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Abstract Spectrum reservation strategy is an effective technology for conserving
communication resources in Cognitive Radio Networks. In order to better adapt to
changes of the system load, we present an adaptive control approach to determine the
reservation ratio of the licensed spectrum for secondary users andpropose a novel adap-
tive spectrum reservation strategy.We then establish a three-dimensional discrete time
Markov Chain model to capture the stochastic behavior of users. By using a method
similar to that of the matrix geometric solution, we obtain the steady-state proba-
bility distribution for the system model, and derive the formulas for some required
performance measures of two types of users. Numerical experiments and simulation
experiments indicate that the system performance is sensitive to system parameters
like the adaptive control factor and the admission threshold. Finally, we construct a
system cost function to balance different performancemeasures, and present an intelli-
gent searching algorithm to optimize the system parameters with the global minimum
system cost.
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1 Introduction

In the current communication resource allocation framework, the demand for efficient
radio spectrum is increasing rapidly with continuing growth of wireless application.
Most spectrum bands have already been exclusively allocated to licensed service
providers [1], and the remaining wireless spectrum suitable for wireless communi-
cation is being exhausted. In order to improve the spectrum utilization and cope with
the immense popularity of wireless devices, the concept of cognitive radio networks
(CRNs) emerged [2]. In CRNs, secondary users (SUs) opportunistically exploit the
spectrum unused by primary users (PUs) [3,4]. The design of spectrum allocation
strategy is a hot topic in the field of wireless communications [5,6].

In CRNs with multiple channels, in order to improve the utilization of the spec-
trum hole, channel bonding technology has been investigated, where contiguous idle
channels are bonded as one logical channel for SUs [7]. Channel aggregate technol-
ogy has also been proposed, where non-contiguous idle channels can be aggregated
as one logical channel for SUs or PUs [8,9]. Mixed aggregate/bonding technology
that takes channel handoff into account has been investigated in [10]. Considering
the low arrival rate of PUs, many studies have also researched spectrum reservation
strategy. With spectrum reservation strategy, part of the licensed spectrum is reserved
for SUs, and the remaining spectrum is used by PUs with preemptive priority and used
by SUs opportunistically. This method can decrease handoff and lower interruption
probability of SUs so as to enhance the system throughput [11]. One study by [12]
examined trading off the forced termination probability and the blocking probability
against the number of reserved channels. However, this study ignored the retrial of
the SUs interrupted by PUs. In [13], a finite buffer capacity and user impatience were
considered in spectrum reservation strategy, but the issue that how to reduce the SU’s
interference with PUs was not mentioned.

We note that reserving a fixed ratio of the licensed spectrum for SUs is relatively
conservative.On the one hand, an overly high arrival rate of PUswill lead to an increase
in average latency of PUs, and the quality of service (QoS) for PUs will go down. On
the other hand, a too low arrival rate of PUs will cause a great waste of spectrum
resources. According to the change in the spectrum environment, it is necessary to
adjust the reservation ratio of the licensed spectrum adaptively for SUs. In addition,
in CRNs, SUs have cognition, so the SUs interrupted by PUs can return to the buffer
to wait for future transmission on the original spectrum. Furthermore, how to control
the SU’s interference with PUs is also an significant problem to be solved in spectrum
reservation strategy.

To overcome the limitations of previous works, we suggest a novel approach to
adjust the reservation ratio of the licensed spectrum for SUs with respect to spec-
trum reservation strategy. In addition, in order to reduce SU’s interference with
PUs, we also set an admission threshold for SUs. The proposed adaptive spectrum
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reservation strategy is more flexible than the conventional strategy. Aiming at math-
ematically evaluating and optimizing the spectrum reservation strategy proposed in
this paper, we establish a system cost function. The system optimization will involve
complicated nonlinear equations and nonlinear optimization problems, and the con-
ventional optimization methods, such as the steepest descent method or Newton’s
method, are inappropriate. We therefore turn to intelligent optimization algorithms
with a strong global convergence ability. On the basis of a Teaching-learning-based
Optimization (TLBO) idea, we give an intelligent algorithm to globally optimize
the system parameters in terms of the adaptive control factor and the admission
threshold.

The rest of this paper is organized as follows: In Sect. 2, we present an adaptive
control approach, and propose a novel spectrum reservation strategy. In Sect. 3, we
build a three-dimensional discrete time Markov Chain model, and obtain the steady-
state distribution for the system model by using a matrix geometric solution method.
In Sect. 4, we derive the formulas for performance measures, and emphatically dis-
cuss the influences of the adaptive control factor and the admission threshold on the
system performance using numerical results and simulation experiments. In Sect. 5,
considering the tradeoff between different performance measures, we build a system
cost function, then present an intelligent searching algorithm to globally optimize the
system parameters in terms of the adaptive control factor and the admission threshold.
The paper is concluded in Sect. 6.

2 A novel spectrum reservation strategy

We consider a licensed spectrum in CRNs. In such networks, the licensed spectrum
is separated into two logical channels, namely the reserved channel and the shared
channel, respectively. In this paper, we assume that the reserved channel is only used
by SUs, and the shared channel is used by two types of users, namely PUs and SUs.
PUs have preemptive priority to use the shared channel and can reclaim the shared
channel at any time, while SUs use the shared channel opportunistically.

The working principle for the proposed strategy is shown in Fig. 1.

Interrupted SU returns to buffer

SU

PU

SU completes transmission 

SU accesses to reserved channel  

PU is blocked  

F

H

Shared
Channel 

Reserved
Channel

SU completes transmission 

SU accesses to shared  channel 
(If the number of SUs is greater than H )

PU completes transmission PU accesses to shared  channel  

Fig. 1 Adaptive spectrum reservation strategy
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As shown in Fig. 1, we also assume the following:

(1) Once a PU arrives at the system, the transmission of the SU on the shared chan-
nel is forcibly interrupted, and the terminated SU returns to the buffer set for
SUs (called the SU’s buffer). We assume that the capacity of the SU’s buffer is
infinite.

(2) Considering the low arrival rate of PUs, a buffer (called the PU’s buffer) with a
finite capacity F(F ≥ 0) is set for PUs. When a PU arrives at the system, if the
shared channel is occupied by a PU and the PU’s buffer is full, the newly arriving
PU will be blocked.

(3) In order to reduce SU’s interference with PUs, we set an admission threshold
H(H ≥ 0) for SUs. That is to say, if the number of SUs waiting in the SU’s buffer
is not greater than H , the SU queuing at the head of the SU’s buffer can not access
idle shared channel. H is a system parameter.

(4) An SU waiting in the SU’s buffer prefers to occupy the idle reserved channel over
the idle shared channel.

(5) For the sake of clarity, the SUs that are interrupted by PUs and return to the SU’s
buffer are termed retrial SUs. The retrial SU has a higher priority than both the
newly arriving SU and all the SUs waiting in the SU’s buffer. That is to say, a
retrial SUwill queue at the head of the SU’s buffer towait for transmission service.
In addition, the transmission of two types of users is supposed to follow a First
Come First Service (FCFS) discipline.

In order to describe the strategy more clearly, the ratio of the reserved channel’s
bandwidth to the total licensed spectrum’s bandwidth is called the aside spectrum
ratio θ (0 ≤ θ ≤ 1). It is obvious the aside spectrum ratio θ may affect the blocking
rate of PUs, the interruption rate of SUs and the average latency for the two types of
users.

As usual, in order to ensure the QoS of users and achieve system stability, a higher
arrival rate of users requires a greater service rate. With our proposed spectrum reser-
vation strategy, a too small aside spectrum ratio θ will lead to a strong interference
with PUs; Contrary to this, a too large aside spectrum ratio θ will lead to a decrease in
the QoS of the PUs. Considering both the priority of the PUs, and the need to adapt to
the system load, we present an adaptive control approach for the setting aside spectrum
ratio θ as follows:

θ = λsu

λsu + Cλpu
(1)

where C is the adaptive control factor, λsu (λpu) is the arrival rate of SUs (PUs).
Because the aside spectrum ratio θ cannot be greater than 1, the adaptiv control factor
C ≥ 0. Especially, the adaptive control factor C = 0 means that the SUs can occupy
the whole licensed spectrum.

Based on Eq. (1), we know that the aside spectrum ratio θ decreases as the arrival
rate λpu of PUs increases, and increases as the arrival rate λsu of SUs increases. This
control approach is obviously more flexible than that with a fixed aside spectrum ratio.
We call this spectrum strategy the adaptive spectrum reservation strategy.
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3 System model and model analysis

3.1 System model

In this paper, we assume that the shared channel and the reserved channel act as two
servers, that PUs and SUs as two types of customers, and the time axis is slotted.
We assume that the arriving intervals for these two types of users are independent
random variables. The inter-arrival times of SUs and PUs are supposed to follow
geometric distributions with parameters λsu (0 < λsu < 1, λ̄su = 1 − λsu) and
λpu (0 < λsu < 1, λ̄pu = 1 − λpu), respectively. The service times on the shared
channel and the reserved channel are geometrically distributed with service rates μsh

(0 < μsh < 1, μ̄sh = 1 − μsh) and μre (0 < μre < 1, μ̄re = 1 − μre), respectively.
We also assume that the system is an early arrival system (EAS) in this paper.

It is well known that if the Signal to Noise Ratio (SNR) in a channel is fixed, the
channel capacity increases linearly with channel bandwidth [14]. We further assume
that if the shared channel and the reserved channel are homogeneous and have the
same SNR, then the service rate μsh on the shared channel is linearly decreased with
the aside spectrum ratio θ . Conversely, the service μre on the reserved channel is
linearly increased with the aside spectrum ratio θ . Based on the above assumptions,
we obtain μsh = (1 − θ) × μ and μre = θ × μ, where μ is the service rate for the
whole spectrum.

Let Xn = i (i = 0, 1, 2, . . . ) and Yn = j ( j = 0, 1) indicate the total number
of SUs in the system and on the reserved channel, respectively, at the instant n+.
Let Zn = k (k = −1, 0, 1, . . . , F + 1) indicate the state of the shared channel at
instant n+. k = −1 means that the shared channel is occupied by an SU. k ≥ 0
means that there are k PUs in the system at the instant n+. Using a three-dimensional
vector {(Xn,Yn, Zn), n ≥ 1} to record the stochastic behavior of PUs and SUs,
we establish a discrete time Markov Chain model to capture our proposed adaptive
spectrum reservation strategy. The state space of theMarkovChain is given as follows:

� = {(i, j, k) : i = 0, 1, 2, . . . ; j = 0, 1; k = −1, 0, 1, . . . , F + 1}.
Letπi, j,k be the steady-state distribution of the three-dimensional discrete timeMarkov
Chain. πi, j,k is then defined as follows:

πi, j,k = lim
n→∞Pr{Xn = i,Yn = j,Zn = k}, i = 0, 1, 2, . . . ; j = 0, 1;

k = −1, 0, 1, . . . ,F + 1. (2)

3.2 Model analysis

Let pi, j,k;l,m,h = Pr{Xn+1 = l, Yn+1 = m, Zn+1 = h | Xn = i, Yn = j, Zn = k},
(i, j, k) ∈ �, (l,m, h) ∈ �. All the one step transition probabilities from the original
state (i, j, k) to the other possible state (l,m, h) are discussed accordingly as follows:

(1) When a new SU arrives at the system, if the reserved channel is occupied by an
SU, and neither of the SUs in the system departs in one slot, then all the one step
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transition probabilities from the original state (i, j, k) can be written as follows:

pi, j,k;i+1, j,k−2 = λsu λ̄puμ̄reμsh, i ≥ H + 2, j = 1, k = 1. (3)

pi, j,k;i+1, j,k−1 =

⎧
⎪⎨

⎪⎩

λsu λ̄puμ̄re, i ≥ H + 1, j = 1, k = 0

λsu λ̄puμ̄reμsh, 1 ≤ i ≤ H + 1, j = 1, k = 1

λsu λ̄puμ̄reμsh, i ≥ 1, j = 1, 2 ≤ k ≤ F + 1.
(4)

pi, j,k;i+1, j,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λsu λ̄puμ̄reμ̄sh, i ≥ 2, j = 1, k = −1

λsu λ̄puμ̄re, 0 < i ≤ H + 1, j = 1, k = 0

λsu λ̄puμ̄reμ̄sh + λsuλpuμ̄reμsh, i ≥ 1, j = 1, 1 ≤ k ≤ F

λsuμ̄reμ̄sh + λsuλpuμ̄reμsh, i ≥ 1, j = 1, k = F + 1.
(5)

pi, j,k;i+1, j,k+1 =
{

λsuλpuμ̄re, i ≥ 1, j = 1, k = 0

λsuλpuμ̄reμ̄sh, i ≥ 1, j = 1, 1 ≤ k ≤ F.
(6)

pi, j,k;i+1, j,k+2 = λsuλpuμ̄reμ̄sh, i ≥ 2, j = 1, k = −1. (7)

(2) When a new SU arrives at the system, if the reserved channel is idle, and neither
of the SUs in the system departs in one slot, then all the one step transition
probabilities from the original state (i, j, k) can be written as follows:

pi, j,k;i+1, j+1,k−1 = λ̄puλsuμsh, i = 0, j = 0, 1 ≤ k ≤ F + 1. (8)

pi, j,k;i+1, j+1,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̄puλsuμ̄sh, i = 1, j = 0, k = −1

λ̄puλsu, i = 0, j = 0, k = 0

λ̄puλsuμ̄sh + λsuλpuμsh, i = 0, j = 0, 1 ≤ k ≤ F

λsuμ̄sh + λsuλpuμsh, i = 0, j = 0, k = F + 1.
(9)

pi, j,k;i+1, j+1,k+1 = λpuλsu, i = 0, j = 0, 0 ≤ k ≤ F. (10)

pi, j,k;i+1, j+1,k+2 = λpuλsuμ̄sh, i = 1, j = 0, k = −1. (11)

(3) If the number of SUs is fixed in one slot, then all the one step transition probabilities
from the original state (i, j, k) can be written as follows:

pi, j,k;i, j,k−2=λsu λ̄puμreμsh+λ̄su λ̄puμ̄reμsh, i ≥ H+2, j=1, k=1.
(12)
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pi, j,k;i, j,k−1

=

⎧
⎪⎨

⎪⎩

λ̄su λ̄puμ̄reμsh+λsu λ̄puμreμsh, 1≤ i≤H+1, j =1, k=1

λ̄su λ̄puμ̄reμsh + λsu λ̄puμreμsh, i≥1, j =1, 2≤k≤F+1

λ̄su λ̄puμsh, i = 0, j = 0, k ≥ 1.
(13)

pi, j,k;i, j,k+1=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λsu λ̄puμ̄reμsh, 1≤ i ≤H+1, j =1, k=−1

λsuλpuμre + λ̄suλpuμ̄re, 1 ≤ i≤H + 1, j =1, k = 0

λsuλpuμreμ̄sh + λ̄suλpuμ̄reμ̄sh, i ≥ 1, j = 1, 1 ≤ k ≤ F

λ̄suλpuμ̄sh, i = 0, j = 1, k ≥ 1

λ̄suλpu, i = 0, j = 0, k = 0.
(14)

pi, j,k;i, j,k+2

= λpu(λ̄suμ̄reμ̄sh + λsuμreμ̄sh + λsuμ̄reμsh), i ≥ 2, j = 1, k = −1.
(15)

pi, j,k;i, j+1,k+2 = λ̄suλpuμ̄sh, i = 1, j = 0, k = −1. (16)

pi, j,k;i, j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̄su λ̄puμ̄sh, i=1, j=0, k=−1

λ̄su λ̄puμ̄reμ̄sh + λsu λ̄puμreμ̄sh, 1≤ i≤H+1, j =1, k=−1

λ̄su λ̄puμ̄reμ̄sh + λsu λ̄puμreμ̄sh

+λsu λ̄puμ̄reμsh, i ≥H+2, j=1, k=−1

λ̄su λ̄pu, i = 0, j = 0, k = 0

λ̄su λ̄puμ̄re+λsu λ̄puμre, 1≤ i≤H + 1, j =1, k=0

λ̄su λ̄puμ̄sh + λ̄suλpuμsh, i = 0, j = 0, 1 ≤ k ≤ F

λ̄suμ̄sh + λ̄suλpuμsh, i = 0, j = 0, k = F + 1

λ̄su λ̄puμ̄reμ̄sh + λ̄suλpuμ̄reμsh

+λsu λ̄puμreμ̄sh + λsuλpuμreμsh, i ≥ 1, j = 1, 1≤k≤F

λ̄suμ̄reμ̄sh + λ̄suλpuμ̄reμsh

+λsuμreμ̄sh + λsuλpuμreμsh, i ≥ 1, j = 1, k = F + 1
(17)

(4) If the number of SUs departing from the system is greater than the number of SUs
arriving at the system and the reserved channel does not become idle in one slot,
then all the one step transition probabilities from the original state (i, j, k) can be
written as follows:

pi, j,k;i−1, j,k−2 = λ̄su λ̄puμreμsh, i ≥ H + 2, j = 1, k = 1. (18)
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pi, j,k;i−1, j,k−1 =
{

λ̄su λ̄puμreμsh, 2 ≤ i ≤ H + 2, j = 1, k = 1

λ̄su λ̄puμreμsh, i ≥ 2, j = 1, 2 ≤ k ≤ F + 1.

(19)

pi, j,k;i−1, j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̄su λ̄puμreμ̄sh, 2 ≤ i ≤ H + 2, j = 1, k=−1

λ̄su λ̄puμreμ̄sh + λ̄suλpuμ̄reμsh

+λsu λ̄puμreμsh, i ≥ H + 3, j = 1, k=−1

λ̄su λ̄puμre, 2 ≤ i ≤ H + 1, j = 1, k=0

λ̄su λ̄puμreμ̄sh + λ̄suλpuμreμsh, i ≥ 2, j =1, 1≤k ≤F

λ̄suμreμ̄sh + λ̄suλpuμreμsh, i ≥ 2, j = 1, k=F+1.
(20)

pi, j,k;i−1, j,k+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̄puμsh(λ̄suμ̄re + λsuμre), 2 ≤ i ≤ H + 2, j = 1, k = −1

λ̄suλpuμre, 2 ≤ i ≤ H + 1, j = 1, k = 0

λ̄suλpuμreμ̄sh, i ≥ 2, j = 1, 1 ≤ k ≤ F

λ̄pu λ̄suμsh, i = 1, j = 0, k = −1.
(21)

pi, j,k;i−1, j,k+2 =

⎧
⎪⎨

⎪⎩

λpu(λsuμreμsh + λ̄suμreμ̄sh + λ̄suμ̄reμsh),

i ≥ 2, j = 1, k = −1

λpu λ̄suμsh, i = 1, j = 0, k = −1.

(22)

(5) If the number of SUs departing from the system is greater than the number of SUs
arriving at the system, and the reserved channel becomes idle in one slot, then all
the one step transition probabilities from the original state (i, j, k) can be written
as follows:

pi, j,k;i−1, j−1,k−1 = λ̄pu λ̄suμreμsh, i = 1, j = 1, 1 ≤ k ≤ F + 1.

(23)

pi, j,k;i−1, j−1,k

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̄pu λ̄suμre, i = 1, j = 1, k = 0

λ̄pu λ̄suμreμ̄sh + λpu λ̄suμreμsh, i = 1, j = 1, 1 ≤ k ≤ F

λ̄suμreμ̄sh + λpu λ̄suμreμsh, i = 1, j = 1, k = F + 1

λ̄pu λ̄suμreμ̄sh, i = 2, j = 1, k = −1.

(24)

pi, j,k;i−1, j−1,k+1 =
{

λpu λ̄suμre, i = 1, j = 1, k = 0

λpu λ̄suμreμ̄sh, i = 1, j = 1, 1 ≤ k ≤ F.

(25)
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(6) When two SUs depart the system and no SU arrives at the system, if the state
of the reserved channel does not change in one slot, then the one step transition
probabilities from the original state (i, j, k) can be written as follows:

pi, j,k;i−2, j,k = λ̄su λ̄puμreμsh, i ≥ H + 4, j = 1, k = −1. (26)

pi, j,k;i−2, j,k+1 = λ̄su λ̄puμreμsh, 3 ≤ i ≤ H + 3, j = 1, k = −1.
(27)

pi, j,k;i−2, j,k+2 = λ̄suλpuμreμsh, i ≥ 3, j = 1, k = −1. (28)

(7) When two SUs depart the system and no SU arrives at the system, if the state of the
reserved channel changes in one slot, then all the one step transition probabilities
from the original state (i, j, k) can be written as follows:

pi, j,k;i−2, j−1,k+1 = λ̄pu λ̄suμreμsh, i = 2, j = 1, k = −1. (29)

pi, j,k;i−2, j−1,k+2 = λpu λ̄suμreμsh, i = 2, j = 1, k = −1. (30)

Let P be the state transition probability matrix of the Markov Chain {(Xn,Yn, Zn),
n ≥ 1}. Let Ai,k be the transition probability sub-matrix for the number of SUs in
the system changing from i (i = 0, 1, 2, . . . ) to k (k = 0, 1, 2, . . . ). The one step
transition probability matrix P can be written as a block matrix as follows:

P=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0,0 A0,1
A1,0 A1,1 A1,2
A2,0 A2,1 A2,2 A2,3

. . .
. . .

. . .
. . .

AH+4,H+2 AH+4,H+3 AH+4,H+4 AH+4,H+5
AH+4,H+2 AH+4,H+3 AH+4,H+4 AH+4,H+5

. . .
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(31)

Employing Eqs. (3)–(30), each sub-matrix Ai, j can be computed. The structure of
the one step transition probability matrix P shows that the three-dimensional discrete
time Markov Chain {(Xn,Yn, Zn), n ≥ 1} has structure similar to that of the birth-
and-death (QBD) process. If the number of SUs is no less than (H + 4), the one step
probabilities are repeatable. Therefore, we can use a method similar to that of the
matrix-geometric solution to obtain the steady-state distribution πi, j,k for the system
model.

For the Markov Chain {(Xn,Yn, Zn), n ≥ 1} with the one step transition prob-
ability matrix P , the necessary and sufficient condition of positive recurrence is that
the 3rd order matrix equation:

R3AH+4,H+2 + R2AH+4,H+3 + RAH+4,H+4 + AH+4,H+5 = R (32)
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has a minimal non-negative solution R, and the spectral radius SP(R) < 1. In order
to employ a method similar to that of the matrix geometric solution, we construct new
sub-matrices B0,0, B0,1, B1 and B2 as follows:

B0,0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0,0 A0,1
A1,0 A1,1 A1,2
A2,0 A2,1 A2,2 A2,3

. . .
. . .

. . .
. . .

AH+3,H+1 AH+3,H+2 AH+3,H+3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B0,1 = [0T , 0T , . . . , 0T , AT
H+3,H+4]T ,

B1 = [0, 0, . . . , 0, AH+4,H+2,AH+4,H+3],

B2 = [0, 0, . . . , 0, AH+4,H+2].

Furthermore, we construct a stochastic matrix as follows:

B[R] =
[

B0,0 B0,1

RB2 + B1 R2AH+4,H+2 + RAH+4,H+3 + AH+4,H+4

]

.

Letting π0 = (π0,0,0, π0,0,1, . . . , π0,0,F+1), π1 = (π1,0,−1, π1,1,0, . . . , π1,1,F+1),
πi = (πi,1,−1, πi,1,0, . . . , πi,1,F+1), 2 ≤ i ≤ (H + 1) and πi = (πi,1,−1, πi,1,1, . . . ,

πi,1,F+1), i ≥ (H + 2), then the steady-state distribution for the Markov Chain can
be obtained by solving the following system of linear equation:

⎧
⎪⎨

⎪⎩

πi = πH+3Ri−H−3, (i ≥ H + 3)

(π0,π1, . . . ,πH+2,πH+3) = (π0,π1, . . . ,πH+2,πH+3)B[R]
(π0,π1, . . . , πH+3)e + πH+3(I − R)−1e = 1

(33)

where e is a one’s column vector.

4 Performance measures and system experiments

In this section, we firstly define some performance measures, then we evaluate the
system performance by the help of system experiments.

4.1 Performance measures

The interruption rate βsu of SUs is defined as the number of SUs which are interrupted
by PUs per slot. An SU which is on the shared channel will be interrupted by a newly
arriving PU, so the interruption rate βsu of SUs is given as follows:
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βsu = λpu

( ∞∑

i=2

πi,1,−1 + π1,0,−1

)

μ̄sh . (34)

The blocking rate βpu of PUs is defined as the number of PUs which are blocked
due to the finite capacity of the PU’s buffer per slot. A newly arriving PU will be
blocked when the shared channel is occupied by a PU and the PU’s buffer is full. In
addition, since the PUs have preemptive priority, the blocking rate βpu of PUs is not
influenced by SUs. Therefore, the blocking ratio βpu of PUs can be given as follows:

βpu = λpu
(∑∞

i=1 πi,1,F+1 + π0,0,F+1
)

=
λpuμ̄re

μre
αF+1

1 − αF+1

1 − α
+ λpuμ̄re

μre
αF

(35)

where α = λpuμ̄re(λ̄puμre)
−1.

The latency of an SU is defined as the time duration from the arrival instant of an
SU to its departure instant. By using Little’s law [15], the average latency E [Tsu] of
SUs can be given as follows:

E [Tsu] =
∑F+1

k=0
∑1

j=0
∑∞

i=0 iπi, j,k

λsu
. (36)

The normalized throughputω is defined as proportion that the number of SUs transmit-
ted actually per unit time to the number of SUs transmitted maximally per unit time on
the whole spectrum. With the normalized throughput, we can evaluate the efficiency
of the whole spectrum. When both the shared channel and the reserved channel are
occupied by users, the efficiency of the whole spectrum is 1; When the shared chan-
nel (reserved channel) is idle and the reserved channel (shared channel) is busy, the
efficiency of the whole spectrum is θ (θ̄). Therefore, the normalized throughput ω is
given as follows:

ω =
∞∑

i=1

F+1∑

k=−1, k �=0

πi,1,k +
∞∑

i=1

πi,1,0θ +
F+1∑

k=1

π0,0,k θ̄ . (37)

4.2 System experiments and illustrations

In this section, we investigate the influences of the adaptive control factor C and
the admission threshold H on the system performance. Unless otherwise specified,
system parameters in system experiments are set as follows: F = 2, λpu = 0.20,
λsu = [0.40, 0.45, 0.50, 0.55] and μ = 0.80.

Taking the admission threshold H = 4 as an example, for different arrival rates λsu
of SUs, we show the change trend of the interruption rate βsu of SUs with respect to
the adaptive control factor C in Fig. 2.
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Fig. 2 Interruption rate βsu of SUs vs. adaptive control factor C

In Fig. 2, we find that the interruption rate βsu of SUs exhibits two stages as the
adaptive control factor C increases.

During the first stage, the interruption βsu of SUs increases sharply as the adaptive
control factor C increases. When the adaptive control factor is smaller, the dominant
element influencing the interruption rate of SUs is the service rate on the reserved
channel. Based on Eq. (1), we note that the aside spectrum ratio decreases as the
adaptive control factor increases. Therefore, the larger the adaptive control factor is,
the lower the service rate on the reserved channel is, and the more SUs enter into the
shared channel to receive transmission service. The transmission of SUs on the shared
channel may be interrupted by PUs. When this occurs, the interruption rate of SUs
will increase.

During the second stage, the interruption rate βsu of SUs decreases slowly as the
adaptive control factor C increases. When the adaptive control factor is larger, the
dominant element influencing the interruption rate of SUs is the service rate on the
shared channel. As the adaptive control factor increases, the service rate on the shared
channel increases, the PUs on the shared channel are transmitted quickly, and the
synthetical service rate for the SUs increases. Therefore, the transmission of SUs on
the shared channel is less likely to be interrupted by PUs, so the interruption rate of
SUs will decrease.

By setting the adaptive control factor C = 0.50 as an example, for different arrival
rates λsu of SUs, we show the change trend for the interruption rate βsu of SUs in
relation to the admission threshold H in Fig. 3.

In Fig. 3, for all the arrival rates λsu of SUs, we find that the interruption rate βsu of
SUs decreases as the threshold H increases. The obvious reason is that the higher the
admission threshold is, the more SUs are transmitted on the reserved channel without
interruption. As a result, the interruption rate of SUs will decrease.
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Fig. 3 Interruption rate βsu of SUs vs. admission threshold H

Fig. 4 Average latency E [Tsu ] of SUs vs. adaptive control factor C

Taking the admission threshold H = 4 as an example, for different arrival rates λsu
of SUs, we show the change trend for the average latency E [Tsu] of SUs in relation
to the adaptive control factor C in Fig. 4.

We discuss the average latency E [Tsu] of SUs in two cases.

(1) For a higher arrival rate of SUs, such as λsu = 0.50 and λsu = 0.55, the aver-
age latency E [Tsu] of SUs exhibits two stages as the adaptive control factor C
increases.

During the first stage, the average latency E [Tsu] of SUs increases sharply as the
adaptive control factor C increases. When the adaptive control factor is smaller, the
service rate on the reserved channel is the dominant element influencing the average
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Fig. 5 Average latency E [Tsu ] of SUs vs. admission threshold H

latency of SUs. As the adaptive control factor increases, the service rate on the reserved
channel decreases. This leads to a decrease in the synthetical service rate for SUs, and
so the average latency of SUs will be greater.

During the second stage, as the adaptive control factor C increases, the average
latency E [Tsu] of SUs decreases slowly and tends to be fixed. When the adaptive
control factor exceeds a certain value, the service rate on the shared channel is the
dominant element influencing the average latency of SUs. The bigger the adaptive
control factor is, the higher the service rate on the shared channel is, and the greater
the synthetical service rate for SUs is. Therefore, the average latency of SUs will
decrease. As the adaptive control factor continuously increases, nearly all the SUs are
transmitted on the shared channel, so the average latency of SUs will tend to be fixed.

(2) For a lower arrival rate of SUs, such as λsu = 0.40 and λsu = 0.45, the average
latency E [Tsu] of SUs increases sharply when the adaptive control factor C is
smaller, increases slowly and tends to be fixed when the adaptive control factor
C is greater than a certain value. When the arrival rate of SUs is lower, with
the constraint of the admission threshold, the average latency of SUs is mainly
influenced by the service rate on the reserved channel. The bigger the adaptive
control factor is, the lower the service rate on the reserved channel is, so the
average latency of SUswill increases sharply. However, when the adaptive control
factor exceeds a certain value, some SUs are transmitted opportunistically on the
shared channel, so the average latency of SUswill increase slowly. As the adaptive
control factor continuously increases,more andmoreSUswill enter into the shared
channel, so the average latency of SUs will tend to be fixed.

By setting the adaptive control factor C = 1 as an example, for different arrival rates
λsu of SUs, we show the change trend for the average latency E [Tsu] in relation to
the admission threshold H in Fig. 5.
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Fig. 6 Blocking rate βpu of PUs vs. adaptive control factor C

In Fig. 5, we find that, for all the arrival rates of SUs, the average latency E [Tsu]
of SUs increases as the admission threshold H increases. The reason is that the higher
the admission threshold is, the fewer SUs are transmitted on the shared channel, and
the lower the synthetical service rate for SUs is. This will lead to an increase in the
average latency of SUs.

PUs receive service on the shared channel with preemptive priority. The transmis-
sion of PUs is only affected by the adaptive control factor and the arrival rate of PUs,
so the blocking rate of PUs has nothing to do with the admission threshold. By setting
λpu = [0.15, 0.20, 0.25, 0.30] and H = 4 as examples, we show the change trend
for the blocking ratio βpu of PUs in relation to the adaptive control factor C in Fig. 6.

From Fig. 6, we conclude that, for all the arrival rates λpu of PUs, the blocking rate
βpu of PUs decreases as the adaptive control factor C increases. The intuitive reason
is that the larger the adaptive control factor is, the smaller the aside spectrum ratio is,
and the higher the service rate for the PUs on the shared channel is. This leads to a
decrease in the blocking rate of PUs.

By setting the admission threshold H = 4 as an example, for different arrival rates
λsu of SUs, we show the change trend for the systematic normalized throughput ω in
relation to the adaptive control factor C in Fig. 7.

From Fig. 7, we observe that as the adaptive control factor C increases, the nor-
malized throughput ω increases firstly when the adaptive control factor C is smaller;
and then, when the adaptive control factor C exceeds a certain value, the normalized
throughput tends to be fixed. Since the capacity set for the PUs is finite and the capacity
set for SUs is infinite, when the adaptive control factor is less than a certain value,
the greater the adaptive control factor is, and the higher the service rate on the shared
channel is, the lower the blocking rate of PUs is. As a result, normalized throughput
will increase. However, as the adaptive control factor further increases, when the adap-
tive control factor is greater than a certain value, nearly all the users are transmitted
on the shared channel, so the normalized throughput tends to be fixed.
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Fig. 7 Normalized throughput ω vs. adaptive control factor C

Fig. 8 Normalized throughput increment α vs. admission threshold H

In order to clearly show the normalized throughput ω in relation to the admission
threshold H , we calculate the normalized throughput increment as α = ω−ω0, where
ω0 is the normalized throughput by setting the admission threshold H = 0. Taking
the adaptive control factor C = 1 as an example, for different arrival rates λsu of SUs,
we investigate the change trend for the normalized throughput increment α in relation
to the admission threshold H in Fig. 8.

Looking at Fig. 8, we find that the normalized throughput increment α exhibits two
stages as the admission threshold H increases.

During the first stage, the normalized throughput increment α increases as the
admission threshold H increases.We note that the service rate on the reserved channel
is greater than the service rate on the shared channel with the parameters used in this
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paper. Therefore, when the admission threshold H is smaller, the dominant element
influencing the normalized throughput is the service rate on the reserved channel. This
means that the higher the admission threshold is, the more SUs access the reserved
channel. This will lead to an increase in the normalized throughput increment.

During the second stage, as the admission threshold further increases, when the
admission threshold is greater than a certain value, the dominant element influencing
the normalized throughput is the service rate on the shared channel, the higher the
admission threshold is, themore likely the shared channel is idle, resulting in a decrease
in the normalized throughput increment.

5 System cost and system optimization

Based on the experiment results given in Sect. 4.2, we firstly construct a system cost
function to trade off different performance measures. Then, we present a searching
algorithm based on the philosophy of teaching and learning to optimize the system
parameters in terms of the adaptive control factor and the admission threshold.

5.1 System cost

From the experiment results provided in Sect. 4.2, we can draw the following con-
clusions. The interruption rate of βsu of SUs, the average latency E[Tsu] of SUs and
the normalized throughput ω heavily depend on the adaptive control factor C and the
admission threshold H . However, the blocking rate βpu of PUs heavily depends on
the adaptive control factor C .

In order to get the utmost out of the spectrum resource and meet the demands
for QoS requirements of two types of users, considering the tradeoff between the
performance measures of two types users, we construct a system cost ψ(C, H) as
follows:

ψ(C, H) = f1βpu + f2E[Tsu] + f3
ω

+ f4βsu + f5
λsu

(38)

where f1, f2, f3, f4 and f5 are cost factors from blocking rate of PUs, the average
latency of SUs, normalized throughput, interruption rate of SUs and arrival rate of
SUs. By minimizing the system cost, the optimal combination (C∗, H∗) is given as
follows:

(C∗, H∗) = argmin{ψ(C, H)} (39)

where “argmin” stands for the argument of the maximum [16].
Taking system parameters f1 = 20.00, f2 = 0.60, f3 = 4.00, f4 = 3.00,

f5 = 0.20, F = 2, μ = 0.80, λpu = [0.10, 0.15], λsu = [0.40, 0.50, 0.60], H = 4
andC = 1 as an example, we investigate the change trend for the system costψ(C,H)

in relation to the adaptive control factor C and the admission threshold H in Figs. 9
and 10, respectively.
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Table 1 Searching algorithm to obtain optimal combination (C∗, H∗) with global minimum system cost

Step 1: Set the maximum iterations N and number of students M . Initialize the admission threshold as
H = 0, the current iterations as d = 0, and the number of local minimum system costs as q = 0.

Step 2: Set the upper bound of the adaptive control factor as C1 = μ−λsu
λpu

and the upper bound of the

admission threshold as H1 = λsu μ̄re
λ̄suμre−λsu μ̄re

.

Step 3: Initialize each student (C, H)a (a = 1, 2, . . . , M) within the constraint condition C ∈ [0,C1],
and calculate the system cost ψ((C, H)a).

Step 4: Calculate the average value (C, H)mean for all students:

(C, H)mean = mean
a∈{1,2,...,M}{(C, H)a}.

Step 5: Select a teacher (C, H)teacher from all the students:

(C, H)teacher = argmin
a∈{1,2,...,M}

{ψ((C, H)a)}.

Step 6: For a = 1 : M do

G = round(1 + rand)

(C, H)∗a = (C, H)a + rand × ((C, H)teacher − G × (C, H)mean), a = 1, 2, . . . , M

% rand is a random number selected in the interval (0, 1).

If ψ((C, H)a) > ψ((C, H)∗a)

Then (C, H)a = (C, H)∗a
End

End.

Step 7: For a = 1 : M do

Randomly select the bth student (C, H)b (b �= a)

If ψ((C, H)a) > ψ((C, H)b)

Then (C, H)a = (C, H)a + rand × ((C, H)a − (C, H)b)

Else (C, H)a = (C, H)a + rand × ((C, H)b − (C, H)a)

End

End.

Step 8: If d < N

Then d = d + 1, go to Step 4

Else ψ((CT , HT )q ) = min
a∈{1,2,...,M}ψ((C, H)a), q = q + 1

% (CT , HT )q is a local minimum system cost.

End.

Step 9: If H ≤ H1

Then H = H + 1, go to Step 3

Else (C∗, H∗) = argmin
s∈{1,2,...,q}

ψ((CT , HT )s )

%(C∗, H∗) is the optimal combination.

End.

Step 10: Output (C∗, H∗) as an optimal combination.
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Fig. 9 System cost ψ(C,H) vs. adaptive control factor C (H = 4)

Fig. 10 System cost ψ(C,H) vs. admission threshold H (C = 1)

Looking at Figs. 9 and 10, we conclude that there is an optimal adaptive control
factor and an optimal admission threshold with local minimum system costs. Based
on these local minimum system costs, we can further obtain the global minimum
system cost. However, it is difficult to give an analytical expression for the system cost
ψ(C, H) in close form. Conventional optimization methods, such as steepest descent
method or Newton’s method, are inappropriate. Therefore, we turn to an intelligent
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Table 2 Numerical results for optimal combination (C∗, H∗) and global minimum system cost

λpu λsu (C∗, H∗) ψ(C∗, H∗) λpu λsu (C∗, H∗) ψ(C∗, H∗)

0.10 0.40 (1.04, 1) 8.61 0.15 0.40 (1.14, 0) 8.45

0.10 0.50 (1.03, 1) 7.78 0.15 0.50 (0.99, 0) 8.04

0.10 0.60 (0.77, 1) 7.68 0.15 0.60 (0.58, 1) 8.46

optimization algorithm with a strong global convergence ability to obtain the optimal
combination (C∗, H∗) with a global minimum system cost.

5.2 System optimization

The Teaching-learning-based optimization (TLBO) algorithm is a new and efficient
meta-heuristic optimization method based on the philosophy of teaching and learning
[17]. This algorithm has the advantages of having fewer parameters, being easy to
understand and having a high degree of precision. Based on a TLBO algorithm, we
optimize the system parameters in terms of the adaptive control factor C and the
admission threshold H .

Inspired by the teaching-learning process, we firstly randomly set a group of (C, H)

as the students, and the corresponding system costsψ(C, H) as academic records. The
student who achieves the best academic record is assigned to the teacher. After a period
of the teaching-learning process, we can deduce the best student. This means that we
can derive the global minimum system costψ(C∗, H∗) and the optimize combination
(C∗, H∗). The complexity of the TLBO algorithm depends on themaximum iterations
N , the number M of students and the upper bound of the admission threshold H1. The
complexity T of this algorithm is T = O(N × M × H1). We give the main steps for
the searching algorithm to obtain the optimal adaptive control factorC∗ and admission
threshold H∗ in Table 1.

By setting the same parameters as used in Figs. 9 and 10, we obtain the optimal
combination (C∗, H∗) with the adaptive control factor C and the admission threshold
H as shown in Table 2.

6 Conclusions

In this paper, we presented our proposed novel spectrum reservation strategy with
an adaptive control approach for the setting the spectrum aside ratio in centralized
CRNs. We firstly constructed a three-dimensional discrete timeMarkov Chain model,
and obtained the steady-state distribution for the system model by using a method
similar to that of the matrix geometric solution. Accordingly, we evaluated the system
performance mathematically. Moreover, we carried out system experiments to inves-
tigate the influence of the adaptive control factor and the admission threshold on the
system performance. Based on the trade off between different performance measures,
we built a system cost function. Finally, we presented a TLBObased intelligent search-
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ing algorithm to optimize the adaptive control factor and the admission threshold with
global minimum system cost. System experiments show that the proposed spectrum
reservation strategy is effective in improving the spectrum utilization and coping with
the immense demand from wireless devices. The numerical results obtained by pro-
posed optimization algorithm are reasonable for setting system parameters with global
minimum system cost.

In future work, we will investigate the dependence between the adaptive control
factor and the capacity of the PU’s buffer.
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