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Abstract This article considers the single-machine serial-batching scheduling prob-
lem with a machine availability constraint, position-dependent processing time, and
time-dependent set-up time. The objective of this problem is to make the decision of
batching jobs and sequencing batches to minimize the makespan. To solve the prob-
lem, three cases of machine non-availability periods are considered, and the structural
properties of the optimal solution are derived for each case. Based on these structural
properties, an optimization algorithm is developed and an example is proposed to
illustrate this algorithm.
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1 Introduction

In classic deterministic scheduling models, the job processing times are treated as
certain given constants, but this is not appropriate for all actual situations. There
are many real-life production situations where the job processing times may vary
over time due to the learning effect. Biskup [1] considered the learning effect in the
scheduling problems for the first time, and he pointed out that the learning effects
have been observed in numerous practical situations in different branches of industry.
However, many studies on the scheduling problem with the learning effect assumed
that the machines are available all the time. This assumption may not be true in
real production settings. Machine breakdown and preventive maintenance may occur
during the scheduling period. In this paper we investigate the scheduling problem on
a single serial-batching machine with the learning effect and an availability constraint
for the deterministic case. To the best of our knowledge, this is the first attempt to
investigate this type of problem.

Wright [2] first found the impact of learning on productivity in the aircraft industry.
Then, Biskup [1] and Chen and Wang [3] are among the pioneers that combined the
learning effect and scheduling fields. Afterwards, more researches have been devoted
to investigating the learning effects inmany scheduling situations. Recently,Wang and
Wang [4] studied a new scheduling model with sum-of-logarithm-processing-times
based and position based learning effects. Based on the proposed model, they show
that some single-machine scheduling problems are still polynomially solvable. Lee
[5] studied a scheduling model where the learning effect, deteriorating jobs, and the
setup times are considered simultaneously. Some optimal schedules are proposed for
some single-machine scheduling problems. Cheng et al. [6] introduced a scheduling
model with a position-weighted learning effect. They develop some optimal solutions
to minimize the makespan and the total completion time, and an optimal solution is
also provided to minimize the total tardiness under an agreeable situation. Wang and
Wang [7] considered flowshop scheduling problems with a general exponential learn-
ing effect, and several heuristic algorithms are developed for five objective functions:
the makespan, the total completion time, the total weighted completion time, the total
weighted discounted completion time, and the sum of the quadratic job completion
times. The worst-case bound of each heuristic algorithm is analyzed. Luo and Zhang
[8] investigated a simple proof technique to analyze the scheduling models with the
learning effects. Based on the famous Lagrange mean value theorem, a simpler tech-
nique is proposed to simplify the proofs. Based on a common flow allowance, Li et
al. [9] studied a single-machine due-window assignment scheduling problem with
learning effect and controllable processing times, and the objective is to minimize a
linear combination of earliness, tardiness, window location, window size, makespan,
and resource consumption. A polynomial-time algorithm is developed to solve them,
respectively.

The majority of the scheduling literature carries a common assumption that
machines are available simultaneously. However, the machine may not always be
available in real industrial setting, and it is mainly due to machine breakdowns or
preventive maintenance during the scheduling period. Many researchers have focused
on this type of the scheduling problems. Based on various performance measures and
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various machine environments, Lee [10] presented an extensive study of the single
and parallel machine scheduling problems with an availability constraint. Lee [11]
investigated the model of the two-machine flowshop problem with the availability
constraint on one machine and both machines, respectively. Dynamic programming
algorithms are developed to solve the problems optimally and heuristic methods are
proposed with an error bound analysis. Zhong et al. [12] studied an order acceptance
and scheduling model with machine availability constraints, where the machine is
available to process orders only within a number of discontinuous time intervals. The
objective is to minimize the makespan of all accepted orders plus the total penalty
of all rejected/outsourced orders, and the approximability of the model and some of
its important special cases are studied. Kacem et al. [13] considered the maximiza-
tion of the weighted number of early jobs on a single machine with non-availability
constraints. Both the resumable and the non-resumable cases are investigated, and
some polynomial time approximation schemes are developed to solve them. Mor and
Mosheiov [14] studied single-machine scheduling problems with an unavailability
constraint and position-dependent processing times. The objectives are to minimize
makespan, minimum total completion time, and minimum number of tardy jobs.
Heuristics are developed to solve them, respectively, and lower bounds, worst case
analysis, and asymptotic optimality are also discussed. Wu and Lee [15] considered a
single-machine scheduling problemwith learning effect and an availability constraint.
They showed that the shortest processing time rule provides the optimal schedules for
the makespan and the total completion time minimization problems when jobs are
assumed to be resumable.

The batch production is an important class of scheduling problems, and many
researchers have investigated the batching scheduling problems, i.e., parallel-batching
and serial-batching problems. The parallel-batching scheduling problems with dete-
rioration and/or learning effects have been studied by several researchers in the last
decade, including Yang and Kuo [16] and Li et al. [17]. The problem studied in this
paper is similar to the group scheduling problem with the effect of learning which
has been studied extensively, including Yang [21], Bai et al. [22], and Huang et al.
[23]. There are some similarities and differences between group and serial-batching
scheduling problems, andwe have analyzed in depth in [24].We also have investigated
some serial-batching scheduling problems with deterioration and learning effects.
In [18], the problem of coordinated production and transportation was investigated,
where the deteriorating jobs are processed on a serial-batching machine in an alu-
minum manufacturing factory. Two scheduling models with and without buffers are
considered, and we developed the optimization algorithm and heuristic algorithm to
solve them. In [19], a scheduling model with the features of deteriorating jobs, serial
batches, multiple job types, and setup times are considered simultaneously. In [20],
the serial-batching scheduling problems with the effects of deterioration and learn-
ing are considered simultaneous. This paper differs from our previous research in the
following two aspects. Firstly, unlike our previous papers that assume machine avail-
ability at all times, in this paper deterministic availability constraint is imposed on the
machine according to the practical production situation at the factory. Secondly, we
investigate the different position-dependent learning effect as function of the actual
job processing time.
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The reminder of this paper is organized as follows. The problem description is
given in Sect. 2. In Sect. 3, the structure properties of three cases for the makespan
minimization problem are analyzed and our solution procedure is presented. Finally,
the conclusion is given in Sect. 4.

2 Notations and problem statement

In this section, a new scheduling model is investigated by extending Wang and Xia’s
idea [25] to the context of serial-batching scheduling with an availability constraint.
The model is described as follows. There are given n independent and non-preemptive
jobs J1, J2, . . . , Jn to be processed on a single serial-batching machine. All jobs
are first partitioned into multiple serial batches, and then these different batches are
processed on a single machine. Serial batches require that all the jobs within the same
batch are processed one after another in a serial fashion [26], and the setup operation is
needed before processing each batch. The general model of the job processing time is
considered from Wang and Xia [25], and it is based on a position-dependent learning
effect. That is, when Ji is scheduled in the position r , the actual processing time of
job Ji is

pir = pi (a − br) (1)

where pi is the normal processing time, a and b denote a constant number and a
learning ratio. Here a, b > 0, it is assumed that a − bn > 0, and the values of these
parameters are determined based on the machine’s status and the practical production
situations. All jobs are available for processing at time t0.

The setup operation is used for adjustment of related assistive equipment, and longer
setup time might be necessary as the assistive equipment’s condition worsens. As in
[27], the setup time s for a batch is also defined as a simple linear function of its
starting time t , and it is defined as

s = θ t (2)

where θ is the deteriorating rate of the setup time.
Let c denote the capacity of the serial-batching machine, i.e., the maximum number

of jobs in a batch. Also, we denote the number of batches and the number of jobs in the
kth batch bk as m and nk , i.e., nk ≤ c, k = 1, 2, . . . ,m. Here we also investigate the
situation that themachine is not available from the period d1 to d2 [28],where 0 ≤ d1 ≤
d2. Thus, resumable jobs are considered in the present paper. If a job is interrupted by
the start time of a non-availability period, and it does not need to be restarted and can
continue to be processed after the machine becomes available again, then this job is
said to be resumable [28,29]. The objective of this paper is to find an optimal schedule
tominimize themakespan. For a given schedule π = {J1, J2, . . . , Jn}, letCi (π) and
C(bk) represent the completion times of the job Ji and the batch bk , respectively.Also,
let Cmax = max{Ci |i = 1, 2, . . . , n} represent the makespan based on the traditional
notation and m represent the number of batches in a schedule. The problem under
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consideration is denoted as 1|s − batch, r − a, pir = pi (a − br), s = θ t |Cmax using
the three-field notation schema α |β|γ introduced by Graham et al. [30].

3 The problem 1|s − batch, r − a, pi r = pi (a − br), s = θ t|Cmax

In this section, we focus on the makespan minimization problem. Depending on the
relation among the starting time of the setup, the completion time of the batch, and
the starting time for the machine’s non-availability period, these situations are divided
into the following three cases.

Case 1. The starting time for the non-availability period is bigger than the starting
time of one batch and smaller than the completion time of one batch. Or, the starting
time for the non-availability period is bigger than the starting time of one batch’s setup
and smaller than the completion time of one batch’s setup, and this batch is not the
first batch.

Case 2. The starting time for the non-availability period is bigger than the starting
time of the first batch’s setup and smaller than the completion time of the first batch’s
setup.

Case 3. The starting time for the non-availability period is bigger than the completion
time of all batches.
These three cases are shown in Fig. 1.

Then, we discuss on these three cases, respectively.

(1) Case 1

Lemma 1 For Case 1, given any schedule π = (b1, b2, . . . , bm), with the first batch
b1starting at time t0 > 0, if the starting time for the non-availability period is bigger
than the starting time of b f (0 < f ≤ m)and smaller than the completion time of b f ,
then the makespan of schedule π is

Cmax (π) = t0
(
1 + θm

) +
m∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)m−k

+ (d2 − d1) (1 + θ)m− f +1 (3)

Proof For the batch index l = 1, there is

C (b1) = t0 (1 + θ) +
n1∑

i=1

pi (a − bi) .

For all 2 ≤ l < f , if Eq. (3) holds, then

C (bl) = t0 (1 + θ)l +
l∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)l−k ,
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Fig. 1 Three cases for the situation of the machine’s non-availability period

Then, for the (l + 1)th batch bl+1, there is

C (bl+1) = C (bl) (1 + θ) +
∑l+1

j=1 n j∑

i=1+∑l
j=1 n j

pi (a − bi) (1 + θ)l−k

= t0 (1 + θ)l+1 +
l+1∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)l−k ,

so Eq. (3) holds for all 1 ≤ l < f .
For l ≥ f , if Eq. (3) holds, then

C (bl) = t0 (1 + θ)l +
l∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a−bi) (1+θ)+(d2−d1) (1 + θ)m− f+1 .
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Then, for the (l + 1)th batch bl+1,

C (bl+1) = t0 (1 + θ)l+1+
l+1∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a−bi) (1+θ)+(d2−d1) (1+θ)m− f .

Thus, Eq. (3) holds for m = l + 1. Note that Cmax (π) = C (bm), the proof is
completed. ��

Similar to the Proof of Lemma 1, we have the following lemma

Lemma 2 For Case 1, given any schedule π = (b1, b2, . . . , bm), with the first batch
b1 starting at time t0 > 0, if the starting time for the non-availability period is bigger
than the starting time of the setup for b f (1 < f ≤ m)and smaller than the completion
time of the setup for b f , and this batch is not the first batch, then the makespan of
schedule π is

Cmax (π) = t0 (1 + θ)m +
m∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)m−k

+ (d2 − d1) (1 + θ)m− f +1 .

Here we denote the batch set
(
b1, b2, . . . , b f

)
as batch set A and the batch set(

b f+1, b f +2, . . . , bm
)
as batch set B, respectively.

Lemma 3 For Case 1,all jobs should be sequenced in non-decreasing order of pi in
the job sets A and B, respectively.

Proof We first consider the jobs in B. Here we assume that π and π are an optimal
schedule and a job schedule, respectively. The difference of these two schedules is the
pairwise interchange of these two jobs Jr and Jr+1(r = 1, 2, . . . , n − 1) in the same
batch, that is, π = (W1, Jr , Jr+1,W2), π = (W1, Jr+1, Jr ,W2), where Jr ∈ bp,
Jr+1 ∈ bp, and bp ⊂ B, n p ≥ 2, p = 1, 2, . . . ,m. W1and W2 represent two partial
sequences, and W1 or W2 may be empty. It is assumed that pr ≥ pr+1.

The completion time of bp in π∗ is

C
(
bp

(
π∗)) = t0 (1 + θ)p +

p∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)p−k

+ (d2 − d1) (1 + θ)p− f+1 .

The completion time of bp in π is
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C
(
bp (π)

) = t0 (1 + θ)p +
p∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)p−k

+ (d2 − d1) (1 + θ)p− f +1

− [
pr (a − br) + pr+1 (a − b (r + 1))

]

+ [
pr+1 (a − br) + pr (a − b (r + 1))

]
.

Then,

C
(
bp

(
π∗)) − C

(
bp (π)

) = [
pr (a − br) + pr+1 (a − b (r + 1))

]

− [
pr+1 (a − br) + pr (a − b (r + 1))

]

= (pr − pr+1) b.

Since we have pr > pr+1 and b > 0, it can be derived that

C
(
bp (π)∗

)
> C

(
bp (π)

)
,

which conflicts with the optimal schedule. Hence, pr ≤ pr+1.
Also, the proof of the case of the jobs in A is similar to that of B, and we omit it.
The proof is completed.

Similar to the Proof of Lemma 3, we can obtain the following lemma.

Lemma 4 For Case 1,the processing time of any job in batch set A is smaller than
that in batch set B.

Based on Lemmas 3 and 4, we can obtain the following corollary.

Corollary 1 For Case 1, all jobs should be sequenced in non-decreasing order of pi
in the optimal schedule.

Similar to the Proof of Lemma 3, we can obtain the following two lemmas.

Lemma 5 For Case 1, for two consecutive batches bp and bp+1 in an optimal sched-
ule, n p ≥ n p+1 must hold.

Lemma 6 For Case 1, the number of the batches in the optimal schedule is
[ n
c

]
.

Based on Lemmas 5 and 6, we can obtain the following corollary.

Corollary 2 For Case 1, all batches in an optimal schedule are full, except possibly
for the highest indexed one.
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(2) Case 2

Lemma 7 For Case 2, given any schedule π = (b1, b2, . . . , bm), with the first batch
b1 starting at time t0 > 0 , then the makespan of schedule π is

Cmax (π) = t0 (1 + θ)m + (d2 − d1) (1 + θ)m−1

+
m∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)m−k (4)

Proof Based on the number of the batches, this lemma can be proved by using math-
ematical induction. Firstly for m = 1, there is

C (b1) = t0 (1 + θ) + (d2 − d1) +
n∑

i=1

pi (a − bi) ,

so Eq. (4) holds for m = 1. Suppose for all 2 ≤ l ≤ m − 1, Eq. (4) is satisfied. We
have

C (bl) = t0 (1+θ)l+(d2 − d1) (1 + θ)l−1 +
l∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)l−k .

Then, for the (l + 1)th batch bl+1,

C (bl+1) = (1 + θ)

⎡

⎢
⎣t0 (1 + θ)l + (d2 − d1) (1 + θ)l−1 +

l∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)l−k

⎤

⎥
⎦

+
∑l+1

j=1 n j∑

i=1+∑l
j=1 n j

pi (a − bi)

= t0 (1 + θ)l+1 + (d2 − d1) (1 + θ)l +
l+1∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)l−k

Hence, Eq. (4) holds for m = l + 1. Note that Cmax (π) = C (bm), the lemma is
proved by the induction. ��
Lemma 8 For Case 2, the jobs in the same batch should be sequenced in non-
decreasing order of pi in an optimal schedule.

Proof Here we assume that π∗ and π are an optimal schedule and a job schedule,
respectively. The difference of these two schedules is the pairwise interchange of
these two jobs Jr and Jr+1 (r = 1, 2, . . . , n − 1) in the same batch, that is, π∗ =
(W1, Jr , Jr+1,W2), π = (W1, Jr+1, Jr ,W2), where Jr ∈ bp and Jr+1 ∈ bp, n p ≥ 2,
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p = 1, 2, . . . ,m. W1and W2 represent two partial sequences, and W1 or W2 may be
empty. It is assumed that pr ≥ pr+1.

The completion time of bp in π∗ is

C
(
bp

(
π∗)) = t0 (1 + θ)p + (d2 − d1) (1 + θ)p−1

+
p∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)p−k ,

The completion time of bp in π is

C
(
bp (π)

) = t0 (1 + θ)p + (d2 − d1) (1 + θ)p−1

+
p∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)p−k

− [
pr (a − br) + pr+1 (a − b (r + 1))

]

+ [
pr+1 (a − br) + pr (a − b (r + 1))

]
.

Then,

C
(
bp

(
π∗)) − C

(
bp (π)

)

= [
pr (a − br) + pr+1 (a − b (r + 1))

]

− [
pr+1 (a − br) + pr (a − b (r + 1))

]

= (pr − pr+1) b.

Since we have pr > pr+1 and b > 0, it can be derived that

C
(
bp

(
π∗)) > C

(
bp (π)

)
,

which conflicts with the optimal schedule. Hence, pr ≤ pr+1. The proof is completed.
��

Lemma 9 For Case 2, for two jobs Ju ∈ bp and Jv ∈ bp+1 from two consecutive
batches, in an optimal schedule pu ≤ pvmust hold.

Proof Here we assume that π∗ and π are an optimal schedule and a job schedule,
respectively. The two schedules’ difference is the pairwise interchange of these two
jobs Ju and Jv (where Ju and Jv are in the u-th and v-th positions, and u < v), that
is, π = (

W1, bp, bp+1,W2
)
, π = (

W1,
(
bp/ {Ju}

) ∪ {Jv} ,
(
bp+1/ {Jv}

) ∪ {Ju} ,W2
)
.

W1andW2 represent two partial sequences, andW1 orW2 may be empty. It is assumed
that pu > pv .
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The completion time of bp+1 in π is

C
(
bp+1

(
π∗)) = t0 (1 + θ)p+1 + (d2 − d1) (1 + θ)p

+
p+1∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)p+1−k .

The completion time of bp+1 in π is

C
(
bp+1 (π)

) = t0 (1 + θ)p+1 + (d2 − d1) (1 + θ)p

+
p+1∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)p+1−k

− [pu (a − bu) (1 + θ) + pv (a − bv)]

+ [pv (a − bu) (1 + θ) + pu (a − bv)] .

Then,

C
(
bp

(
π∗)) − C

(
bp (π)

) = (pu − pv) (a − bu) (1 + θ) − (pu − pv) (a − bv)

= (pu − pv) [θ (a − bu) + b (v − u)] .

Hence, it can be derived that

C
(
bp

(
π∗)) > C

(
bp (π)

)
,

which conflicts with the optimal schedule. Thus, pu ≤ pv . The proof is completed. ��
Based on Lemmas 8 and 9, we have the following Corollary 3.

Corollary 3 For Case 2, all jobs should be sequenced in non-decreasing order of pi
in the optimal schedule.

Then, we have the following lemma similar to Case 1.

Lemma 10 For Case 2, the number of the batches in the optimal schedule should be[ n
c

]
. All batches are full in an optimal schedule, except possibly for the highest indexed

one.

(3) Case 3

Lemma 11 For Case 3, given any schedule π = (b1, b2, . . . , bm) , with the first batch
b1 starting at time t0 > 0, then the makespan of schedule π is

Cmax (π) = t0 (1 + θ)m +
m∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)m−k .
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Similar to the Proof of Lemmas in Cases 1 and 2, we have the following lemma.

Lemma 12 For Case 3, all jobs should be sequenced in non-decreasing order of pi .
The number of the batches in the optimal schedule should be

[ n
c

]
. All batches in an

optimal schedule are full, except possibly for the highest indexed one.

Based on all lemmas and corollaries, a heuristic algorithm is proposed to the solve
this problem, and it is described as follows:

Step 1. Sort all jobs in non-decreasing order of their normal processing time , i.e., 1 ≤

2 ≤ ⋯ ≤ , and obtain a job list.

Step 2. If there are more than jobs in the job list, then place the first jobs in a batch and 

iterate. Otherwise, place the remaining jobs in a batch.

Step 3. Schedule all jobs at the time 0 as the generated batches’ sequence in step 2. Stop the 

processing at the time 1, and continue the processing at the time 2 in the previous 

order until all jobs are processing

Algorithm SPT-FB (Shortest processing time and full batch first)

Theorem 1 For the problem 1 |s − batch, r − a, pir = pi (a − br) , s = θ t |Cmax ,
an optimal schedule can be obtained by Algorithm SPT-FB in O (n log n) time. If all
job are sequenced in non-increasing order of pi (i = 1, 2 . . . , n) , then the results of
the optimal makespan are as follows:

1. when t0 ≤ d1 ≤ (1 + θ) t0,

Cmax = t0 (1 + θ)
[ n
c

]
+ (d2 − d1) (1 + θ)

[ n
c

]

+
[ n
c

]
∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)
[ n
c

]−k .

2. when (1 + θ) t0 ≤ d1 ≤ t0 (1 + θ)
[ n
c

]
+

[ n
c

]
∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)
[ n
c

]−k ,

Cmax = t0 (1 + θ)[ n
c

] +

[
n
c

]

∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)
[ n
c

]−k

+ (d2 − d1) (1 + θ)
[ n
c

]− f+1 ,

where the non-availability period happens during the setup operation orwhile process-
ing b f .
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Table 1 An illustrative example

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Processing time 12 30 21 8 5 2 16 9 7 35

3. when t0 (1 + θ)
[ n
c

]
+

[ n
c

]
∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)
[ n
c

]−k ≤ d1,

Cmax = t0 (1 + θ)
[ n
c

]
+

[ n
c

]
∑

k=1

∑k
j=1 n j∑

i=1+∑k−1
j=1 n j

pi (a − bi) (1 + θ)
[ n
c

]−k .

Proof CombiningLemmas 1–12 andCorollaries 1 and 2,we can obtain thatAlgorithm
SPT-FB can generate an optimal schedule for the problem 1 |s − batch, r − a, pir =
pi (a − br) , s = θ t |Cmax .
And the result of the optimal makespan can be derived as the above three cases.

The complexity of Step 1 is O (n log n), the complexity of Step 2 is O (n), and the
complexity of Step 3 is O (1). Thus, the total complexity of this proposed algorithm
is O (n log n). ��

In addition, we demonstrate the result of Theorem 1 in the following example.

Example 1 Assume n = 10, c = 3, t0 = 2, θ = 0.5, a = 10, b = 0.1, d1 = 800,
d2 = 900, the normal processing times of jobs are given in Table 1.

Solution. According to Algorithm SPT-FB, we solve Example 1 as follows:

Step 1. Sort all jobs in non-decreasing order of their normal processing time, and the
optimal job sequence is J6 → J5 → J9 → J4 → J8 → J1 → J7 → J3 → J2 →
J10.

Step 2. Batch the jobs as the rule of full batch first, and the optimal batches are
{J6, J5, J9}, {J4, J8, J1}, {J7, J3, J2}, {J10}.

Thus, in the optimal schedule, we have

C (b1) = 2 × (1 + 0.5) + [2 × (10 − 1 × 0.1)+5 × (10 − 2 × 0.1) + 7 × (10 − 3 × 0.1)]

= 139.7,

C (b2) = 139.7 × (1+0.5)+[8 × (10−4 × 0.1)+9 × (10 − 5 × 0.1) + 12 × (10 − 6 × 0.1)]

= 484.65,

C (b3) = 484.65 × (1+0.5)+[16 × (10−7 × 0.1)+21 × (10−8 × 0.1)+30 × (10−9 × 0.1)]

+ (900 − 800) = 1441.975,

C (b4) = 1441.975 × (1 + 0.5) + 35 × (10 − 10 × 0.1) = 2477.9625.

The optimal makespan is 2477.9625.
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4 Conclusion

In this paper we investigate the problem of scheduling the jobs with learning effect
on a single serial-batching machine with an availability constraint. The objective is to
find an optimal schedule that minimizes the makespan. Three different cases of this
scheduling problem are considered, and their properties are derived and investigated.
Based on these properties, an optimization algorithm is proposed to solve this problem.

Further research might focus on other objectives, such as the total completion time
and total tardiness. It is also interesting to extend this problem to parallel machines
scheduling problem or flowshop problem.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Nos.
71601065, 71231004, 71501058, 71131002, 71471052, 71521001, 71571058), the Humanities and Social
Sciences Foundation of the Chinese Ministry of Education (No. 15YJC630097), Anhui Province Natural
ScienceFoundation (No. 1608085QG167), and theFundamentalResearchFunds for theCentralUniversities
(Nos. JZ2016HGTA0709, JZ2016HGTB0727). Panos M. Pardalos is partially supported by the project of
“Distinguished International Professor by the Chinese Ministry of Education” (MS2014HFGY026).

References

1. Biskup, D.: Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 115(1), 173–
178 (1999)

2. Wright, T.P.: Factors affecting the cost of airplanes. J. Aeronaut. Sci. 3, 122–128 (1936)
3. Cheng, T.C.E., Wang, G.: Single machine scheduling with learning effect considerations. Ann. Oper.

Res. 98(1), 273–290 (2000)
4. Wang, J.-B., Wang, J.-J.: Single machine scheduling with sum-of-logarithm-processing-times based

and position based learning effects. Optim. Lett. 8(3), 971–982 (2012)
5. Lee, W.-C.: Single-machine scheduling with past-sequence-dependent setup times and general effects

of deterioration and learning. Optim. Lett. 8(1), 135–144 (2014)
6. Cheng, T.C.E., Kuo, W.-H., Yang, D.-L.: Scheduling with a position-weighted learning effect. Optim.

Lett. 8(1), 293–306 (2014)
7. Wang, J.-B., Wang, J.-J.: Flowshop scheduling with a general exponential learning effect. Comput.

Oper. Res. 43, 292–308 (2014)
8. Luo, K., Zhang, X.: A simple proof technique for scheduling models with learning effects. Optim.

Lett. 9(7), 1411–1420 (2015)
9. Li, G., Luo, M.-L., Zhang, W.-J., Wang, X.-Y.: Single-machine due-window assignment scheduling

based on common flow allowance, learning effect and resource allocation. Int. J. Prod. Res. 53(4),
1228–1241 (2015)

10. Lee, C.Y.: Machine scheduling with an availability constraint. J. Global Optim. 9(3), 395–416 (1996)
11. Lee, C.Y.: Two-machine flowshop scheduling with availability constraints. Eur. J. Oper. Res. 114(2),

420–429 (1999)
12. Zhong, X., Ou, J., Wang, G.: Order acceptance and scheduling with machine availability constraints.

Eur. J. Oper. Res. 232(3), 435–441 (2014)
13. Kacem, I., Kellerer, H., Lanuel, Y.: Approximation algorithms for maximizing the weighted number of

early jobs on a single machine with non-availability intervals. J. Comb. Optim. 30(3), 403–412 (2015)
14. Mor, B., Mosheiov, G.: Heuristics for scheduling problems with an unavailability constraint and

position-dependent processing times. Comput. Ind. Eng. 62(4), 908–916 (2012)
15. Wu, C.-C., Lee, W.-C.: A note on single-machine scheduling with learning effect and an availability

constraint. Int. J. Adv. Manuf. Technol. 33(5), 540–544 (2007)
16. Yang, D.-L., Kuo, W.-H.: A single-machine scheduling problem with learning effects in intermittent

batch production. Comput. Ind. Eng. 57(3), 762–765 (2009)
17. Li, S.S., Ng, C.T., Cheng, T.C.E., Yuan, J.J.: Parallel-batch scheduling of deteriorating jobswith release

dates to minimize the makespan. Eur. J. Oper. Res. 210(3), 482–488 (2011)

123



Single-machine serial-batching scheduling with a machine… 1271

18. Pei, J., Pardalos, P.M., Liu, X., Fan, W., Yang, S.: Serial batching scheduling of deteriorating jobs in a
two-stage supply chain to minimize the makespan. Eur. J. Oper. Res. 244(1), 13–25 (2015)

19. Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Scheduling deteriorating jobs on a single serial-
batchingmachinewithmultiple job types and sequence-dependent setup times. Ann. Oper. Res. (2015).
doi:10.1007/s10479-015-1824-6

20. Pei, J., Liu, X., Pardalos, P.M.,Migdalas, A., Yang, S.: Serial-batching scheduling with time-dependent
setup time and effects of deterioration and learning on a single-machine. J. Glob. Optim. (2015). doi:10.
1007/s10898-015-0320-5

21. Yang, S.J.: Group scheduling problems with simultaneous considerations of learning and deterioration
effects on a single-machine. Appl. Math. Model. 35(8), 4008–4016 (2011)

22. Bai, J., Li, Z.R., Huang, X.: Single-machine group scheduling with general deterioration and learning
effects. Appl. Math. Model. 36(3), 1267–1274 (2012)

23. Huang, X., Wang, M.Z., Wang, J.B.: Single-machine group scheduling with both learning effects and
deteriorating jobs. Comput. Ind. Eng. 60(4), 750–754 (2011)

24. Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S.: Single machine serial-batching scheduling with
independent setup time and deteriorating job processing times. Optim. Lett. 9(1), 91–104 (2015)

25. Wang, J.-B., Xia, Z.-Q.: Flow-shop scheduling with a learning effect. J. Oper. Res. Soc. 56(11), 1325–
1330 (2005)

26. Xuan, H., Tang, L.X.: Scheduling a hybrid flowshop with batch production at the last stage. Comput.
Oper. Res. 34(9), 2718–2733 (2007)

27. Cheng, T.C.E., Hsu, C.-J., Huang, Y.-C., Lee, W.-C.: Single-machine scheduling with deteriorating
jobs and setup times to minimize the maximum tardiness. Comput. Oper. Res. 38(12), 1760–1765
(2011)

28. Wu, C.-C., Lee, W.-C.: Scheduling linear deteriorating jobs to minimize makespan with an availability
constraint on a single machine. Inform. Process. Lett. 87(2), 89–93 (2003)

29. Gawiejnowicz, S., Kononov, A.: Complexity and approximability of scheduling resumable proportion-
ally deteriorating jobs. Eur. J. Oper. Res. 200(1), 305–308 (2010)

30. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

123

http://dx.doi.org/10.1007/s10479-015-1824-6
http://dx.doi.org/10.1007/s10898-015-0320-5
http://dx.doi.org/10.1007/s10898-015-0320-5

	Single-machine serial-batching scheduling with a machine availability constraint, position-dependent processing time, and time-dependent set-up time
	Abstract
	1 Introduction
	2 Notations and problem statement
	3 The problem 1|s-batch,r-a,pir=pi (a-br),s=θt|Cmax
	4 Conclusion
	Acknowledgements
	References




