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Abstract In this paper we identify various inaccuracies in the paper by Saxena and
Arora (Optimization 39:33–42, 1997). In particular, we observe that their algorithm
does not guarantee optimality, contrary to what is claimed. Experimental analysis has
been carried out to assess the value of this algorithm as a heuristic. The results disclose
that for some classes of problems the Saxena–Arora algorithm is effective in achieving
good quality solutions while for some other classes of problems, its performance is
poor. We also discuss similar inaccuracies in another related paper.

Keywords 0-1 programming · Quadratic programming · Agorithms · Set covering
problem · Heuristic

1 Introduction

The set covering problem is well studied in the operations research literature [2,3,5,8,
13]. Most of the works on the problem reported in the literature have a linear objective
function. Bazaraa and Goode [3] introduced the quadratic set covering problem (QSP)
and proposed a cutting plane algorithm to solve it. Adams [1] andLiberti [14] proposed
linearization techniques for binary quadratic programs. SinceQSP is a binary quadratic
programming problem, these linearization techniques can be used to formulate QSP
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as a 0–1 integer linear program. QSP is known to be NP-hard and polynomial time
approximation algorithms are also available [7] to solve special classes of this problem.

Saxena and Arora [17] studied QSP and discussed various structural properties
of the problem along with a linearization algorithm which is claimed to produce an
optimal solution. The notion of linearization used in [17] is different from the concept
of “linearization” used by Adams [1] and Liberti [14] and also different from what is
discussed in [6,12,16].

In this paper, we show that the properties of QSP established in [17] are incorrect
and that the algorithm they proposed need not produce an optimal solution. Gupta and
Saxena [10] extended the results of [17] to the quadratic set packing and partitioning
problems. These extensions also suffer from the same drawbacks as that of [17] and
the algorithm in [10] could also produce a non-optimal solution, contrary to what is
claimed. Since the algorithm of [17] is not guaranteed to produce an optimal solution,
it will be interesting to examine its value as a heuristic. Our experimental analysis
discloses that the algorithm of [17] produces good solutions for some classes of
problems while it produces very poor solutions for other classes.

2 The quadratic set covering problem

Let I = {1, 2, . . . ,m} be a finite set and P = {P1, P2, . . . , Pn} be a family of subsets
of I . The index set for the elements of P is denoted by J = {1, 2, . . . , n}. For each
element j ∈ J , a cost c j is prescribed and for each element (i, j) ∈ J × J , a cost di j
is also prescribed. We refer to c j the linear cost of the set Pj and c = (c1, . . . , cn) the
linear cost vector. Similarly di j is referred to as the quadratic cost corresponding to
the ordered pair (Pi , Pj ) and the matrix D = (di j )n×n is referred to as the quadratic
cost matrix.

A subset V of J is said to be a cover of I , if ∪ j∈V Pj = I . Then the linear set
covering problem (LSP) is to find a cover L = {π(1), . . . , π(l)} such that ∑l

i=1 cπ(i)

is minimized. Likewise the quadratic set covering problem (QSP) is to select a cover
L = {σ(1), . . . , σ (l)} such that ∑l

i=1 cσ(i) + ∑l
i=1

∑l
j=1 dσ(i)σ ( j) is minimized.

For each i ∈ I , consider the vector ai = (ai1, ai2, . . . , ain) where

ai j =
{
1 if i ∈ Pj

0 otherwise.

and A = (ai j )m×n be an m × n matrix. Also, consider the decision variables
x1, x2, . . . , xn where

x j =
{
1 if set Pj is selected

0 otherwise.

The vector of decision variables is represented by x = (x1, . . . , xn)T and 1 is a
column vector of size m where all entries are equal to 1. Then the LSP and QSP can
be formulated respectively as 0–1 integer programs
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On a linearization technique 1359

LSP: Maximize cx

Subject to Ax ≥ 1 (1)

x ∈ {0, 1}n (2)

and

QSP : Minimize cx + xTDx

Subject to Ax ≥ 1 (3)

x ∈ {0, 1}n (4)

As indicated in [17] the continuous relaxation of QSP, denoted by QSP
′
, is obtained

by replacing the constraint x ∈ {0, 1}n by x ≥ 0, where 0 is the zero vector of size
n. The family of feasible solutions of both LSP and QSP is denoted by S̄ = {x|Ax ≥
1, x ∈ {0, 1}n}.

The following definitions are taken directly from [17]. Any x ∈ S̄ is called a cover
solution and an optimal solution to the underlying problem (LSP or QSP) is called
an optimal cover solution. Note that each cover solution corresponds to a cover and
vice versa. A cover V is said to be redundant if V − { j} for j ∈ V is also a cover.
A cover which is not redundant is called a prime cover. The incidence vector x that
corresponds to a prime cover is called a prime cover solution.

Garfinkel and Nemhauser [8] proved that if the objective function in LSP has a
finite optimal value then there exists a prime cover solution for which this value is
attained whenever c ≥ 0.

Saxena and Arora claimed an extension of this result to QSP
′
, assuming c ≥ 0 and

D is symmetric and positive semi-definite. More precisely, they claimed:

Theorem 1 (Theorem 3 of [17]) If the objective function in QSP
′
has finite optimal

value then there exists a prime cover solution where this value is attained.

This result however is not true as indicated by the following example. Let

c = (0, 0, 0), A =
(
1 1 0
1 0 1

)

and D =
⎛

⎝
2 −1 −1

−1 1 0
−1 0 1

⎞

⎠

Note that D is a symmetric and positive semi-definite matrix. For the QSP and QSP
′

with A,D and c defined as above, it can be verified that x∗ = (1, 1, 1)T is an optimal
solution with the objective function value zero for both problems. The optimal cover
corresponding to x∗ is V ∗ = {1, 2, 3} which is a redundant cover since V ∗ − {2} =
{1, 3} is also a cover. All other cover solutions and their respective objective function
values are listed below:

x1 = (1, 0, 1)T redundant cover solution f (x1) = 1

x2 = (1, 1, 0)T redundant cover solution f (x2) = 1
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x3 = (0, 1, 1)T prime cover solution f (x3) = 2

x4 = (1, 0, 0)T prime cover solution f (x4) = 2

None of these corresponds to an optimal solution for QSP or QSP
′
. In particular,

no prime cover solution is optimal for the instances of QSP and QSP
′
constructed

above, contradicting Theorem 1. This example also shows that Theorem 1 cannot be
corrected by replacing QSP

′
with QSP in the theorem.

We now show that a variation of Theorem 1 is true, which relaxes the requirement
of D being positive semi-definite while sign restrictions are imposed on its elements.
This is summarized in our next theorem.

Theorem 2 There always exists a prime cover optimal solution for QSP if c and D
are non-negative.

Proof Let x0 ∈ S̄ be an optimal solution of QSP. Then the corresponding optimal
objective function value is

f (x0) = cx0 + x0
T
Dx0

Let Jo be the cover corresponding to the solution x0. If Jo is a prime cover then
statement of the theorem is correct. Otherwise we can construct a prime cover, let say
J1, from Jo by dropping the redundant columns. Let x1 be the solution of QSP with
respect to the prime cover J1 and

f (x1) = cx1 + x1
T
Dx1.

Since c and D are non-negative and J1 ⊂ J0,

f (x0) ≥ f (x1)

Since x0 is an optimal solution to QSP, f (x0) = f (x1) and the and the result
follows. �	

The family of feasible solutions for continuous relaxations of LSP and QSP is
represented by S = {x|Ax ≥ 1, x ≥ 0}. The continuous relaxation of LSP is denoted
by LSP

′
.

Saxena and Arora [17] also proposed an algorithm to solve QSP and claimed that
it will produce an optimal solution. Their algorithm is re-stated here.

The Saxena–Arora algorithm for QSP

Step 1: From the QSP, construct the corresponding QSP
′

Step 2: Choose a feasible solution x0 ∈ S such that ∇ f (x0) �= 0 and form the
corresponding linear programming problem LSP

′
as

LSP
′

Minimize x∈S∇ f (x0)T x. (5)

On solving (LSP
′
), let x1, be its optimal solution. Let S1 = {x1}.
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Step 3: Starting with the point x1, form the corresponding LSP
′
, and let its optimal

solution be x2 �= x1. Update S1 i.e. S1 = {x1, x2}.
Step 4: Repeat Step 3 for the point x2, and suppose at the ith stage S1 =
{x1, x2, . . . , xi }. Stop, if at the (i +1)th stage xi+1 ∈ S1 , then xi+1, is the optimal
solution of QSP

′
.

Step 5: If xi+1 is an optimal solution of the form 0 or 1 then it is a solution of QSP
otherwise, go to Step 6.
Step 6: Apply Gomory cuts to find a solution of the 0 or 1 form and the corre-
sponding prime cover.

The algorithm discussed above suffers from various drawbacks as listed below.

1. Even if c ≥ 0, and D is symmetric and positive semi-definite, the LSP
′
in Step

2 could be unbounded and hence it need not have an optimal solution for all
instances.

2. Suppose that we apply the algorithm only for instances where LSP
′
in Step 2 is

bounded in all iterations. Even then, the solution produced in Step 4 could be
non-optimal to QSP

′
.

3. If the algorithm terminates in Step 5 the resulting solution could be non-optimal
to QSP.

4. If the algorithm successfully moves to Step 6, then also the solution produced
could be non-optimal.

We now illustrate each of the drawbacks discussed above using counterexamples.

1. Since D is a positive semi-definite matrix and c ≥ 0, the objective function value
of QSP

′
is bounded below by zero. However, LSP

′
in Step 2 or in Step 3 need not

be bounded below. Let

c = (0, 0, 0, 0), A =
⎛

⎝
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎠ and D =

⎛

⎜
⎜
⎝

10 −3 −4 −4
−3 2 1 1
−4 1 3 1
−4 1 1 3

⎞

⎟
⎟
⎠

Note that D is symmetric and positive semi-definite. Consider the instance of
QSP with the above values for c, D, and A. Starting with the feasible solution
x0 = (1, 0, 0, 0)T ∈ S of QSP

′
, we get the LSP

′
in Step 2 as

Minimize ∇ f (x0)T x = 20x1 − 6x2 − 8x3 − 8x4
Subject to: x1 + x2 ≥ 1

x1 + x3 ≥ 1

x1 + x4 ≥ 1

x j ≥ 0 for j = 1, 2, 3, 4.

This problem is unbounded. Thus the algorithm can not be applied in this case.
The immediate conclusion is that the Saxena–Arora [17] algorithm is potentially
applicable only to those QSP instances where the resulting LSP

′
is bounded in

every step.
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2. The algorithm can fail in Step 4. The Saxena–Arora algorithm claims to produce
an optimal solution of QSP

′
in Step 4 but this may not be true always. Consider

the data

c = (0, 0, 0, 0), A =
⎛

⎝
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎠ and D =

⎛

⎜
⎜
⎝

10 2 2 2
2 3 1 1
2 1 3 1
2 1 1 4

⎞

⎟
⎟
⎠

Note thatD is symmetric and positive semi-definite. Consider the instance of QSP
with the above values for c, D, and A, we get the QSP as

Min f (x)=10x21 +3x22 + 3x23+4x24+4x1x2+4x1x3+4x1x4 + 2x2x3+2x2x4+2x3x4
st: x1 + x2 ≥ 1

x1 + x3 ≥ 1

x1 + x4 ≥ 1

x j ∈ {0, 1} for j = 1, 2, 3, 4.

and

∇ f (x) =(20x1 + 4x2 + 4x3 + 4x4, 6x2 + 4x1 + 2x3 + 2x4,

6x3 + 4x1 + 2x2 + 2x4, 8x4 + 4x1 + 2x2 + 2x3)
T

Select the feasible solution x0 = (1, 0, 0, 0)T ∈ S of QSP
′
. Construct the LSP

′

with respect to x0, the objective function of LSP
′
is

∇ f (x0)T x =20x1 + 4x2 + 4x3 + 4x4

Note that x1 = (0, 1, 1, 1)T is an optimal solution to this LSP
′
. Thus, we set

S1 = {x1}. Now, using x1 construct the new LSP
′
, and the optimal solution to this

LSP
′
is x2 = (1, 0, 0, 0)T . Since x2 /∈ S1, construct the new LSP

′
, the optimal

solution to this LSP
′
is x3 = (0, 1, 1, 1)T . Since x3 ∈ S1, in Step 4 the algorithm

concludes that x3 is an optimal solution of QSP
′
with objective function value

16. However, x∗ = (0.714286, 0.285714, 0.285714, 0.285714)T which is a better
solution for QSP

′
, contradicting the optimality of x3. Thus the algorithm could

fail in Step 4.
3. As per the Saxena–Arora algorithm, Step 5 produces an optimal solution to QSP

′

and if this optimal solution is binary, they claim this solution to be an optimal
solution of QSP. We now show that a binary solution produced in Step 5 need not
be an optimal solution to QSP. For example.
Consider the data

c = (0, 0, 0, 0), A =
⎛

⎝
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎠ and D =

⎛

⎜
⎜
⎝

4 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

⎞

⎟
⎟
⎠
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Note that D is a symmetric, positive semi-definite and non-negative. As noted
in Theorem 2, a prime cover optimal solution exists for this QSP. But still the
Saxena–Arora algorithm fails to produce an optimal solution for QSP. Consider
the instance of QSP with the above values for c, D, and A.
Select the feasible solution x0 = ( 3

4 ,
1
4 ,

1
4 ,

1
4

)T ∈ S which is also an optimal

solution of QSP
′
. Construct the LSP

′
with respect to x0 and the objective function

is ∇ f (x0)T x = 15
2 x1 + 5

2 x2 + 5
2 x3 + 5

2 x4.

x1 = (0, 1, 1, 1)T is an optimal solution to this LSP
′
. Thus, we set S1 = {x1}.

Now, using x1, construct the new LSP
′
with the objective function as∇ f (x1)T x =

6x1 + 4x2 + 4x3 + 4x4. An optimal solution to this LSP
′
is x2 = (1, 0, 0, 0)T .

Since x2 /∈ S1, we update S1 = {x1, x2}. Starting with x2, construct the LSP′
with

the objective function ∇ f (x2)T x = 8x1 + 2x2 + 2x3 + 2x4. An optimal solution
to this LSP

′
is x3 = (0, 1, 1, 1)T . Since x3 ∈ S1, the algorithm concludes that

x3 is an optimal solution of QSP
′
. Since x3 contains 0 and 1 entries only, as per

the algorithm, it is an optimal solution to QSP and the corresponding objective
function value is 6.
However x∗ = (1, 0, 0, 0)T is a better solution to the QSP with objective function
value f (x∗) = 4. Thus, the solution produced by the the Saxena–Arora algorithm
for the above instance of QSP is not optimal.

In the previous example if x0 = (0, 1, 1, 1)T is selected instead of
( 3
4 ,

1
4 ,

1
4 ,

1
4

)T
,

the algorithm produces x1 = (1, 0, 0, 0), x2 = (0, 1, 1, 1), and x3 = (1, 0, 0, 0),
leading to an accurate optimal solution x3 = (1, 0, 0, 0) to QSP. Note that x0 =
(0, 1, 1, 1)T and (1, 0, 0, 0)T are alternate optimal solutions of LSP

′
with the

objective function ∇ f (x0)T x = 15
2 x1 + 5

2 x2 + 5
2 x3 + 5

2 x4. It is easy to show that
trouble of the Saxena–Arora algorithm is not because of the presence of alternate
optimal solutions, leading to a choice in selection. This can be demonstrated with
the same example but by selecting a different starting point as given below.

Select the feasible solution x0 = (
1, 1

2 , 0, 0
)T ∈ S of QSP

′
. Construct the LSP

′

with respect to x0 and the objective function is∇ f (x0)T x = 9x1+4x2+2x3+2x4.
x1 = (0, 1, 1, 1)T is the unique optimal solution to this LSP

′
(easily verifiable

by enumerating the basic feasible solutions). Thus, we set S1 = {x1}. Now, using
x1, construct the new LSP

′
with the objective function as ∇ f (x1)T x = 6x1 +

4x2 + 4x3 + 4x4. The unique optimal solution to this LSP
′
is x2 = (1, 0, 0, 0)T .

Since x2 /∈ S1, we update S1 = {x1, x2}. Starting with x2, construct the LSP′
with

the objective function ∇ f (x2)T x = 8x1 + 2x2 + 2x3 + 2x4. The unique optimal
solution to this LSP

′
is x3 = (0, 1, 1, 1)T . Since x3 ∈ S1, the algorithm concludes

that x3 is an optimal solution of QSP
′
. Since x3 contains 0 and 1 entries only, as

per the algorithm, it is an optimal solution to QSP and the corresponding objective
function value is 6. The solution produced by the the Saxena–Arora algorithm for
the above instance of QSP is not optimal.

4. As per the Saxena–Arora algorithm, Step 5 produces an optimal solution to QSP
′

and if this optimal solution is not binary, the algorithm proceeds to Step 6 where
Gomory cuts are applied to find a solution which they claim to be an optimal

123
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solution to QSP. We now show that Step 6 need not produce an optimal solution
to QSP even if the solution produced in Step 4 is optimal for QSP

′
.

In point 3 we gave a counterexample where the solution is a basic feasible solution
(BFS) to LSP

′
which is binary but not optimal to QSP

′
. Note that QSP

′
is a

continuous quadratic problem and an optimal solution need not correspond to an
extreme point. We now illustrate that if the LSP

′
solver works with any solution

(such as interior point methods) and not necessarily with BFS (as in simplex
method) it may be possible to get an optimal solution to QSP

′
in Step 4. For

example

Consider the instance of QSP from the previous case. x0 = ( 3
4 ,

1
4 ,

1
4 ,

1
4

)T ∈ S is an

optimal solution of QSP
′
. Construct the LSP

′
with respect to x0 and the resulting

objective function is∇ f (x0)T x = 15
2 x1+ 5

2 x2+ 5
2 x3+ 5

2 x4. The algorithmproduces

x1 = ( 3
4 ,

1
4 ,

1
4 ,

1
4

)T
, x2 = ( 3

4 ,
1
4 ,

1
4 ,

1
4

)T
, leading to an accurate optimal solution

x2 = ( 34 ,
1
4 ,

1
4 ,

1
4 ) to QSP

′
and the algorithm successfully completes Step 4.

To apply Gomory cut,first reduce the non-basic feasible solution (non-BFS) to a
basic feasible solution (BFS). From the previous example, the optimal non-BFS( 3
4 ,

1
4 ,

1
4 ,

1
4

)
of LSP

′
to an optimal BFS x1 = (0, 1, 1, 1)T of LSP

′
. Since this is

binary , no cutting plane will be added and a Gomory cut phase terminates with
the non-optimal solution x1 = (0, 1, 1, 1)T of QSP.
Alternatively if we do not reduce the non-BFS to a BFS to apply Gomory cuts, but
use any Integer programming (IP) solver to compute an optimal integer solution
to LSP

′
we could still get non-optimal solution. For example: Solving the LSP

′

at
( 3
4 ,

1
4 ,

1
4 ,

1
4

)
for 0-1 optimal solution we could get x1 = (0, 1, 1, 1)T as the

optimal 0-1 solution of LSP
′
. This is not an optimal solution to QSP. (We note that

the paper [17] does not say anything about the use of general IP solver; but we
mentioned it here for the clarity and completeness).

3 The quadratic set packing and partitioning problems

A subset H of J is said to be a pack of I if
⋃

j∈H Pj = I , and for j, k ∈ H , j �= k,
implies Pj

⋂
Pk = ∅. Then the linear set packing problem (LSPP) is to select a pack

V = {π(1), . . . , π(v)} such that
∑v

i=1 cπ(i) is maximized. Likewise, the quadratic
set packing problem (QSPP) is to select a pack L = {σ(1), . . . , σ (l)} such that∑l

i=1 cσ(i) + ∑l
i=1

∑l
j=1 dσ(i)σ ( j) is maximized.

Let A = (ai j )m×n be as defined in Sect. 2. Also, consider the decision variables
x1, x2, . . . , xn where

x j =
{
1 if j is in the pack

0 otherwise.

The vector of decision variables is represented as x = (x1, . . . , xn)T . Then the
LSPP and QSPP can be formulated respectively as 0–1 integer programs
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LSPP: Maximize cx

Subject to Ax ≤ 1 (6)

x ∈ {0, 1}n (7)

and

QSPP: Maximize cx + xTDx

Subject to Ax ≤ 1 (8)

x ∈ {0, 1}n (9)

The continuous relaxations of LSPP and QSPP, denoted respectively by LSPP(C)
and QSPP(C), are obtained by replacing the constraint x ∈ {0, 1}n by x ≥ 0, respec-
tively in LSPP and QSPP.

The family of feasible solutions of both LSPP andQSPP is denoted by S = {x|Ax ≤
1, x ∈ {0, 1}n} and the family of feasible solutions for their continuous relaxations is
denoted by S̄ = {x|Ax ≤ 1, x ≥ 0}.

Following are some definitions given in [10]. A solution x ∈ S which satisfies
(8) and (9) is said to be a pack solution. For any pack V , a column of A corre-
sponding to j∗ ∈ V is said to be redundant if V − { j∗} is also a pack. If a pack
corresponds to one or more redundant columns, it is called a redundant pack. A pack
V ∗ is said to be a prime pack, if none of the columns corresponding to j∗ ∈ V ∗
is redundant. A solution corresponding to the prime pack is called a prime packing
solution.

From the definition of a redundant column given above (as in [10]), zero vector is
the only prime packing solution for the set packing problem. Thus the results of [10]
are incorrect with respect to their definitions. We believe the “−” sign in the above
definition of redundant column discussed in [10] is a typo and it is probably supposed
to be “∪′′ which is consistent with the definitions given in [11] by the same authors.
Hereafter, we use this modified definition.

Thus, for any pack V , a column ofA corresponding to j ∈ J is said to be redundant
if V ∪{ j} is also a pack. If a pack contains one or more redundant columns, it is called
a redundant pack. A pack V ∗ is said to be a prime pack, if none of the columns
corresponding to j ∈ J is redundant. A solution corresponding to the prime pack is
called a prime packing solution.

Gupta and Saxena [10] assumed D to be a negative semi-definite matrix and
extended most of the results for QSP in [17] to QSPP. In particular, they claimed
that:

Theorem 3 (Theorem 2 of [10]) If the objective function in QSPP has finite value
then there exists a prime packing solution where this value is attained.

Because of the definition of the prime pack solution given by Gupta and Saxena
[10], a prime pack is always a zero vector hence the theorem is given incorrect. The
theorem is still incorrect even if we use the modified definition [11] which is indicated
above.
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1366 P. Pandey, A. P. Punnen

For example, consider an instance of QSPP with

c = (0, 0, 0), A =
[
1 1 0
1 0 1

]

, D =
⎡

⎣
−2 1 0
1 −2 1
0 1 −2

⎤

⎦

Note that D is symmetric and negative semi-definite.
x∗ = (0, 0, 0)T is xQSPP with the objective function value zero. We list below all

prime pack solutions with the objective function values.

x1 = {1, 0, 0} prime pack solution f (x1) = −2

x2 = {0, 1, 1} prime pack solution f (x2) = −2

Note that none of these solutions are optimal.
We now show that a variation of Theorem 3 is true and this is summarized in our

next theorem.

Theorem 4 There always exists a primepack optimal solution forQSPP if all elements
of c and D are non-negative.

Proof Let x0 ∈ S̄ be an optimal solution of QSPP. Then the corresponding optimal
objective function value is

f (x0) = cx0 + x0
T
Dx0

Let Jo be the pack corresponding to the solution x0. If Jo is a prime pack then we
are done. Otherwise we can construct a prime pack, let say J1, from Jo by adding the
redundant columns. Let x1 be the solution of QSP with respect to the prime pack J1
and

f (x1) = cx1 + x1
T
Dx1.

Since J1 obtained by adding redundant columns to J0, therefore, J0 ⊂ J1. When
all elements of c and D are non-negative, or

f (x0) ≤ f (x1)

Since x0 is an optimal solution to QSPP, f (x0) = f (x1) and the proof follows. �	
Along the same lines as in [17], the authors of [10], provide a solution algorithm

for QSPP. Following the insight generated in our counter examples in Sect. 2, and by
the above observation, it is not difficult to construct counter examples to show that the
algorithm of [10] need not provide an optimal solution for QSPP.

If in Eq. (8) we replace constraints Ax ≤ 1 with Ax = 1, then QSPP changes
into quadratic set partitioning problem. Gupta and Saxena [10] proposed a similar
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algorithm for the quadratic set partitioning problem, which has similar issues as in
the quadratic set packing problem. We omit the discussion about the quadratic set
partitioning problem.

4 Computational results

Since the algorithm of [17] is not guaranteed to be optimal, it would be interesting to
examine its value as a heuristic to solve QSP. We have conducted some preliminary
experimental analysis to assess the value of the Saxena–Arora algorithm as a heuristic
using different classes of test problems.

The test data was taken from standard benchmark problems for the set covering
problem [2,4,9], and the vertex covering problem [18], with appropriate amendments
to incorporate quadratic objective. In this class, we took only small size instances since
the quadratic problem ismuchmore difficult and time consuming to solve compared to
their linear counterparts.We have also generated some quadratic vertex cover instances
on random graphs taken from [15]. We divided computational experiments into two
different categories, with each c ≥ 0, while in category 1:D is a positive semi-definite
matrix and in category 2: D is non-negative and positive semi-definite.

Each element of the linear cost vector c is a random integer from the interval [3,5].
Since the quadratic cost matrixD is positive semi-definite, there exists a square matrix
B such that D = BBT . This D is generated by a random square matrix B where each
element of B is a random integer between −10 and 10. When D is non-negative and
positive semi-definite, each element of B is selected as a random integer between 0
and 20.

The Saxena–Arora algorithm was coded in C++ and tested on a PC with windows
7 operating system, Intel 3770 i7 3.40 GHz processor and with 16 GB of RAM.
We also used CPLEX 0-1 integer quadratic solver (version 12.5) to compute exact
(heuristic) solutions. For each instance that we tested, we set CPLEX time limit to
be the same as the time taken by Saxena–Arora algorithm and also run CPLEX by
doubling this running time. These two implementations provide heuristic solutions
and were compared with the solution produced by the Saxena–Arora algorithm.

In the tables, t1 is the cpu time taken by Saxena–Arora algorithm. The column
“CPLEX Sol (t1)” represents the heuristic solution obtained by CPLEX by fixing its
running time to t1 and the column “CPLEX Sol (2t1)” represents CPLEX run with
2t1 upper bound on the execution time. The column “negative entries in Q” provides
percentage of negative entries in the matrix D. The column “Sol” refers the objective
function values. CPLEX quadratic solver takes more time to solve QSP to optimality
when D is positive semi-definite compare to the instances when D is non-negative
and positive semi-definite. Therefore, Table 1 reports lower bound value and Table 2
reports optimal solution value.

When D is a random positive semi-definite matrix, Table 1 shows that the Saxena–
Arora algorithm does not return a good quality solution for QSP. Note that a general
purpose solver like CPLEX obtained much better solutions within the same time limit
for the test problems used. But when D is non-negative and positive semi-definite,
Table 2 shows that the Saxena–Arora algorithm produced solutions as good as those
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produced by CPLEX for many instances. For vertex cover instances the Saxena–Arora
algorithm produced an optimal solution. For the set cover instances CPLEX produces
better solutions than the Saxena–Arora algorithm. Thus, for D is non-negative and
positive semi-definite, the Saxena–Arora algorithm could be used as a heuristic to
solve QSP. As our counter example indicates, even for this class the Saxena–Arora
algorithm need not produce an optimal solution.
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