convex, f ◦(x, d) =
f ′(x, d), where f ′(x, d) is the usual directional derivative. Moreover, ∂◦ f (x) =
∂ f (x) for all x ∈ R

n ; see [10, Proposition 2.2.7]. The next lemmas can be found in
[10, p. 39]

Lemma 1 Let Ω ⊂ R
n be open and convex. If f : Rn → R is locally Lipschitz on

Ω and g: Rn → R is convex on Ω , then ( f + g)◦(x, d) = f ◦(x, d) + g′(x, d) for
each x ∈ Ω and d ∈ R

n. Consequently, if g: Rn → R is continuously differentiable
on Ω, ∂◦( f + g)(x) = ∂◦ f (x) + grad g(x) for each x ∈ Ω.

Lemma 2 Let Ω ⊂ R
n be open and convex. Let fi : R

n → R be a continuously
differentiable function on Ω, i ∈ I . Define f (x) := maxi∈I fi (x), and I (x) :=
{i ∈ I : fi (x) = f (x)}. Then, (a) f is locally Lipschitz on Ω and conv{grad fi (x): i ∈
I (x)} ⊂ ∂◦ f (x), x ∈ Ω; (b) if fi : R

n → R is differentiable and convex on Ω, i ∈ I ,
then ∂ f (x) = conv{grad fi (x): i ∈ I (x)}. In particular, x minimizes f on Ω if, and
only if, there exists αi ≥ 0, i ∈ I (x), such that 0 = ∑

i∈I (x) αi grad fi (x) and∑
i∈I (x) αi = 1; (c) if fi : R

n → R is Li -strongly convex, for i ∈ I, f is mini∈I Li

strongly convex.

Proof The proofs of items (a) and (b) can be found in [5, Proposition 4.5.1] and [17,
p. 49], respectively. The proof of item (c) follows from the definition of a strongly
convex function. ��
Definition 1 Let F = ( f1, . . . , fm)T : Rn → R

m be locally Lipschitz on R
n . We say

that x∗ ∈ R
n is a Pareto–Clarke critical point of F if, for all directions d ∈ R

n , there
exists i0 = i0(d) ∈ {1, . . . , m}, such that f ◦

i0
(x∗, d) ≥ 0.
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Remark 3 The previous definition can be found in [11]. When m = 1, the last def-
inition becomes the classic definition of the critical point for the nonsmooth convex
function. The last definition generalizes, for nonsmooth multiobjective optimization,
the condition Im (JF(x∗))∩ (−R

m++
) = ∅, which characterizes a Pareto critical point

when F is continuously differentiable.

3 Proximal algorithm for multiobjective optimization

In this section, we present a proximal point method to minimize a nonconvex function
F , where its component is given by the maximum of continuously differentiable
functions. Our goal is to prove the following theorem:

Theorem 1 Let Ω ⊂ R
n be open and convex and I j := {1, . . . , � j }, with � j ∈ Z+.

Let F(x) := ( f1(x), . . . , fm(x)), where f j (x) := maxi∈I j fi j (x), j ∈ I, and fi j :
R

n → R is a continuously differentiable function on Ω and continuous on Ω̄ , for all
i ∈ I j . Assume that for all j ∈ I, −∞ < inf x∈Rn f j (x), grad fi j is Lipschitz on Ω

with constant Li j for each i ∈ I j and SF (F(ȳ)) := {x ∈ R
n : F(x) � F(ȳ)} ⊂ Ω ,

for some ȳ ∈ R
n. Let λ̄ > 0 and μ̄ > 0, such that μ̄ < 1. Take {ek} ⊂ R

m++ and
{λk} ⊂ R++ satisfying

‖ek‖ = 1, μ̄ < ek
j ,

1

μ̄
max
i∈I j

Li j < λk ≤ λ̄, j ∈ I, k = 0, 1, . . . . (3)

Let x̂ ∈ SF (F(ȳ)). If Ωk := {x ∈ R
n : F(x) � F(xk)}, then

xk+1 ∈ argmin
w

{
F(x) + λk

2
‖x − xk‖2ek : x ∈ Ωk

}
, k = 0, 1, . . . , (4)

starting with x0 = x̂ is well defined, the generated sequence {xk} rests in SF (F(ȳ))

and any accumulation point of {xk} is a Pareto–Clarke critical point of F, as long as
Ωk is convex, for each k.

In order to prove the above theoremwe need some preliminaries. Hereafter, we assume
that all the assumptions of Theorem 1 hold. We start proving the well-definedness of
the sequence in (4).

Proposition 2 The proximal point method (4) applied to F with starting point x0 = x̂
is well defined.

Proof The proof will be made by induction on k. Let {xk} be as in (4). By assumption,
x̂ ∈ SF (F(ȳ)). Thus, we assume that xk ∈ SF (F(ȳ)) for some k. Take z ∈ R

m+\{0}
and define ϕk(x) := 〈F(x), z〉 + (λk/2)〈ek, z〉‖x − xk‖2. As −∞ < infx∈Rn f j (x)

for all j ∈ I , the function 〈F(·), z〉 is bounded below and, taking into account that
〈ek, z〉 > 0, it follows that ϕk is coercive. Then, as Ωk is closed, there exists x̃ ∈ Ωk ,
such that x̃ = argminx∈Ωk

ϕk(x). Therefore, from Proposition 1we can take xk+1 := x̃
and the induction is done, proving the proposition. ��
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Lemma 3 For all x̃ ∈ R
n, v := (v1, . . . , vm) ∈ R

m++, j ∈ I and λ satisfying
supi∈I j

Li j < λv j , the functions fi j + λv j‖ · −x̃‖2/2, f j + λv j‖ · −x̃‖2/2 and

F+(λ/2)‖·−x̃‖2v are strongly convex onΩ . Moreover, 〈F(·), z〉+λ 〈v, z〉 ‖· − x̃‖2 /2
is strongly convex on Ω for each z ∈ R

m+\{0}.
Proof Take j ∈ I, i ∈ I j , x̃ ∈ R

n, v j ∈ R++ and define hi j = fi j +λv j‖ ·−x̃‖2/2.
Since grad hi j (x) = grad fi j (x)+λv j (x − x̃), we have 〈grad hi j (x)−grad hi j (y), x −
y〉 = 〈grad fi j (x)−grad fi j (y), x − y〉+λv j‖x − y‖2 . Using the Cauchy inequality,
last equality becomes

〈
grad hi j (x) − grad hi j (y), x − y

〉 ≥ −‖grad fi j (x) − grad fi j (y)‖‖x − y‖
+ λv j‖x − y‖2.

As grad fi j is Lipschitz on Ω with constant Li j , 〈grad hi j (x)− grad hi j (y), x − y〉 ≥
(λv j − Li j )‖x − y‖2 holds. Hence, the last inequality along with the assumption
λv j > supi∈I j

Li j implies that grad hi j is strongly monotone. Therefore, (1) implies
that hi j is strongly convex, proving the first part of the lemma. The second and third
parts of the lemma follow from the first one. ��
Hereafter, {xk} is generated by (4). Note that Proposition 1 implies that there exists a
sequence {zk} ⊂ R

m+\{0}, such that

xk+1 = argmin
x∈Ωk

ψk(x), (5)

where the function ψk : Rn → R is defined by

ψk(x) :=
〈
F(x), zk

〉
+ λk

2

〈
ek, zk

〉 ∥∥∥x − xk
∥∥∥
2
. (6)

The solution of the problem in (5) is not altered through the multiplication of zk by
positive scalars. Thus, we can suppose ‖zk‖ = 1 for k = 0, 1, . . . .

Proof of Theorem 1 The well-definedness of (4) follows from Proposition 2. As x0 =
x̂ ∈ SF (F(ȳ)) ⊂ Ω , (4) implies {xk} ⊂ SF (F(ȳ)). Let x̄ be an accumulation point
of {xk}. Assume that Ωk is convex and, by contradiction, that x̄ is not Pareto–Clarke
critical of F . Then, there exists d ∈ R

n , such that

f ◦
i (x̄, d) < 0, i ∈ I. (7)

Thus, d is a descent direction for F in x̄ and there exists δ > 0, such that F(x̄ + td) ≺
F(x̄) for all t ∈ (0, δ]. Hence, x̄ + td ∈ Ωk , for k = 0, 1, . . ..

Let {zk} be a sequence satisfying (5). Hence, we can combine Lemma 3 and
Remark 2 to obtain

0 ∈ ∂

(〈
F(·), zk

〉
+ λk

2

〈
ek, zk

〉 ∥∥∥· − xk
∥∥∥
2
)

(xk+1) + NΩk (xk+1), k = 0, 1, . . . .
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Letting zk = (zk
1, . . . , zk

m) and ek = (ek
1, . . . , ek

m), Remark 1 gives us,

0 ∈
m∑

j=1

zk
j∂

(
f j + λk

2
ek

j

∥∥∥· − xk
∥∥∥
2
)

(xk+1) + NΩk (xk+1), k = 0, 1, . . . .

The last inclusion implies that there exists vk+1 ∈ NΩk (xk+1), such that

0 ∈
m∑

j=1

zk
j∂

(
f j + λk

2
ek

j

∥∥∥· − xk
∥∥∥
2
)

(xk+1) + vk+1, k = 0, 1, . . . .

Sincemaxi∈I j Li j < λkek
j , Lemma3 implies that fi j +λkek

j‖·−xk‖2/2 and f j +λkek
j‖·

−xk‖2/2 are strongly convex for all j ∈ I, k = 0, 1, . . .. Applying Lemma 2(b), for
I = I j and for the functions fi j + λkek

j‖ · −xk‖2/2 and f j + λkek
j‖ · −xk‖2/2, for

each j ∈ I , we obtain

0 =
m∑

j=1

zk
j

⎛

⎝
∑

i∈I j (xk+1)

αk+1
i j grad

(

fi j + λkek
j

2

∥∥∥· − xk
∥∥∥
2
)

(xk+1)

⎞

⎠ + vk+1,

×
∑

i∈I j (xk+1)

αk+1
i j = 1,

which holds for all k = 0, 1, . . ., with αk+1
i j ≥ 0, i ∈ I j (xk+1). This tells us that

0 =
m∑

j=1

zk
j

⎛

⎝
∑

i∈I j (xk+1)

αk+1
i j

(
grad fi j (xk+1) + λkek

j (xk+1 − xk)
)
⎞

⎠ + vk+1,

×
∑

i∈I j (xk+1)

αk+1
i j = 1, (8)

for all k = 0, 1, . . .. For all j ∈ I , let {αk+1
i j } ⊂ R

m be the sequence defined by

αk+1
j = (αk+1

1 j , αk+1
2 j , . . . , αk+1

mj ), αk+1
i j = 0, i ∈ I j\I j (xk+1), for all k = 0, 1, . . ..

Since
∑

i∈I j (xk+1) αk+1
i j = 1, ‖αk+1

j ‖1 = 1 for all k, where ‖ · ‖1 is the sum norm in

R
n . Thus, {αk+1

j } is bounded. As {xk} ⊂ SF (F(ȳ)) and F is continuous on Ω , we
have x̄ ∈ SF (F(ȳ)). Since I j is finite we can assume without loss of generality that
I j (xk1+1) = I j (xk2+1) = · · · =: Ĩ J , and (8) becomes

0 =
m∑

j=1

zks
j

⎛

⎝
∑

i∈ Ĩ J

α
ks+1
i j grad fi j (xks+1) + λks eks

j (xks+1 − xks )

⎞

⎠ + vks+1,

×
∑

i∈ Ĩ J

α
ks+1
i j = 1, s = 0, 1, . . . . (9)
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From the continuity of F we obtain thatΩk is closed. Considering that xks ∈ Ωks , Ωks

is convex and Ωks+1 ⊂ Ωks , for s = 0, 1, . . ., we obtain that

Ω̃ := ∩+∞
s=0Ωks , (10)

is nonempty, closed, and convex. As vks+1 ∈ NΩks
(xks+1) and Ω̃ ⊂ Ωks , (2) implies

〈
vks+1, x − xks+1

〉
≤ 0, x ∈ Ω̃, s = 0, 1, . . . . (11)

On the other hand, let {zks+1}, {xks+1}, {eks+1
j }, {λks+1}, and {αks+1

j } be the sub-

sequences of {zk+1}, {xk+1}, {ek+1
j }, {λk+1}, and {αk+1

j }, respectively, such that

lims→+∞(zks+1, xks+1, eks+1
j , λks+1, α

ks+1
j ) = (z, x, e j , λ̂, ᾱ j ). This fact along with

(9), implies that lims→+∞ vks+1 = v̄. From (11), v̄ ∈ NΩ̃ (x̄). Hence, in view of
(9), we have 0 = ∑m

j=1 z̄ j
∑

i∈ Ĩ J
ᾱi jgrad fi j (x̄) + v̄ and

∑
i∈ Ĩ J

ᾱi j = 1. Let x ∈ Ω̃ .
Taking u j = ∑

i∈ Ĩ J
ᾱi jgrad fi j (x̄), we have

0 =
m∑

j=1

z̄ j 〈u j , x − x̄〉 + 〈v̄, x − x̄〉. (12)

As x̄ + td ∈ Ωk , for all k = 0, 1, . . ., the definition of Ω̃ in (10) implies that x̄ + td ∈
Ω̃, t ∈ (0, δ]. Since u j = ∑

i∈ Ĩ J
ᾱi jgrad fi j (x̄) and

∑
i∈ Ĩ J

ᾱi j = 1, Lemma 2 (a) and
(b) implies that u j ∈ ∂◦ f j (x̄). Hence, using that v̄ ∈ NΩ̃ (x̄) and definition of f ◦

j (x̄, d),
equality (12) with x = x̄ + td yields 0 ≤ ∑m

j=1 z̄ j 〈u j , d〉 ≤ ∑m
j=1 z̄ j f ◦

j (x̄, d). Thus,
there exists j ∈ I such that f ◦

j (x̄, d) ≥ 0, which contradicts (7). Therefore, x̄ is
Pareto–Clarke critical point of F .

Now let us introduce some conditions that will guarantee that {xk} converges to a
point x∗ ∈ U∗. Suppose that

(H1) U = {y ∈ R
n : F(y) � F(xk), k = 0, 1, . . .} �= ∅;

(H2) there exists c ∈ R such that the following conditions hold:
(a) SF (ce) := {x ∈ R

n : F(x) � ce} �= ∅ and SF (ce) � SF (F(ȳ));
(b) SF (ce) is convex and F is convex on SF (ce), where e := (1, . . . , 1) ∈ R

m ;
(H3) there exists δ > 0 such that for all z ∈ R

m+\{0}, x ∈ SF (F(ȳ)) \ SF (ce) and
wz(x) ∈ ∂◦ (〈F(·), z〉) (x) + NΩk (x), it holds that ‖wz(x)‖ > δ > 0.

In general, the set U defined in assumption (H1) may be an empty set. To guarantee
that U is nonempty, an additional assumption on the sequence {xk} is needed. In the
next remark we give such a condition.

Remark 4 If the sequence {xk} has an accumulation point, then U �= ∅, i.e., assump-
tion (H1) holds. Indeed, let x̄ be an accumulation point of the sequence {xk}. Then,
there exists a subsequence {xk j } of {xk} which converges to x̄ . Since F is continuous,
{F(xk)} has F(x̄) as an accumulation point. Using the definition of {xk} in (4), we
conclude that {F(xk)} is a decreasing sequence. Hence, the usual arguments easily
show that the whole sequence {F(xk)} converges to F(x̄) and x̄ ∈ U , i.e., U �= ∅.
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Next, we present a function satisfying the assumptions of Theorem 1, as well as (H1),
(H2) and (H3), when m = 2, j = 2 and I = I j = 2.

Example 1 Take 0 < ε < 0.4, Ω = (ε,+∞), I := {1, 2}, and ȳ = 2.718 . . . with
ln ȳ = 1. Let F : R → R

2 be defined by F(x) = (0, 0) for x ∈ R\R++ and
F(x) := ( f1(x), f2(x)), where f j (x) := maxi∈I fi j (x) for j ∈ I and f11(x) =
ln x + 1/x, f21(x) = ln x − 1/x, f12(x) = 2

√
x + 1/x, f22(x) = 2

√
x − 1/x , for

all x ∈ R++. Note that f1 j , f2 j are continuously differentiable on Ω and continuous
on Ω̄ , for all j ∈ I . Since f ′′

1 j , f ′′
2 j are bounded on Ω , we conclude that f ′

1 j , f ′
2 j

are Lipschitz on Ω , for j ∈ I . Since max{a, b} = (a + b)/2 + |a − b|/2, for all
a, b ∈ R, we conclude f1(x) = ln x + 1/x and f2(x) = 2

√
x + 1/x . Therefore,

F(x) = (
ln x + 1/x, 2

√
x + 1/x

)
, x ∈ R++. It is easy to see that F is nonconvex

and {x ∈ Ω: F(x) � (ζ, ζ )} is convex and nonempty, for all ζ ≥ 1. Consider the
following multiobjective optimization problem minw{F(x): x ∈ Ω}, which has x∗ =
1 as the unique solution. In fact, F(1) ≺ F(x), for all x ∈ R++. Hence, we obtain that
−∞ < inf x∈R f j (x), for j ∈ I . Since 0 < ε < ȳ, we conclude that SF (F(ȳ)) ⊂ Ω

and SF (F(ȳ)) �= ∅. Therefore, taking into account that Ωk is convex, F satisfies all
the assumptions of Theorem 1. We are going to prove that F also satisfies (H1), (H2),
and (H3). Since F(1) ≺ F(x), for all x ∈ R++, we conclude that F satisfies (H1). Let
c = f2(2) and note that (0.6, 2] ⊂ SF (ce) � [0.5, 2.7] ⊂ SF (F(ȳ)). But this tells
us, in particular, that F satisfies (H2). Finally, we are going to prove that F satisfies
(H3). First, note that SF (F(ȳ))\SF (ce) ⊂ [0.47, 0.57) ∪ (2, 2.72]. For each point
z = (z1, z2) ∈ R

2+\{0} with ‖z‖1 := z1 + z2 = 1, take x ∈ SF (F(ȳ))\SF (ce) and
wz(x) ∈ ∂◦ (〈F(·), z〉) (x) + NΩk (x). Hence, there exists v ∈ NΩk (x), such that

wz(x) = z1ϕ1(x) + z2ϕ2(x) + v, (13)

where ϕ1(x) := (1/x − 1/x2) and ϕ2(x) := (1/
√

x − 1/x2). First, we assume that
x ∈ [0.47, 0.57). In this case, NΩk (x) ⊂ R− and, using the above equality, we obtain
wz ≤ z1ϕ1(x)+ z2ϕ2(x). Since (x − 1)/x2 < −0, 4/(0, 47)2 and (x2 −√

x)/x3/2 <

−0, 2/(0, 47)3/2, we have wz(x) ≤ z1ϕ1(x) + z2ϕ2(x) < −0, 4/(0, 47)2z1 −
0, 2/(0, 47)3/2z2. Then, for all wz(x) ∈ ∂◦ (〈F(·), z〉) (x) + NΩk (x),

|wz(x)| >
0, 4

(0, 47)2
z1 + 0, 27

(0, 47)3/2
z2 > ‖z‖1 0, 27

(0, 47)3/2
= 0, 27

(0, 47)3/2
, (14)

for x ∈ [0.47, 0.57). Assuming that x ∈ (2, 2.72], it follows that NΩk (x) ⊂ R+.
Hence, it follows from (13) that wz(x) ≥ z1ϕ1(x) + z2ϕ2(x). From (x − 1)/x2 >

1/(2, 72)2 and
(
1/

√
x − 1/x2

)
> 2, 3/(2, 72)3/2 we obtain wz(x) ≥ z1ϕ1(x) +

z2ϕ2(x) > 1/(2, 72)2z1+2, 3/(2, 72)3/2z2.Thus, for allwz(x) ∈ ∂◦ (〈F(·), z〉) (x)+
NΩk (x),

|wz(x)| >
1

(2, 72)2
z1 + 2, 3

(2, 72)3/2
z2 > ‖z‖1 1

(2, 72)2
= 1

(2, 72)2
, x ∈ (2, 2.72].

Since SF (F(ȳ))\SF (ce) ⊂ [0.47, 0.57) ∪ (2, 2.72], combining (14) with the last
inequality, we conclude that F satisfies (H3) with δ = 1/(2, 72)2.
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Lemma 4 Assume that (H1), (a) in (H2), and (H3) hold and λk satisfies (3). Then,
after a finite number of steps the proximal iterates lies in SF (ce), i.e., there exists k0
such that {xk} ⊂ SF (ce), for all k ≥ k0.

Proof Condition (a) in (H2) implies that SF (ce) �= ∅. Suppose, by contradic-
tion, that xk ∈ SF (F(ȳ))\SF (ce) for all k. Let {zk} be a sequence satisfying
(5). Hence, we can combine Lemma 3, Remark 2 and Lemma 1 to obtain 0 ∈
∂◦ (〈

F(·), zk
〉)

(xk+1) + (λk/2)
〈
ek, zk

〉 (
xk+1 − xk

) + NΩk (xk+1), k ≥ 0. Then,
−(λk/2)

〈
ek, zk

〉 (
xk+1 − xk

) ∈ ∂◦ (〈
F(·), zk

〉)
(xk+1) + NΩk (xk+1), for k ≥ 0. As

xk+1 ∈ SF (F(ȳ))\SF (ce), (H3) along with the last inclusion gives us

λk

2

〈
ek, zk

〉 ∥∥∥xk+1 − xk
∥∥∥ > δ, k ≥ 0. (15)

Hence, (λk/2)
〈
ek, zk

〉 ∥∥xk+1 − xk
∥∥2 ≤ ‖F(xk) − F(xk+1)‖ holds, in view of (5)

and (6), and ‖zk‖ = 1, for all k ≥ 0. Thus, from (H1), ‖F(xk) − F(xk+1)‖ → 0,
contradicting (15). ��
Lemma 5 Assume that (H1) and (H2) hold and λk satisfies (3). If xk ∈ SF (ce) for
some k, then {xk} converges to a point x∗ ∈ U∗.

Proof By hypothesis, xk ∈ SF (ce) for some k, i.e., there exists k0 such that F(xk0) �
ce. Hence, the definition of {xk} in (4) implies that {xk} ⊂ SF (ce), for all k ≥ k0.
Therefore, using (3), (H1), and (H2), the result follows by applying [6, Theorem 3.1]
with F0 = F, S = SF (ce), X = R

n, C = R
m+, and using (H1) instead of (A). ��

Theorem 2 Under the conditions (H1), (H2), and (H3), the sequence {xk} gener-
ated by (4) converges to a point x∗ ∈ U∗.

Proof It follows by combination of Lemma 4 with Lemma 5. ��
Remark 5 As the function in Example 3.1 is not convex, the analysis in [6] does not
allow us to conclude that {xk} converges to a minimizer. However, as the function
satisfies (H1) to (H3), Theorem 2 guarantees that {xk} converges.

4 Conclusions

The main contribution of this paper is the extension of the convergence analysis of the
proximal method (4), which has been studied in [6], in order to increase the range of its
applications; seeExample 1. The proximal pointmethod is indeed a conceptual scheme
that transforms a given problem into a sequence of better behaved subproblems, which
has been proven to be an efficient tool in several instances through the methods that
can be derived from it (e.g., Augmented Lagrangians, both classical or generalized).
In this sense, the proximal point method is basic and we expect that the results of the
present paper will become an additional step toward solving general multiobjective
optimization problems. Finally, it is worth noting that in our analysis of the preference
relation was induced by a cone with a nonempty interior. Various vector optimization
problems can be formalized by using convex ordering cones with empty interiors, this
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restriction could open some new perspectives in the point of view of the numerical
methods, see [2,14,18]. We foresee new developments in this direction in the near
future.
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