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Abstract In this paper, we mainly study metric subregularity for a convex constraint
system defined by a convex set-valued mapping and a convex constraint subset. The
main work is to provide several primal equivalent conditions for metric subregularity
by contingent cone and graphical derivative. Further it is proved that these primal
equivalent conditions can characterize strong basic constraint qualification of convex
constraint system given by Zheng and Ng (SIAM J Optim 18:437–460, 2007).
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1 Introduction

Many optimization problems appearing in variational analysis and mathematical pro-
gramming can be modelled as finding a solution to a generalized equation. This
generalized equation mathematically is defined as follows
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1714 L. Huang, Z. Wei

ȳ ∈ F(x) (1.1)

where F : X ⇒ Y is a set-valued mapping between Banach spaces X and Y and ȳ is
a given point in Y .

It is well known that a key concept, when studying the behavior of the solution set
to generalized equation (1.1), is metric regularity. Recall that F is said to be metrically
regular at x̄ ∈ F−1(ȳ) if there exists τ ∈ (0,+∞) such that

d(x, F−1(y)) ≤ τd(y, F(x)) for all (x, y) close to (x̄, ȳ). (1.2)

The study of this concept can be traced back to the Robinson–Ursescu theorem,
Lyusternik–Graves theorem or even Banach open mapping theorem. Readers are
invited to consult [1,2,7,9,13–15] and references therein for many theoretical results
on metric regularity and its various applications.

A weaker property of metric regularity is named as metric subregularity which
means that inequality (1.2) holds only for fixed ȳ. Recall that F is said to be metrically
subregular at x̄ ∈ F−1(ȳ) if there exists τ ∈ (0,+∞) such that

d(x, F−1(ȳ)) ≤ τd(ȳ, F(x)) for all x close to x̄ . (1.3)

This concept can be used to estimate the distance of a candidate x to the solution set
of generalized equation (1.1). When the solution set F−1(ȳ) reduces to the singleton
locally, (1.3) becomes to the strong metric subregularity of (1.1); that is, F is said to
be strongly metrically subregular at x̄ ∈ F−1(ȳ) if there exists τ ∈ (0,+∞) such
that

‖x − x̄‖ ≤ τd(ȳ, F(x)) for all x close to x̄ .

It is known that metric subregularity is closely related to calmness, error bounds, lin-
ear regularity and basic constraint qualification (BCQ) in optimization and has found
a huge range of applications in areas of variational analysis and mathematical pro-
gramming like optimality conditions, variational inequalities, subdifferential theory,
sensitivity analysis of generalized equations and convergence analysis of algorithms
for solving equations or inclusions. For these reasons, the concept of metric subregu-
larity has been extensively studied by many authors (see [3–6,8,18,20–25]).

In this paper, we mainly consider metric subregularity and targets at its primal
criteria. In 2004, Dontchev and Rockafellar [3] studied metric subregularity of gen-
eralized equation (1.1) and proved that metric subregularity (at x̄ for ȳ ∈ F(x̄)) is
equivalent to calmness of the inverse set-valued mapping F−1 (at (ȳ, x̄)). In 2007,
Zheng and Ng [24] discussed metric subregularity of a convex constraint system
defined by a convex set-valued mapping and a convex constraint set. Using normal
cone and coderivative, they introduced the concept of strong basic constraint qualifi-
cation (strong BCQ) and established several dual characterizations in terms of strong
BCQ for metric subregularity. Subsequently they [25] considered metric subregularity
for nonconvex generalized equation and gave its dual sufficient criteria. Recently the
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On metric subregularity for convex constraint 1715

authors [6] discussed several types of strong BCQs for nonconvex generalized equa-
tion and used these strong BCQs to provide necessary and/or sufficient conditions
ensuring metric subregularity. To the best of our knowledge, these dual conditions for
metric subregularity heavily rely on dual space properties, while one pretty natural
idea on the study of metric subregularity is referring to primal space properties and
sometimes it is convenient by this idea to deal with the case that there is little informa-
tion on any dual space property like a metric space (see [1,8,10–12,16–18]). Inspired
by this observation, we mainly study primal criteria for metric subregularity of convex
constraint system in this paper and aim to establish its several equivalent conditions by
contingent cone and graphical derivative. To show clearly the primal spirit, we provide
the self-contained proof for these equivalent conditions (see Sect. 3). We also prove
that these primal equivalent conditions are necessary and sufficient for the strong BCQ
given in [24] (see Sect. 4).

The paper is organized as follows. In Sect. 2,wewill give some preliminaries used in
this paper. Our notation is basically standard and conventional in the area of variational
analysis. Section 3 is devoted to main results on metric subregularity for a convex
constraint system. Several primal equivalent conditions for metric subregularity are
established in termsof contingent cones andgraphical derivatives. InSect. 4,wemainly
study the relation between primal equivalent conditions obtained in Sect. 3 and the
strong BCQ of a convex constraint system. It is proved that these primal conditions
can characterize the strong BCQ. The conclusion of this paper is presented in Sect. 5.

2 Preliminaries

Let X,Y be Banach spaces with the closed unit balls denoted by BX and BY . For a
subset C of X , let C denote the closure of C . For any point x ∈ X and δ > 0, let
B(x, δ) denote an open ball with center x and radius δ.

Let A be a closed convex subset of X and a ∈ A. We denote by T (A, a) the
contingent (Bouligand) cone of A at a which is defined by

T (A, a) := Limsup
t→0+

A − a

t
.

Thus,v ∈ T (A, a) if andonly if there existvn → v and tn → 0+ such thata+tnvn ∈ A
for all n. It is easy to verify that T (A, a) is a closed convex cone and

T (A, a) =
⋃

t>0

A − a

t
.

For a set-valued mapping F : X ⇒ Y , we denote by

gph(F) := {(x, y) ∈ X × Y : y ∈ F(x)}

the graph of F . Recall that F is said to be closed if gph(F) is a closed subset of X ×Y .
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1716 L. Huang, Z. Wei

Let F : X ⇒ Y be a closed convex set-valued mapping and (x, y) ∈ gph(F).
Recall that the graphical derivative DF(x, y) of F at (x, y) is defined by

DF(x, y)(u) := {v ∈ Y : (u, v) ∈ T (gph(F), (x, y))}.

It is easy to verify that

v ∈ DF(x, y)(u) ⇐⇒ u ∈ DF−1(y, x)(v).

We close this section with the following lemma cited from [21, Lemma 2.1].

Lemma 2.1 Let X be a Banach space and � be a nonempty closed convex subset of
X. Let γ ∈ (0, 1). Then for any x /∈ � there exists z ∈ � such that

γ ‖x − z‖ < d(x − z, T (�, z)).

3 Main results

In this section, we mainly study metric subregularity of a convex constraint system
and aim at providing its primal equivalent conditions in terms of contingent cone and
graphical derivative.

Throughout the rest of this paper, we suppose that F : X ⇒ Y is a closed convex
set-valued mapping and A is a closed convex subset of X .

Let ȳ ∈ Y be given. We consider the following convex constraint system:

ȳ ∈ F(x) subject to x ∈ A. (3.1)

We denote by S := F−1(ȳ) ∩ A the solution set of (3.1).
Recall from [24] that convex constraint system (3.1) is said to be metrically sub-

regular at x̄ ∈ S if there exist τ, δ ∈ (0,+∞) such that

d(x, S) ≤ τ(d(ȳ, F(x)) + d(x, A)) ∀x ∈ B(x̄, δ). (3.2)

We denote by subregAF(x̄, ȳ) the modulus of metric subregularity at x̄ for (3.1); that
is,

subregAF(x̄, ȳ) := inf{τ > 0 : ∃ δ > 0 s.t. (3.2) holds}, (3.3)

here we use the convention that the infimum over the empty set is +∞. It is easy to
verify that (3.1) is metrically subregular at x̄ ⇐⇒ subregAF(x̄, ȳ) < +∞.

For convenience to provide primal equivalent conditions for metric subregular-
ity, we consider two quantities which are defined by contingent cone and graphical
derivative.

For any x ∈ S and η, τ ∈ (0,+∞) given, we study the following two relations:

DF−1(ȳ, x)(η1BY ) ∩ (T (A, x) + η2BX ) ⊂ T (S, x) + BX ,∀η1, η2 ≥ 0 with
η1 + η2 < η,

(3.4)
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On metric subregularity for convex constraint 1717

and

d(h, T (S, x)) ≤ τ(d(0, DF(x, ȳ)(h)) + d(h, T (A, x))) ∀h ∈ X. (3.5)

Let x̄ ∈ S. In terms of these two relations, we define the following quantities:

ηA(F, x̄, ȳ) := sup{η > 0 : ∃ δ > 0 s.t. (3.4) holds for any x ∈ S∩B(x̄, δ)}, (3.6)

and

τA(F, x̄, ȳ) := inf{τ > 0 : ∃ δ > 0 s.t. (3.5) holds for any x ∈ S∩ B(x̄, δ)}, (3.7)

where the supremum over the empty set is 0.
The following theorem, as one main result in the paper, is to establish an accurate

quantitative relation among modulus (3.3), quantities (3.6) and (3.7). This theorem
also provides primal characterizations for metric subregularity of convex constraint
system (3.1).

Theorem 3.1 Let x̄ ∈ S. Then

1

subregAF(x̄, ȳ)
= ηA(F, x̄, ȳ) = 1

τA(F, x̄, ȳ)
. (3.8)

Proof We first consider the case that subregAF(x̄, ȳ) < +∞. We prove that

1

subregAF(x̄, ȳ)
= ηA(F, x̄, ȳ). (3.9)

Let τ > subregAF(x̄, ȳ). Then there exists δ > 0 such that (3.2) holds. Let
η ∈ (0, 1

τ
) and x ∈ S∩ B(x̄, δ). Take any η1, η2 ∈ [0,+∞) such that η1+η2 < η and

any u ∈ DF−1(ȳ, x)(η1BY ) ∩ (T (A, x) + η2BX ). Then there exist z ∈ BY , b ∈ BX ,
tn → 0+, sn → 0+, (vn, un) → (η1z, u) and wn → u + η2b such that

x + tnun ∈ F−1(ȳ + tnvn) and x + snwn ∈ A ∀n ∈ N. (3.10)

Since F is a convex set-valued mapping and A is convex, it follows from (3.10) that
there exist λn → 0+ such that

x + λnun ∈ F−1(ȳ + λnvn) and x + λnwn ∈ A ∀n ∈ N.

This and (3.2) imply that for any n sufficiently large, one has

d(x + λnun, S) ≤ τ(d(ȳ, F(x + λnun)) + d(x + λnun, A))

≤ τλn(‖vn‖ + ‖un − wn‖),
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1718 L. Huang, Z. Wei

and consequently

d(un, T (S, x)) ≤ d
(
un,

S − x

λn

)
≤ τ(‖vn‖ + ‖un − wn‖)

(thanks to the convexity of F and A). Taking limits as n → ∞, one has

d(u, T (S, x)) ≤ τ(‖η1z‖ + ‖u − (u + η2b)‖) ≤ τ(η1 + η2).

Thus,

u ∈ T (S, x) + τ(η1 + η2)BX ⊂ T (S, x) + BX

thanks to η1 + η2 < η < 1
τ
. This means that ηA(F, x̄, ȳ) ≥ η. By taking limits as

η ↑ 1
τ
and then τ ↓ subregAF(x̄, ȳ), one has

ηA(F, x̄, ȳ) ≥ 1

subregAF(x̄, ȳ)
> 0. (3.11)

Let η ∈ (0, ηA(F, x̄, ȳ)). Then there exists δ > 0 such that (3.4) holds for all
x ∈ S ∩ B(x̄, δ). Let τ > 1

η
. We claim that

d(x, S) ≤ τ(d(ȳ, F(x)) + d(x, A)) ∀x ∈ B

(
x̄,

δ

2

)
. (3.12)

Granting this, it follows that

1

subregAF(x̄, ȳ)
≥ 1

τ
.

By taking limits as τ ↓ 1
η
and then η ↑ ηA(F, x̄, ȳ), one has

1

subregAF(x̄, ȳ)
≥ ηA(F, x̄, ȳ).

This and (3.11) imply that (3.9) holds.
It is clear that (3.12) holds for any x ∈ B(x̄, δ

2 ) ∩ S. Let x ∈ B(x̄, δ
2 )\S. Then

d(x, S) ≤ ‖x − x̄‖ < δ
2 . Take any γ ∈ (

2d(x,S)
δ

, 1). By virtue of Lemma 2.1, there
exists z ∈ S such that

γ ‖x − z‖ ≤ d(x − z, T (S, z)). (3.13)

Since S − z ⊂ T (S, z) by the convexity of S, it follows that

γ ‖x − z‖ ≤ d(x − z, T (S, z)) ≤ d(x, S).
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On metric subregularity for convex constraint 1719

From this and the choice of γ , one has ‖x − z‖ ≤ d(x,S)
γ

< δ
2 and thus

‖z − x̄‖ ≤ ‖z − x‖ + ‖x − x̄‖ <
δ

2
+ δ

2
= δ. (3.14)

Choose sequences {yn} ⊂ F(x) and {un} ⊂ A such that

‖ȳ − yn‖ → d(ȳ, F(x)) and ‖x − un‖ → d(x, A). (3.15)

For each n ∈ N, we denote

rn := 1

τ(‖ȳ − yn‖ + ‖x − un‖) > 0

and take εn > 0 sufficiently small such that

rn(‖ȳ − yn‖ + (1 + εn)‖x − un‖) < η. (3.16)

Note that ‖rn(x − z) − rn(un − z)‖ = rn‖x − un‖ and so

d(rn(x − z), T (A, z)) ≤ ‖rn(x − z) − rn(un − z)‖ = rn‖x − un‖.

This implies that

rn(x − z) ∈ T (A, z) + rn‖x − un‖BX ⊂ T (A, z) + (1+ εn)rn‖x − un‖BX . (3.17)

Since

rn(x − z) ∈ DF−1(ȳ, z)(rn(yn − ȳ)) ⊂ DF−1(ȳ, z)(rn‖yn − ȳ‖BY ),

it follows from (3.4), (3.14), (3.16) and (3.17) that

rn(x − z) ∈ T (S, z) + BX

and consequently

d(x − z, T (S, z)) ≤ 1

rn
= τ(‖ȳ − yn‖ + ‖x − un‖).

Taking limits as n → ∞, one has

d(x − z, T (S, z)) ≤ τ(d(ȳ, F(x)) + d(x, A)).

This and (3.13) mean that

γ d(x, S) ≤ τ(d(ȳ, F(x)) + d(x, A)).
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1720 L. Huang, Z. Wei

Taking limits as γ → 1−, one has

d(x, S) ≤ τ(d(ȳ, F(x)) + d(x, A)).

Hence (3.12) holds.
We next prove that

ηA(F, x̄, ȳ) = 1

τA(F, x̄, ȳ)
. (3.18)

Let η ∈ (0, ηA(F, x̄, ȳ)). Then there exists δ > 0 such that (3.4) holds for all
x ∈ S ∩ B(x̄, δ). Let τ > 1

η
and x ∈ S ∩ B(x̄, δ). Take any h ∈ X . Choose sequences

{vn} ⊂ DF(x, ȳ)(h) and {un} ⊂ T (A, x) such that

‖vn‖ → d(0, DF(x, ȳ)(h)) and ‖h − un‖ → d(h, T (A, x)).

For each n ∈ N, let

rn := 1

τ(‖vn‖ + ‖h − un‖) > 0.

Noting that h = un + ‖h − un‖ · h−un‖h−un‖ and vn ∈ DF(x, ȳ)(h), it follows that

rnh ∈ DF−1(ȳ, x)(rnvn) ∩
(
T (A, x) + rn‖h − un‖ · h − un

‖h − un‖
)

⊂ DF−1(ȳ, x)(rn‖vn‖BY ) ∩ (T (A, x) + rn‖h − un‖BX ).

Since rn(‖vn‖ + ‖h − un‖) = 1
τ

< η, by (3.4), one has

rnh ∈ T (S, x) + BX

and consequently

d(rnh, T (S, x)) ≤ 1.

This implies that

d(h, T (S, x)) ≤ 1

rn
= τ(‖vn‖ + ‖h − un‖).

Taking limits as n → ∞, one has that τA(F, x̄, ȳ) ≤ τ and thus

1

τA(F, x̄, ȳ)
≥ ηA(F, x̄, ȳ)

by taking limits as τ ↓ 1
η
and then η ↑ ηA(F, x̄, ȳ).
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Let τ > τA(F, x̄, ȳ). Then there exists δ > 0 such that (3.5) holds for any x ∈
S ∩ B(x̄, δ). Let η ∈ (0, 1

τ
) and x ∈ S ∩ B(x̄, δ). Take any η1, η2 ∈ [0,+∞) with

η1 + η2 < η and u ∈ DF−1(ȳ, x)(η1BY ) ∩ (T (A, x) + η2BX ). Then there exist
(v, b) ∈ BY × BX such that

u ∈ DF−1(ȳ, x)(η1v) and u − η2b ∈ T (A, x).

By virtue of (3.5), one has

d(u, T (S, x)) ≤ τ(d(0, DF(x, ȳ)(u)) + d(u, T (A, x)))

≤ τ(η1‖v‖ + η2‖b‖)
≤ τ(η1 + η2).

Thus

u ∈ T (S, x) + τ(η1 + η2)BX ⊂ T (S, x) + BX

as η1 + η2 < η < 1
τ
. This means that ηA(F, x̄, ȳ) ≥ η and consequently

ηA(F, x̄, ȳ) ≥ 1

τA(F, x̄, ȳ)

by taking limits as η ↑ 1
τ
and then τ ↓ τA(F, x̄, ȳ). Hence (3.18) holds.

Next, we consider the case that subregAF(x̄, ȳ) = +∞. Then ηA(F, x̄, ȳ) = 0
(Otherwise, one can verify that subregAF(x̄, ȳ) ≤ 1

ηA(F,x̄,ȳ) < +∞, which is a
contradiction). From this, we can further prove that τA(F, x̄, ȳ) = +∞. Hence (3.8)
holds. The proof is complete. ��
Remark 3.1 Note that the concept of metric q-subregularity (q > 0) for generalized
equations has beenwell studied (cf. [10–12,16] and references therein). Constraint sys-
tem (3.1) reduces to generalized equation ȳ ∈ F(x) if A = X . Li and Mordukhovich
[12] used modulus estimate via coderivatives for ensuring metric q-subregularity of
ȳ ∈ F(x) (see [12, Theorem 3.3]). Mordukhovich and Ouyang [16] studied metric
q-subregularity of generalized equation ȳ ∈ F(x) in which Y = X∗ and F = ∂ f
(the subdifferential of function f on X ). It is proved that metric q-subregularity of
subdifferential ∂ f can be characterized by higher order growth conditions of f (see
[16, Theorem 3.4]). ��

For the special case, we have sharper primal results on metric subregularity; that is,
the validity of (3.4) only at x̄ can ensure the metric subregularity of convex constraint
system (3.1).

Theorem 3.2 Let x̄ ∈ S. Suppose that there exists a closed convex cone K and a
neighborhood V of x̄ such that S ∩ V = (x̄ + K ) ∩ V . Then

1

subregAF(x̄, ȳ)
= sup{η > 0 : (3.4) holds only with x = x̄}. (3.19)
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1722 L. Huang, Z. Wei

Proof We denote

α := sup{η > 0 : (3.4) holds only with x = x̄}.

By Theorem 3.1, one has

1

subregAF(x̄, ȳ)
= ηA(F, x̄, ȳ) ≤ α. (3.20)

Let η ∈ (0, α) and τ > 1
η
. Take δ > 0 such that B(x̄, 2δ) ⊂ V . Then

S ∩ B(x̄, 2δ) = (x̄ + K ) ∩ B(x̄, 2δ).

Since K is a convex cone, one can verify that

T (S, x̄) = K . (3.21)

Let u ∈ B(x̄, δ)\S. Take any γ ∈ (
d(u,S)

δ
, 1). By Lemma 2.1, there exists z ∈ S such

that
γ ‖u − z‖ ≤ d(u − z, T (S, z)). (3.22)

Note that S − z ⊂ T (S, z) by the convexity of S and so ‖u − z‖ ≤ d(u−z,T (S,z))
γ

< δ.
Then

‖z − x̄‖ ≤ ‖z − u‖ + ‖u − x̄‖ < δ + δ = 2δ.

Noting that K is a convex cone, it follows from (3.21) that

T (S, z) = T (x̄ + K , z) = T (K , z − x̄) ⊃ K − z + x̄ = T (S, x̄) − z + x̄ .

This and (3.22) imply that

γ d(u, S) ≤ γ ‖u − z‖ ≤ d(u − x̄, T (S, x̄)). (3.23)

Similar to the proof of 1
subregAF(x̄,ȳ) ≥ ηA(F, x̄, ȳ) in Theorem 3.1, by using (3.23),

one can prove that

d(u, S) ≤ τ(d(ȳ, F(u)) + d(u, A)).

This means that subregAF(x̄, ȳ) ≤ τ and thus by taking limits as τ ↓ 1
η
and then

η ↑ α, one has that

1

subregAF(x̄, ȳ)
≥ α.

Hence (3.19) holds. The proof is complete. ��
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Next, we consider strong metric subregularity of convex constraint system. Recall
that convex constraint system (3.1) is said to be stronglymetrically subregular at x̄ ∈ S
if there exist τ, δ ∈ (0,+∞) such that

‖x − x̄‖ ≤ τ(d(ȳ, F(x)) + d(x, A)) ∀x ∈ B(x̄, δ). (3.24)

We denote by ssubregAF(x̄, ȳ) the modulus of strong metric subregularity at x̄ for
(3.1); that is,

ssubregAF(x̄, ȳ) := inf{τ > 0 : ∃δ > 0 s.t. (3.24) holds}. (3.25)

Thus, (3.1) is strongly metrically subregular at x̄ ⇐⇒ ssubregAF(x̄, ȳ) < +∞.
It is easy to verify that (3.1) is strongly metrically subregular at x̄ ∈ S if and only

if (3.1) is metrically subregular at x̄ and S = {x̄}.
To present primal characterizations for strong metric subregularity of (3.1), we

study one inclusion which is given by contingent cone and graphical derivative.
For x̄ ∈ S and η ∈ (0,+∞) given, we consider the following inclusion:

DF−1(ȳ, x̄)(η1BY ) ∩ (T (A, x̄) + η2BX ) ⊂ BX ∀η1, η2 ≥ 0 with η1 + η2 < η.

(3.26)

Proposition 3.1 Let x̄ ∈ S and η ∈ (0,+∞) be such that (3.26) holds. Then S = {x̄}.
Proof Let x ∈ S. Then for any t > 0, one has

t (x − x̄) ∈ DF−1(ȳ, x̄)(0) ∩ T (A, x̄)

as gph(F) and A are convex. It follows from (3.26) that

t (x − x̄) ∈ BX ∀t > 0.

This implies that x = x̄ and thus S = {x̄} holds. The proof is complete. ��
The following theorem provides an accurate quantitative estimate on the modulus

of (3.25) and also gives primal characterizations for strong metric subregularity of
(3.1). The proof can be obtained by Theorem 3.1 and Proposition 3.1.

Theorem 3.3 Let x̄ ∈ S. Then

1

ssubregAF(x̄, ȳ)
= sup{η > 0 : (3.26) holds}. (3.27)

Proposition 3.2 Let x̄ ∈ S. Suppose that DF−1(ȳ, x̄)(BY ) ∩ (T (A, x̄) + BX ) ∩ BX

is relatively compact. Then ssubregAF(x̄, ȳ) < +∞ if and only if

DF−1(ȳ, x̄)(0) ∩ T (A, x̄) = {0}. (3.28)
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Proof The necessity part. By Theorem 3.3, there exists η > 0 such that (3.26) holds.
Then

DF−1(ȳ, x̄)(0) ∩ T (A, x̄) ⊂ εBX ∀ε > 0.

This means that (3.28) holds.
The sufficiency part. By using Theorem 3.3, we only need to prove that there exists

η > 0 such that (3.26) holds.
Suppose on the contrary that for any n ∈ N, there exist rn, sn ≥ 0 with rn +sn < 1

n ,
(yn, bn) ∈ BY × BX and xn ∈ X such that

xn ∈ (
DF−1(ȳ, x̄)(rn yn) ∩ (T (A, x̄) + snbn)

)\BX . (3.29)

This implies that

xn
‖xn‖ ∈ DF−1(ȳ, x̄)(BY ) ∩ (T (A, x̄) + BX ).

Since DF−1F(ȳ, x̄)(BY ) ∩ (T (A, x̄) + BX ) ∩ BX is relatively compact, without loss
of generality, we can assume that xn‖xn‖ → x0 with ‖x0‖ = 1 (considering subsequence
if necessary). By (3.29), one has

xn
‖xn‖ ∈ DF−1(ȳ, x̄)

(
rn

‖xn‖ yn
)

∩
(
T (A, x̄) + sn

‖xn‖bn
)

.

By taking the limit as n → ∞, one has

x0 ∈ DF−1(ȳ, x̄)(0) ∩ T (A, x̄),

which contradicts (3.28) since x0 �= 0. The proof is complete. ��

4 Equivalence with strong BCQ of convex constraint systems

In this section,wemainly study interrelationship between primal equivalent conditions
in Sect. 3 and strong BCQ of convex constraint system (3.1) introduced by Zheng
and Ng [24]. The main result in this section shows that primal equivalent conditions
obtained can characterize the strong BCQ of convex constraint system (3.1). We recall
some definitions and notations.

Let X∗,Y ∗ denote the dual spaces of X and Y respectively. For a closed convex
subset A of X and a point a ∈ A, we denote by δA the indicator function of A and
denote by N (A, a) the normal cone of A at a which is defined as

N (A, a) := {x∗ ∈ X∗ : 〈x∗, x − a〉 ≤ 0 ∀x ∈ A}.
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For a closed convex set-valued mapping F : X ⇒ Y , let D∗F(x, y) : Y ∗ ⇒ X∗
denote the coderivative of F at (x, y) ∈ gph(F) which is defined as

D∗F(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N (gph(F), (x, y))} ∀y∗ ∈ Y ∗.

For a proper lower semicontinuous convex function ψ : X → R ∪ {+∞}, recall that
the subdifferential of ψ at x̄ ∈ dom(ψ) := {x ∈ X : ψ(x) < +∞}, denoted by
∂ψ(x̄), is defined by

∂ψ(x̄) := {x∗ ∈ X∗ : 〈x∗, x − x̄〉 ≤ ψ(x) − ψ(x̄) ∀x ∈ X}.

Recall from [24] that convex constraint system (3.1) is said to have the strong BCQ
at x ∈ S if there exists τ ∈ (0,+∞) such that

N (S, x) ∩ BX∗ ⊂ τ(D∗F(x, ȳ)(BY ∗) + N (A, x) ∩ BX∗). (4.1)

It is known that Zheng and Ng [24] proved dual characterizations for metric sub-
regularity of a convex constraint system by strong BCQ; that is, convex constraint
system (3.1) is metrically subregular at x̄ ∈ S if and only if there exists τ > 0 such
that (4.1) holds for all x ∈ S close to x̄ with the same constant τ .

We are now in a position to investigate the equivalent relation between primal
space property of (3.4) and strong BCQ of (4.1) for convex constraint system (3.1).
The following proposition shows the accurate quantitative relation between them.

Proposition 4.1 Let x̄ ∈ S. Then

1

ηA(F, x̄, ȳ)
= inf{τ > 0 : ∃ δ > 0 s.t. (4.1) holds for any x ∈ S∩ B(x̄, δ)}. (4.2)

Proof We denote that

β := inf{τ > 0 : ∃ δ > 0 s.t. (4.1) holds for any x ∈ S ∩ B(x̄, δ)}.

Let τ > β. Then there exists δ > 0 such that (4.1) holds for all x ∈ S ∩ B(x̄, δ). Let
η ∈ (0, 1

τ
) and x ∈ S∩ B(x̄, δ). Take any η1, η2 ≥ 0 with η1 +η2 < η. Choose ε > 0

sufficiently small such that
(1 + ε)(η1 + η2) < η. (4.3)

We claim that

DF−1(ȳ, x)((1 + ε)η1BY ) ∩ (T (A, x) + (1 + ε)η2BX ) ⊂ T (S, x) + BX . (4.4)

Granting this, it follows that

DF−1(ȳ, x)((1 + ε)η1BY ) ∩ (T (A, x) + (1 + ε)η2BX ) ⊂ T (S, x) + (1 + ε)BX
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and thus (3.4) holds. This means that ηA(F, x̄, ȳ) ≥ η and

1

ηA(F, x̄, ȳ)
≤ β (4.5)

by taking limits as η ↑ 1
τ
and then τ ↓ β.

Suppose on the contrary that (4.4) does not hold. Then there exists x0 ∈ X such
that

x0 ∈ (
DF−1(ȳ, x)((1+ε)η1BY )∩(T (A, x)+(1+ε)η2BX )

)\T (S, x) + BX . (4.6)

By the separation theorem, there exists x∗
0 ∈ X∗ with ‖x∗

0‖ = 1 such that

〈x∗
0 , x0〉 > sup{〈x∗

0 , u〉 : u ∈ T (S, x) + BX } = 1. (4.7)

This implies that x∗
0 ∈ N (S, x) ∩ BX∗ . By virtue of the strong BCQ of (4.1), there

exist x∗
1 ∈ D∗F(x, ȳ)(y∗

1 ) for some y∗
1 ∈ BY ∗ and x∗

2 ∈ N (A, x) ∩ BX∗ such that

x∗
0 = τ(x∗

1 + x∗
2 ). (4.8)

By using (4.6), there exist v0 ∈ (1 + ε)η1BY and u0 ∈ (1 + ε)η2BX such that

x0 ∈ DF−1(ȳ, x)(v0) and x0 − u0 ∈ T (A, x).

Then,

〈x∗
1 , x0〉 ≤ 〈y∗

1 , v0〉 ≤ (1 + ε)η1

and

〈x∗
2 , x0〉 = 〈x∗

2 , x0 − u0 + u0〉 ≤ 〈x∗
2 , u0〉 ≤ (1 + ε)η2.

This and (4.3) imply that

〈x∗
0 , x0〉 = τ(〈x∗

1 , x0〉 + 〈x∗
2 , x0〉) ≤ τ(1 + ε)(η1 + η2) < 1,

which contradicts (4.7). Hence (4.4) holds.
Let η ∈ (0, ηA(F, x̄, ȳ)). Then there exists δ > 0 such that (3.4) holds for all

x ∈ S ∩ B(x̄, δ). Let τ > 1
η
and x ∈ S ∩ B(x̄, δ). Take any x∗ ∈ N (S, x)∩ BX∗ . Note

that

N (S, x) ∩ BX∗ = N (T (S, x), 0) ∩ BX∗ = ∂d(·, T (S, x))(0).

Then for any h ∈ X and any v ∈ DF(x, ȳ)(h), by Theorem 3.1, one has

〈x∗, h〉 ≤ d(h, T (S, x)) ≤ τ(d(0, DF(x, ȳ)(h)) + d(h, T (A, x)))

≤ τ(‖v‖ + d(h, T (A, x))).
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Let 
 : X × Y → R ∪ {+∞} be defined as


(h, v) := δT (gph(F),(x,ȳ))(h, v) + d(h, T (A, x)) + ‖v‖ ∀(h, v) ∈ X × Y.

Then 〈(
x∗

τ
, 0

)
, (h, v)

〉
≤ 
(h, v) − 
(0, 0) ∀(h, v) ∈ X × Y. (4.9)

Noting that
 is a proper lower semicontinuous convex function, it follows from (4.9)
that
(
x∗

τ
, 0

)
∈ ∂
(0, 0) = N (T (gph(F), (x, ȳ)), (0, 0)) + ∂d(·, T (A, x))(0) × BY ∗

= N (gph(F), (x, ȳ)) + (N (A, x) ∩ BX∗) × BY ∗

(the first equation follows from [19, Theorem 3.16]). This implies that

x∗ ∈ τ(D∗F(x, ȳ)(BY ∗) + N (A, x) ∩ BX∗)

and consequently

N (S, x) ∩ BX∗ ⊂ τ(D∗F(x, ȳ)(BY ∗) + N (A, x) ∩ BX∗).

This means that (4.1) holds and thus β ≤ τ . By taking limits as τ ↓ 1
η
and then

η ↑ ηA(F, x̄, ȳ), one has

β ≤ 1

ηA(F, x̄, ȳ)
.

This and (4.5) imply that (4.2) holds. The proof is complete. ��
Remark 4.1 Given x̄ ∈ S, by Theorem 3.1 and Proposition 4.1, one has that

τA(F, x̄, ȳ) = inf{τ > 0 : ∃ δ > 0 s.t. (4.1) holds for any x ∈ S ∩ B(x̄, δ)}.

This shows that primal space property (3.5) can also be used to characterize the strong
BCQ of (4.1).

5 Conclusions

This paper is devoted to the study of metric subregularity for a convex constraint
system. Compared with the literature in dealing with metric subregularity by using
dual tools like normal cone, subdifferential or coderivative, several primal equivalent
conditions are established in terms of contingent cones and graphical derivatives. It is
proved that these primal equivalent conditions can characterize the strong BCQ of the
convex constraint system given in [24]. This also demonstrates that the strong BCQ is
essentially the dual space counterpart of these primal space properties.
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