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Abstract This paper aims at investigating optimality conditions in terms of E-
optimal solution for constrained multi-objective optimization problems in a general
scheme, where E is an improvement set with respect to a nontrivial closed convex
point cone with apex at the origin. In the case where E is not convex, nonlinear vector
regular weak separation functions and scalar weak separation functions are intro-
duced respectively to realize the separation between the two sets in the image space,
and Lagrangian-type optimality conditions are established. These results extend and
improve the convex ones in the literature.

Keywords E-optimal solution · Image space analysis · Nonlinear vector separation ·
Saddle point · Optimality condition

1 Introduction

There are several important solution notions of constrained vector optimization
problems like efficiency, weak efficiency, proper efficiency, strong efficiency, strict
efficiency and ε-efficiency. Chicco et al. [1] unified these classical solution concepts
via a more general solution notion called E-optimal solution, where E is an improve-
ment set with respect to a nontrivial closed convex point cone with apex at the origin
denoted by K (see Definition 2.1).
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The image space analysis (for short, ISA) was initiated in [2], it was later shown
to be a unified scheme for constrained extremum problems, variational inequalities
and any other problems which can be expressed under the form of the impossibility of
a parametric system by Giannessi [3,5]. And the impossibility of such a system was
reduced to the disjunction of two suitable subsets in the image space (for short, IS),
where the two sets are usually denoted byH and Kx̄ .

K and D are nontrivial closed convex point cones with apex at the origin, and
K has nonempty interior. If H is convex like H := R++ × D in [12,13,16] and
H := (K\{0})×D orH := int K ×D in [4,14], scholars have constructed separation
functions concerning the corresponding problems. But in terms of nonconvex H, it
is much difficult to construct a separation function in order to realize the separation
between Kx̄ and H. On one hand, we fail to define the dual cone of E since E may
be not a cone such as E = [0,+∞) × [1,+∞) ∪ [1,+∞) × [0,+∞), this makes
it impossible to use linear scalar separation functions forH := E × D and nonlinear
ones must be employed. On the other hand, we may apply vector separation functions,
even though there have been some results on convex H by employing linear vector
separation functions [4,8,14,15], but how to construct nonlinear vector separation
functions for constrained vector optimization problems still deserves discussion and
is still an aporia.

In this paper, we investigate general constrained multi-objective optimization prob-
lems in the sense of E-optimal solution. We construct the class of vector regular weak
separation functions as well as scalar weak separation functions in a general scheme
and illustrate some specific expressions of nonlinear ones, respectively. Generalized
Lagrangian functions with respect to both nonlinear vector and scalar separation func-
tions are introduced to discuss saddle point properties, namely, the existence of a
saddle point of the corresponding generalized Lagrangian function implies that Kx̄

and H admit a nonlinear separation. Then we use the important properties to derive
Lagrangian-type sufficient optimality conditions.

The rest of this paper are organized as follows. In Sect. 2, we present some basic
notions about E-optimal solution and analyze the general features of image space
approach for constrained multi-objective optimization problems. In Sect. 3, we intro-
duce nonlinear vector regularweak separation functions and establishLagrangian-type
optimality conditions in the sense of vector separation. In Sect. 4, we introduce
nonlinear scalar weak separation functions and establish Lagrangian-type optimal-
ity conditions in terms of scalar separation.

2 Preliminaries

In this section, we recall some notations and concepts which will be used in the
sequel. Let Y be a normed linear space, the closure, the interior, the boundary and the
complement of a set A ⊆ Y are denoted by cl A, int A, bd A and Ac, respectively. For
arbitrary finite dimensional Euclidean space R

m , we denote by 0Rm the zero element
in R

m .
We concentrate on the followingmulti-objective optimization problemswith equal-

ity and inequality constraints:
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(P) min f (x) s.t. x ∈ S := {x ∈ X | g(x) ∈ D},

where X is a nonempty set of R
n , f : X → R

l , g : X → R
p and D =: 0Rm × R

p−m
+ .

Let K ⊆ R
l be a nontrivial closed convex point cone with apex at the origin, we

next state the definition of an improvement set with respect to K .

Definition 2.1 [6] A nonempty set E ⊂ R
l is said to be an improvement set for ≤K

(or an improvement set with respect to K ) if 0Rl /∈ E and E is free disposal, i.e.,
E + K = E . We also call it ≤K -i.s. or i.s. for short if there is no confusion.

An order relation has been introduced in [11], moreover, an order relation is called
a partial order if it is reflexive, transitive and antisymmetric. So K defines a partial
order and E defines an order relation which states

a ≥K b ⇔ a − b ∈ K , ∀a, b ∈ R
l; (1)

a ≥E b ⇔ a − b ∈ E, ∀a, b ∈ R
l . (2)

In fact, the order relation defined by (2) can be regarded as an extension of the partial
order defined by (1) since K\{0Rl } is a special improvement set. Next we introduce
an important nonlinear scalarization function.

Definition 2.2 [9] Let Y be a normed linear space with norm ‖ · ‖. For a set A ⊂ Y ,
let the function �A : Y → R ∪ {±∞} be defined as

�A(y) = dA(y) − dY\A(y),

where dA(y) = infa∈A ‖y − a‖ is the distance function, and d∅(y) = +∞.

Some of its main properties are gathered together in the following proposition.

Proposition 2.1 [17] If the set A is nonempty and A �= Y , then

(i) �A is real-valued;
(ii) if int A �= ∅, then �A(y) < 0 for every y ∈ int A;
(iii) �A(y) = 0 for every y ∈ bd A;
(iv) if int Ac �= ∅, then �A(y) > 0 for every y ∈ int Ac.

Now, we introduce a concept of E-optimal solution for (P).

Definition 2.3 A point ȳ is called a E-optimal point of a nonempty set Q ⊂ R
l if and

only if there exists no y ∈ Q such that

ȳ ≥E y.

x̄ ∈ S is a E-optimal solution of (P) if and only if f (x̄) is a E-optimal point of the set
f (S).

From this definition, we obviously observe that x̄ ∈ S is a E-optimal solution of
(P) if and only if ( f (S) − f (x̄)) ∩ (−E) = ∅, which coincides with Definition 4.1 in
[6]. We obtain some special kinds of solutions by taking various E .
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(i) If E = K\{0Rl }, then E-optimal solution collapses into efficient solution[10];
(ii) If E = int K , then E-optimal solution collapses into weak efficient solution

[10];
(iii) If E = (−K )c, then E-optimal solution collapses into strong solution [10];
(iv) If E = εk0+K with ε > 0 and k0 ∈ K\{0Rl }, then E-optimal solution collapses

into εk0-efficient solution, i.e., approximate solution (see Definition 2.2 in [7]);
(v) If there exists proper convex pointed cone C with K\{0Rl } ⊂ intC such that

( f (S) − f (x̄)) ∩ (−intC) = ∅ and take E = intC , then E-optimal solution
collapses into GHe-proper solution (see Definition 2.4.4 in [11]).

If we introduce the map Ax̄ : X → R
l+p defined by

Ax̄ (x) := ( f (x̄) − f (x), g(x)),

and denote

Kx̄ := {(u, v) ∈ R
l+p | u = f (x̄) − f (x), v = g(x), x ∈ X} = Ax̄ (X),

H =: {(u, v) ∈ R
l+p | u ∈ E, v ∈ D} = E × D,

where Kx̄ is called the image associated with (P), then it is easy to observe that x̄ ∈ S
is a E-optimal solution of (P)⇔ Kx̄ ∩H = ∅. We can realize the disjunction between
Kx̄ and H by proving that they lie in two different level sets defined by a separation
function, respectively. This motivates us to introduce concepts of separation functions
and their level sets.

3 Vector regular weak separation functions

In this section, we investigate nonlinear vector regular weak separation functions con-
cerning E-optimal solution and give concrete examples, then saddle point properties
are discussed and Lagrangian-type optimality conditions are derived. By convention,
we use the notations:

x1 �E x2 ⇔ x1 − x2 /∈ E, ∀x1, x2 ∈ R
l .

Definition 3.1 The class of all the functions ω : R
l+p × � → R

l such that

⋂

π∈�

levEω(·;π) = H

is called the class of vector regular weak separation functions associated with E-
optimal solution, where � is the parameter set and

levEω(·;π) := {(u, v) ∈ R
l+p | ω(u, v;π) ≥E 0Rl }

is E-level set of ω.
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Let T := {T = (T1, T2, . . . , Tl) | Ti is an operator from R
p to R} represent the

set containing all the operators from R
p to R

l , and let O represent the zero operator
in T by convention.

Theorem 3.1 Take {T ε}ε∈� as a subset of T , where � is the parameter set with
ε̄ ∈ � such that T ε̄ = O. Select e ∈ int K. We define ω : R

l+p × � → R
l as

ω(u, v; ε) = u + T εv, where T ε = (T ε
1 , T ε

2 , . . . , T ε
l ) : R

p → R
l satisfies

T εv ≥K 0Rl , ∀v ∈ D, ∀ε ∈ �; (3)

∀λ > 0,∀v /∈ D, ∃ελ,v ∈ � s.t. T ελ,v v ∈ −λe − K . (4)

Then ω is a class of vector regular weak separation functions associated with E-
optimal solution.

Proof From (3), we get

ω(u, v; ε) = u + T εv ∈ E + K = E, ∀(u, v) ∈ E × D, ∀ε ∈ �, (5)

then (5) indicates
⋂

ε∈� levEω(·; ε) ⊇ H. Next we prove the opposite inclusion
relation, ab absurdo, suppose that there exists (ū, v̄) /∈ H such that

ω(ū, v̄; ε) = ū + T ε v̄ ≥E 0Rl , ∀ε ∈ �. (6)

For (ū, v̄) /∈ H, we discuss the following two cases respectively.

Case 1: ū /∈ E , since T ε̄ = O for ε̄ ∈ �, we get ω(ū, v̄; ε̄) = ū + O v̄ = ū /∈ E ,
which is a contradiction with (6).

Case 2: ū ∈ E , but v̄ /∈ D, from (4), ∀λ > 0, there exists ελ,v̄ ∈ � such that
T ελ,v̄ v̄ ∈ −λe − K . If (6) holds, since we can find a sufficient large λ′ such that
(−λ′e − K )

⋂
(−ū + E) = ∅ and T ελ′,v̄ v̄ ∈ −λ′e − K , but there holds T ελ′,v̄ v̄ ∈

(−λ′e−K )
⋂

(−ū+E) since (6) indicates T ελ′,v̄ v̄ ∈ −ū+E , we derive a contradiction.
The proof is completed. ��

The following proposition gives a class of {T ε}ε∈� which satisfy (3) and (4).

Proposition 3.1 Let � be a unbounded set of a finite dimensional Euclidean space
R
q with 0Rq ∈ �. Let e ∈ int K be the same with that in Theorem 3.1. If we take

T εv = ‖ε‖h(v) · e such that h : R
p → R satisfies

h(v) ≥ 0, ∀v ∈ D; (7)

h(v) < 0, ∀v /∈ D, (8)

then {T ε}ε∈� satisfies (3) and (4), where ‖ · ‖ is a norm in R
q .

Proof Since (7) implies T εv = ‖ε‖h(v) · e ∈ K , ∀v ∈ D, ∀ε ∈ �, we conclude that
(3) holds.

∀λ > 0,∀v /∈ D, (8) implies − λ
h(v)

> 0, then, since � is unbounded, there

exists a ελ,v ∈ � such that ‖ελ,v‖ ≥ − λ
h(v)

. Moreover, ‖ελ,v‖ ≥ − λ
h(v)

indicates
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‖ελ,v‖h(v) + λ ≤ 0 due to (8), then we get (‖ελ,v‖h(v) + λ)e ∈ −K . So T ελ,v v =
‖ελ,v‖h(v) · e ∈ −λe − K and (4) holds. ��

There are some concrete expressions of the function h in Proposition 3.1.

(i) h(v) = min{−|v1|,−|v2|, . . . ,−|vm |, vm+1, vm+2, . . . , vp}, where | · | denotes
absolute value of a real number in R;

(ii) h(v) = −∑m
i=1 |vi | + ∑p

j=m+1(v j − |v j |), where | · | is as above;
(iii) h(v) = −δD(v) + ∑p

i=1 vi , where δD represents the indicator function;
(iv) h(v) = −�D(v), where �D(·) is the same with that in Definition 2.2.

Remark 3.1 When K satisfies R
l+ ⊆ K , if we set � = ∏l

i=1 �i , ε =
(ε1, ε2, . . . , εl) ∈ � with εi ∈ �i , take �i = R+, ∀i ∈ {1, 2, . . . , l}, and take
T ε
i : R

p → R as T ε
i v = εi Pi (v) such that each Pi (v) satisfies (7) and (8), then

obviously, ε̄ = (0, 0, . . . , 0) ∈ � satisfies T ε̄ = O , {T ε}ε∈� also satisfies (3) and (4).
Thus, ω(u, v; ε) = u + (ε1P1(v), ε2P2(v), . . . , εl Pl(v)) with ε ∈ � = R

l+ is a class
of vector regular weak separation functions associated with E-optimal solution.

We now introduce the generalized vector Lagrangian function L′ : X × � → R
l

defined by

L′(x, ε) = f (x) − T εg(x),

and a pair (x̄, ε̂) ∈ X × � is said to be a saddle point of L′(x, ε) if and only if

L′(x̄, ε) �E L′(x̄, ε̂) �E L′(x, ε̂), ∀x ∈ X, ∀ε ∈ �. (9)

We first prove a useful inclusion relation which states Ec−K ⊆ Ec before proving
the following theorem, ab absurdo, suppose that there exists x ∈ Ec and k ∈ K such
that x − k ∈ E , then x ∈ k + E ⊂ K + E = E , which contradicts x ∈ Ec.

Theorem 3.2 Suppose x̄ ∈ S and there exists ε̂ ∈ � such that

ω(u, v; ε̂) �E 0Rl , ∀(u, v) ∈ Kx̄ . (10)

Then (x̄, ε̂) is a saddle point of L′(x, ε).
Proof Suppose that there exists ε̂ ∈ � such that (10) holds, that is

f (x̄) − f (x) + T ε̂g(x) �E 0Rl , ∀x ∈ X. (11)

Take x = x̄ in (11), we obtain T ε̂g(x̄) �E 0Rl . By (3), x̄ ∈ S implies T ε̂g(x̄) ≥K 0Rl .
Then,

L′(x̄, ε̂) − L′(x, ε̂) = f (x̄) − f (x) + T ε̂g(x) − T ε̂g(x̄) ∈ Ec − K ⊆ Ec,

so we proved L′(x̄, ε̂) �E L′(x, ε̂), ∀x ∈ X . On the other hand, again by (3), we get
T εg(x̄) ≥K 0Rl , ∀ε ∈ �, then it follows from T ε̂g(x̄) �E 0Rl that

L′(x̄, ε) − L′(x̄, ε̂) = T ε̂g(x̄) − T εg(x̄) ∈ Ec − K ⊆ Ec,
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Nonlinear separation concerning E-optimal solution... 129

so we proved L′(x̄, ε) �E L′(x̄, ε̂), ∀ε ∈ �. ��
If we want to prove the conclusion in the opposite direction of Theorem 3.2, we

need an additional assumption.

Theorem 3.3 If there exists ε̂ ∈ � such that (x̄, ε̂) is a saddle point of L′(x, ε),
suppose that Ec ∩K = {0Rl } or T ε̂g(x̄) = 0Rl is satisfied, then x̄ ∈ S and (10) holds.

Proof If there exists ε̂ ∈ � such that (x̄, ε̂) is a saddle point ofL′(x, ε), then (9) holds.
We prove x̄ ∈ S, ab absurdo, suppose g(x̄) /∈ D, for brevity of notation, we denote
v̄ = g(x̄), then by (4), ∀λ > 0, there exists ελ,v̄ ∈ � such that −T ελ,v̄ v̄ ∈ λe + K ,
so we can find a sufficient large λ′ such that −T ελ′,v̄ v̄ ∈ −T ε̂g(x̄) + E , which is a
contradiction with the first inequality of (9).

Take T ε̄ = O in the first inequality of (9), we have T ε̂g(x̄) �E 0Rl . If Ec ∩ K =
{0Rl } is satisfied, since x̄ ∈ S, we deduce T ε̂g(x̄) = 0Rl by (3). And T ε̂g(x̄) =
0Rl holds naturally if the second assumption of the theorem is satisfied. Moreover,
T ε̂g(x̄) = 0Rl and the second inequality of (9) imply that (10) holds. ��

Then, Lagrangian-type optimality conditions for (P) related to E-optimal solution
in the sense of vector separation are established.

Theorem 3.4 If there exists ε̂ ∈ � such that (x̄, ε̂) is a saddle point of L′(x, ε),
suppose that Ec ∩ K = {0Rl } or T ε̂g(x̄) = 0Rl is satisfied, then x̄ is a E-optimal
solution of (P).

Proof Theorems 3.1 and 3.3 derive Kx̄ ∩ H = ∅ and x̄ ∈ S, so we obtain that x̄ is a
E-optimal solution of (P).

We give an example where E is neither a cone nor a convex set to demonstrate
Theorem 3.4.

Example 3.1 In problem (P), take n = l = 2, m = 1, p = 2 and X = [0, 2]× [0, 2],
then D = 0×R+. For x = (x1, x2) ∈ X , set f (x) = x , g1(x) = x2−x1 = 0, g2(x) =
x1 − x22 + 1 ≥ 0. Let K = R

2+ and E = [0,+∞) × [1,+∞) ∪ [1,+∞) × [0,+∞).

By Remark 3.1, we use the separation function ω(u, v; ε) = u + T εv with ε ∈
� = R

2+, where T εv = (ε1P1(v), ε2P2(v)). We take P1(v) = P2(v) = −�D(v).
For x̄ ∈ {(a, a) | 0 ≤ a < 1} and ε̂ = (1, 1), let us very that (x̄, ε̂) is a saddle
point of L′(x, ε). We calculate g(x̄) = (0, a − a2 + 1) and −�D(g(x̄)) = 0 since
a − a2 + 1 > 0 for 0 ≤ a < 1, then we get T εg(x̄) = 0R2 , ∀ε ∈ R

2+, so

L′(x̄, ε) − L′(x̄, ε̂) = 0R2 /∈ E, ∀ε ∈ R
2+. (12)

Since −�D(v) < 0, ∀v /∈ D and −�D(v) = 0, ∀v ∈ D, we obtain

L′(x̄, ε̂) − L′(x, ε̂) = (a − x1 − �D(g(x)), a − x2 − �D(g(x))) /∈ E, ∀x ∈ X.

(13)

(12) and (13) imply that (9) holds.Moreover, we have T ε̂g(x̄) = 0R2 , then byTheorem
3.4, {(a, a) | 0 ≤ a < 1} are E-optimal solutions of this problem. Indeed, {(a, a) | 0 ≤
a < 1} to be E-optimal solutions can be obtained by direct calculation.
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Next, we demonstrate that the conditions used in Theorem 3.4 could not be further
simplified.

Example 3.2 In problem (P), take n = l = 2, m = 0, p = 2 and X = (0, 1]×[0, 1],
then D = R

2+. For x = (x1, x2) ∈ X , set f (x) = x , g1(x) = x1−x2+ 1
2 ≥ 0, g2(x) =

x2 − x1 + 1
2 ≥ 0. Let K = R

2+ and E = [0,+∞) × [1,+∞) ∪ [1,+∞) × [0,+∞).

By Remark 3.1, we use the separation function ω(u, v; ε) = u + T εv with ε ∈
� = R

2+, where T εv = (ε1P1(v), ε2P2(v)). We take P1(v) = P2(v) = min{v1, v2}.
Obviously, the feasible point x̄ = (1, 1) is not a E-optimal solution. We calculate
f (x̄) = (1, 1), g(x̄) = ( 12 ,

1
2 ) and

L′(x̄, ε) − L′(x̄, ε̂) =
(
1

2
(ε̂1 − ε1),

1

2
(ε̂2 − ε2)

)
. (14)

Moreover, we calculate

f (x) − T ε̂g(x) =
{

(x1 − ε̂1g1(x), x2 − ε̂2g1(x)) if x1 ≤ x2,
(x1 − ε̂1g2(x), x2 − ε̂2g2(x)) if x1 > x2.

(15)

For every ε̂ ∈ R
2+ satisfying ε̂1 ≥ 2 or ε̂2 ≥ 2, (x̄, ε̂) could not be a saddle point

of L′(x, ε). Indeed, there exists ε = (0, 0) ∈ R
2+ such that L′(x̄, ε) − L′(x̄, ε̂) =

( 12 ε̂1,
1
2 ε̂2) ∈ E by (14).

For every ε̂ ∈ [0, 2) × {0}, (x̄, ε̂) could not be a saddle point of L′(x, ε). Indeed,
there exists x = ( 1

1+ε̂1
, 0) ∈ X such that L′(x̄, ε̂) − L′(x, ε̂) = (0, 1) ∈ E by (15).

For every ε̂ ∈ [0, 2) × (0, 2), we very that (x̄, ε̂) is a saddle point of L′(x, ε).
Indeed, (14) implies L′(x̄, ε) − L′(x̄, ε̂) /∈ E, ∀ε ∈ R

2+ since 1
2 (ε̂1 − ε1) < 1 and

1
2 (ε̂2 − ε2) < 1. Then L′(x̄, ε) �E L′(x̄, ε̂), ∀ε ∈ R

2+. On the other hand, for x ∈ X
satisfying x1 ≤ x2, we have 0 < x1 ≤ 1, 0 < x2 ≤ 1 and

L′(x̄, ε̂) − L′(x, ε̂) = (1 − x1 + ε̂1(x1 − x2), 1 − x2 + ε̂2(x1 − x2)) /∈ E .

For x ∈ X satisfying x1 > x2, we have 0 < x1 ≤ 1, 0 ≤ x2 < 1 and

L′(x̄, ε̂) − L′(x, ε̂) = (1 − x1 + ε̂1(x2 − x1), 1 − x2 + ε̂2(x2 − x1)) /∈ E .

Thus, L′(x̄, ε̂) �E L′(x, ε̂), ∀x ∈ X . However, Ec ∩ K �= {0R2} and T ε̂g(x̄) �= 0R2

due to T ε̂g(x̄) = ( 12 ε̂1,
1
2 ε̂2) and ε̂ ∈ [0, 2) × (0, 2). This demonstrates that the

conditions used in Theorem 3.4 could not be further simplified to ensure x̄ being a
E-optimal solution.

4 Scalar weak separation functions

In this section, we introduce nonlinear scalar weak separation functions related to
E-optimal solution and discuss Lagrangian-type optimality conditions.
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Nonlinear separation concerning E-optimal solution... 131

Definition 4.1 The class of all the functions ω : R
l+p × � → R such that

(i) lev≥0ω(·;π) ⊃ H, ∀π ∈ �;
(ii)

⋂
π∈� lev>0ω(·;π) ⊂ H

is called the class of scalar weak separation functions associated with E-optimal
solution, where � is the parameter set, and

lev≥0ω(·;π) := {(u, v) ∈ R
l+p | ω(u, v;π) ≥ 0} (16)

is nonnegative level set of w, if we substitute > for ≥ in (16), it is called positive level
set.

We give a special class of nonlinear scalar weak separation functions.

Theorem 4.1 We select a family of sets {Eξ }ξ∈� such that

⋂
ξ∈�

Eξ = E;
E ⊆ Eξ , ∀ξ ∈ �. (17)

Let the parameter set� = �×
with (ξ, γ ) ∈ �×
.Wedefineω : R
l+p×�×
 → R

as ω(u, v; ξ, γ ) = −�Eξ (u) + ω(v; γ ), where ω : R
p × 
 → R satisfies

∀v ∈ D, ∃γv ∈ 
 s.t. ω(v; γv) = min
γ∈


ω(v; γ ) = 0; (18)

∀v /∈ D, inf
γ∈


ω(v; γ ) = −∞. (19)

Then ω is a class of scalar weak separation functions associated with E-optimal
solution.

Proof From (17) and Proposition 2.1, we obtain −�Eξ (u) ≥ 0, ∀u ∈ E, ∀ξ ∈ �.
And we get ω(v; γ ) ≥ 0, ∀v ∈ D, ∀γ ∈ 
 because of (18). Then it follows that
lev≥0ω(·;π) ⊃ H, ∀π ∈ �. In order to prove

⋂
π∈� lev>0ω(·;π) ⊂ H, we suppose

that there exists (ū, v̄) /∈ H such that

ω(ū, v̄; ξ, γ ) > 0, ∀(ξ, γ ) ∈ � × 
. (20)

For (ū, v̄) /∈ H, we discuss the following two cases respectively.

Case 1: ū /∈ E , then ū /∈ E = ⋂
ξ∈� Eξ , this implies that there exists ξ0 ∈ � such

that ū /∈ Eξ0 , so we conclude −�Eξ0
(ū) ≤ 0 from Proposition 2.1. If v̄ ∈ D, by (18),

there exists γv̄ ∈ 
 such that ω(v̄; γv̄) = 0. If v̄ /∈ D, from (19), there exists γv̄ ∈ 


such that ω(v̄; γv̄) < 0. So we conclude ω(ū, v̄; ξ0, γv̄) = −�Eξ0
(ū)+ω(v̄; γv̄) ≤ 0,

which contradicts (20).

Case 2: ū ∈ E , but v̄ /∈ D. (19) implies that for an arbitrary real number x ≥ 0, we
can find a γx ∈ 
 such that ω(v̄; γx ) < −x . So for a fixed ξ0 ∈ �, we can find a
γ̄ ∈ 
 such that ω(ū, v̄; ξ0, γ̄ ) = −�Eξ0

(ū) + ω(v̄; γ̄ ) < 0 since ū ∈ E indicates
−�Eξ0

(ū) ≥ 0, which is a contradiction with (20). We complete the proof. ��
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The following proposition gives a class of ω(v; γ ) which satisfy (18) and (19).

Proposition 4.1 Let 
 be a unbounded set of a finite dimensional Euclidean space
R
q with 0Rq ∈ 
. Take ω(v; γ ) = ‖γ ‖h(v), where h(v) is the same with that in

Proposition 3.1 and ‖ · ‖ is a norm in R
q . Then ω(v; γ ) satisfies (18) and (19).

Proof From (7), we have ω(v; γ ) = ‖γ ‖h(v) ≥ 0, ∀v ∈ D, ∀γ ∈ 
. Moreover,
∀v ∈ D, there exists γv = 0Rq ∈ 
 such that ω(v; γv) = ‖0Rq‖h(v) = 0. So (18)
holds.

Since 
 is unbounded, there exists a sequence {γi }∞i=1 of 
 such that ‖γi‖ → +∞
as i → ∞. Then we get from (8) that ∀v /∈ D, ω(v; γi ) = ‖γi‖h(v) → −∞ as
i → ∞. So (19) holds. ��

Moreover, we give some other examples of ω(v; γ ) satisfying (18) and (19).

(i) ω(v; γ ) = 〈γ, v〉 with γ ∈ D∗, where D∗ := {z ∈ R
p | 〈z, y〉 ≥ 0, ∀y ∈ D} is

the dual cone or positive polar cone of D;
(ii) ω(v; γ ) = −�R+(〈γ, v〉) with γ ∈ D∗, where D∗ is as above;
(iii) ω(v; γ ) = supz∈v−D[〈γ, z〉 − cσ(z)] with γ ∈ R

p, where c > 0 is a real
constant and the function σ : R

p → R is such that argminz∈Rp σ(z) =
0Rp , and σ(0Rp ) = 0.

The following concept of separation is useful to establish optimality conditions.

Definition 4.2 The sets Kx̄ and H admit a nonlinear separation if and only if there
exists (ξ0, γ0) ∈ � × 
 such that

ω(u, v; ξ0, γ0) = −�Eξ0
(u) + ω(v; γ0) ≤ 0, ∀(u, v) ∈ Kx̄ . (21)

Now, we establish a preliminary sufficient optimality condition for (P).

Theorem 4.2 If there exists (ξ0, γ0) ∈ � × 
 such that Kx̄ andH admit a nonlinear
separation, suppose E ⊆ int Eξ0 , then x̄ ∈ S is a E-optimal solution of (P).

Proof If there exists (ξ0, γ0) ∈ �×
 such thatKx̄ andH admit a nonlinear separation,
then (21) holds. FromTheorem 4.1, we know thatω is a class of scalar weak separation
functions associated with E-optimal solution, so we have

ω(u, v; ξ0, γ0) ≥ 0, ∀(u, v) ∈ H. (22)

Since E ⊆ int Eξ0 , we get −�Eξ0
(u) > 0, ∀u ∈ E due to Proposition 2.1, then we

obtain that (22) holds for strict inequality. This combined with (21) impliesKx̄ ∩H =
∅, which derives that x̄ ∈ S is a E-optimal solution of (P).

For a given ξ0 ∈ �, we introduce the generalized scalar Lagrangian function L :
X × 
 → R defined by

L(x̄, x; ξ0, γ ) = �Eξ0
( f (x̄) − f (x)) − ω(g(x); γ ),

and a pair (x̄, γ0) ∈ X × 
 is called a saddle point of L(x̄, x; ξ0, γ ) if and only if

L(x̄, x̄; ξ0, γ ) ≤ L(x̄, x̄; ξ0, γ0) ≤ L(x̄, x; ξ0, γ0), ∀x ∈ X, ∀γ ∈ 
. (23)
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Theorem 4.3 If there exists (ξ0, γ0) ∈ � × 
 such that (x̄, γ0) is a saddle point of
L(x̄, x; ξ0, γ ), suppose �Eξ0

(0Rl ) ≥ 0, then Kx̄ andH admit a nonlinear separation
and x̄ ∈ S.

Proof If there exists (ξ0, γ0) ∈ � × 
 such that (x̄, γ0) is a saddle point of
L(x̄, x; ξ0, γ ), then (23) holds. We state x̄ ∈ S, ab absurdo, suppose g(x̄) /∈ D,
then (19) indicates that there exists γ̄ ∈ 
 such that ω(g(x̄); γ̄ ) → −∞, which is a
contradiction with the first inequality of (23).

For simplicity, we denote v̄ = g(x̄). Since x̄ ∈ S, we get from (18) that
ω(g(x̄); γ0) ≥ 0 and that there exists γv̄ ∈ 
 such that ω(g(x̄); γv̄) = 0. Take
γ = γv̄ in the first inequality of (23), we obtain ω(g(x̄); γ0) ≤ 0. So we conclude
ω(g(x̄); γ0) = 0.Combiningω(g(x̄); γ0) = 0,�Eξ0

(0Rl ) ≥ 0 and the second inequal-
ity of (23), we obtain (21), the proof is completed. ��

Then, Theorems 4.2 and 4.3 deduce Lagrangian-type sufficient optimality condi-
tions for (P) related to E-optimal solution in terms of scalar separation.

Theorem 4.4 If there exists (ξ0, γ0) ∈ � × 
 such that (x̄, γ0) is a saddle point
of L(x̄, x; ξ0, γ ), suppose E ⊆ int Eξ0 and �Eξ0

(0Rl ) ≥ 0, then x̄ is a E-optimal
solution of (P).

We give an example where E is neither a cone nor a convex set to demonstrate
Theorem 4.4.

Example 4.1 In problem (P), take n = l = 2, m = 0, p = 2 and X = [−1, 1] ×
[0, 1], then D = R

2+. For x = (x1, x2) ∈ X , set f (x) = x , g1(x) = x2 + x1 ≥
0, g2(x) = x2 − x1 + 1

2 ≥ 0. Let K = R
2+ and E = (−1,+∞) × (0,+∞) ∪

{(x1, x2) | − x1 < x2 ≤ 0}.
We use the separation function in Theorem 4.1. Let � = {ξ} and Eξ = E . According
to Proposition 4.1, we take ω(v; γ ) = |γ |h(v) with γ ∈ 
 = R+, where h(v) =
v1 − |v1| + v2 − |v2|. For x̄ = (0, 0), we have g(x̄) = (0, 1

2 ) and h(g(x̄)) = 0.

For every γ0 ≥
√
2
4 , let us very that (x̄, γ0) is a saddle point of L(x̄, x; ξ, γ ). By

h(g(x̄)) = 0, we obtain L(x̄, x̄; ξ, γ ) ≤ L(x̄, x̄; ξ, γ0), ∀γ ∈ 
. When x ∈ X
satisfying g1(x) = x2 + x1 ≥ 0, then f (x̄)− f (x) ∈ (Eξ )

c. Since h(v) < 0, ∀v /∈ D
and h(v) = 0, ∀v ∈ D, we get

L(x̄, x; ξ, γ0) = �Eξ ( f (x̄) − f (x)) − |γ0|h(g(x)) ≥ 0 = L(x̄, x̄; ξ, γ0). (24)

When x ∈ X satisfying g1(x) = x2 + x1 < 0, then g2(x) = x2 − x1 + 1
2 > 0. So

γ0 ≥
√
2
4 implies

L(x̄, x; ξ, γ0) = �Eξ ( f (x̄) − f (x)) − |γ0|h(g(x)) =
√
2

2
(x1 + x2) − 2γ0(x1 + x2)

=
(√

2

2
− 2γ0

)
(x1 + x2) ≥ 0 = L(x̄, x̄; ξ, γ0). (25)
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(24) and (25) implyL(x̄, x̄; ξ, γ0) ≤ L(x̄, x; ξ, γ0), ∀x ∈ X .Moreover, E ⊆ int E =
int Eξ and�Eξ (0R2) = 0 ≥ 0, then byTheorem4.4, x̄ = (0, 0) is a E-optimal solution
of this problem. Indeed, x̄ = (0, 0) to be a E-optimal solution can be obtained by
direct calculation.

Next, we demonstrate that the condition E ⊆ int Eξ0 in Theorem 4.4 is not redun-
dant.

Example 4.2 In problem (P), take n = l = 2, m = 0, p = 2 and X = [−1, 1] ×
[0, 1], then D = R

2+. For x = (x1, x2) ∈ X , set f (x) = x , g1(x) = x2 + x1 ≥
0, g2(x) = x2 − x1 + 1

2 ≥ 0. Let K = R
2+ and E = (−1,+∞) × (0,+∞) ∪

{(x1, x2) | − x1 ≤ x2 ≤ 0}\{0R2}.
We use the separation function in Theorem 4.1. Let � = {ξ} and Eξ = E . According
to Proposition 4.1, we take ω(v; γ ) = |γ |h(v) with γ ∈ 
 = R+, where h(v) =
v1 − |v1| + v2 − |v2|. Obviously, the feasible point x̄ = (0, 0) is not a E-optimal
solution.

For every γ0 ∈ [0,
√
2
4 ), (x̄, γ0) could not be a saddle point of L(x̄, x; ξ, γ ).

Indeed, there exists x = (−1, 0) ∈ X such that L(x̄, x; ξ, γ0) = −
√
2
2 + 2γ0 <

0 = L(x̄, x̄; ξ, γ0).

For every γ0 ≥
√
2
4 , by using the same technique with that in Example 4.1, we very

that (x̄, γ0) is a saddle point of L(x̄, x; ξ, γ ). Also, �Eξ (0R2) = 0 ≥ 0. However,
E � int E = int Eξ since E is not open. This demonstrates that the condition E ⊆
int Eξ0 in Theorem 4.4 is not redundant to ensure x̄ being a E-optimal solution.

At last, we demonstrate that the condition �Eξ0
(0Rl ) ≥ 0 in Theorem 4.4 is not

redundant.

Example 4.3 In problem (P), take n = l = 2, m = 0, p = 2, then D = R
2+. Take

X = B((0, 1), 1) := {(x1, x2) | x21 + (x2 − 1)2 ≤ 1}. For x = (x1, x2) ∈ X , set
f (x) = x , g1(x) = x1 − x2 + 1 ≥ 0, g2(x) = −2x1 − x2 + 2 ≥ 0. Let K = R

2+ and
E = {(x1, x2) | x2 ≥ 0.1} ∪ {(x1, x2) | x2 ≥ −x1 + 0.1}.
We use the separation function in Theorem 4.1. Let {Eξn }ξn∈� with � = {ξn}∞n=1
satisfy

Eξn =
{
(x1, x2) | x2 > 0.1 − 2

n

}
∪

{
(x1, x2) | x2 > −x1 + 0.1 − 2

n

}
.

According to Proposition 4.1, we take ω(v; γ ) = |γ |h(v) with γ ∈ 
 = R+, where
h(v) = v1−|v1|+v2−|v2|. Obviously, the feasible point x̄ = (0, 0) is not a E-optimal
solution. We calculate g(x̄) = (1, 2) and h(g(x̄)) = 0.

For every n ≥ 20 and every γ0 ∈ 
, (x̄, γ0) could not be a saddle point of

L(x̄, x; ξn, γ ). Indeed, there exists x = (−
√
2
2 , 1 −

√
2
2 ) ∈ X satisfying −x ∈ int Eξn

due to 0.1 − 2
n <

√
2 − 1. But 0R2 ∈ (Eξn )

c because of 0.1 − 2
n ≥ 0. So, we

obtain

L(x̄, x̄; ξn, γ0) = �Eξn
(0R2) ≥ 0 > �Eξn

(−x) = L(x̄, x; ξn, γ0).
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For every 2 ≤ n < 20 and every γ0 ∈ 
, (x̄, γ0) could not be a saddle point of

L(x̄, x; ξn, γ ). Indeed, since 0 > 0.1− 2
n > −1, there exists x = (−

√
2
2 , 1−

√
2
2 ) ∈ X

such that

L(x̄, x̄; ξn, γ0) = �Eξn
(0R2) = 0.1 − 2

n
,

L(x̄, x; ξn, γ0) = �Eξn
(−x) = −1 +

√
2

2

(
1.1 − 2

n

)
.

Since 2 ≤ n, we have L(x̄, x̄; ξn, γ0) − L(x̄, x; ξn, γ0) = (1.1 − 2
n )(1 −

√
2
2 ) > 0.

For n = 1 and every γ0 ∈ 
, we very that (x̄, γ0) is a saddle point ofL(x̄, x; ξ1, γ ).
Indeed, since 0.1 − 2

1 = −1.9 < −1 and h(g(x)) ≤ 0, ∀x ∈ X , we get ∀x ∈ X ,

L(x̄, x; ξ1, γ0) = �Eξ1
(−x) − |γ0|h(g(x)) ≥ −1.9 = �Eξ1

(0R2) = L(x̄, x̄; ξ1, γ0).

From h(g(x̄)) = 0, we obtain L(x̄, x̄; ξ1, γ ) ≤ L(x̄, x̄; ξ1, γ0), ∀γ ∈ 
.
Also, E ⊆ int Eξ1 . However, �Eξ1

(0R2) = −1.9 < 0. This demonstrates that
the condition �Eξ0

(0Rl ) ≥ 0 in Theorem 4.4 is not redundant to ensure x̄ being a
E-optimal solution.

Examples 4.2 and 4.3 together demonstrate that the conditions used in Theorem
4.4 could not be further simplified.
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