Optim Lett (2017) 11:1319-1339 @ CrossMark
DOI 10.1007/511590-016-1073-x

ORIGINAL PAPER

The energy-constrained quickest path problem

Herminia I. Calvete! - Lourdes del-Pozo? -
José A. Iranzo!

Received: 20 May 2015 / Accepted: 25 August 2016 / Published online: 8 September 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper addresses a variant of the quickest path problem in which each
arc has an additional parameter associated to it representing the energy consumed
during the transmission along the arc while each node is endowed with a limited power
to transmit messages. The aim of the energy-constrained quickest path problem is to
obtain a quickest path whose nodes are able to support the transmission of a message of
a known size. After introducing the problem and proving the main theoretical results,
a polynomial algorithm is proposed to solve the problem based on computing shortest
paths in a sequence of subnetworks of the original network. In the second part of the
paper, the bi-objective variant of this problem is considered in which the objectives
are the transmission time and the total energy used. An exact algorithm is proposed
to find a complete set of efficient paths. The computational experiments carried out
show the performance of both algorithms.

Keywords Quickest path - Energy constraint - Bi-objective optimization

DX Herminia I. Calvete
herminia@unizar.es

Lourdes del-Pozo
Ipozo@unizar.es

José A. Iranzo
joseani @unizar.es

1 Dpto. de Métodos Estadisticos, [IUMA, Universidad de Zaragoza, Pedro Cerbuna 12, 50009
Zaragoza, Spain

Dpto. de Métodos Estadisticos, Universidad de Zaragoza, Violante de Hungria 23, 50009 Zaragoza,
Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-016-1073-x&domain=pdf

1320 H. I. Calvete et al.

1 Introduction

The quickest path problem (QPP) is a path problem in a directed network which aims
to minimize the time taken to transmit a given amount of data. The transmission time
depends on two parameters, an additive function which represents the traversal time or
the delay along the path and a bottleneck function which represents the path capacity.

Let G = [V, A] be a directed network without multiple arcs and self loops, where
N denotes the set of nodes and A the set of directed arcs. Let n be the number of
nodes and m the number of arcs. Let s and 7 be two distinguished nodes in the network
called, respectively, origin and destination and o the data units to be sent from node s
tonode . Each arc (u, v) € Aisendowed with a capacity c(u, v) > 0and a delay time
I(u, v) > 0. The capacity represents the amount of data that can be sent through arc
(u, v) per time unit. The delay time is the time required for the data units to traverse
the arc (u, v).

Let us assume that a message is transmitted as a continuous stream along the arc
(u, v) at a constant flow rate p < c(u, v). At this flow rate, a message of o data units
is sent from node u to node v through arc (u, v) in l(u, v) + % time. This expression
takes its minimum value when p = c(u, v). Thus, the minimum required transmission
time is [(u, v) + c(g_v)

A simple path or loopless path P from node s to node 7 is a sequence of nodes and
arcs P = (s =uy,ua,...,ux =t)suchthatu; e N,i =1,... k,u; #u;ifi #j,
and (uj,ujy1) € A, i = 1,...,k — 1. In the paper, we use the term path in place of
simple or loopless path for short as well as the term s — ¢ path in place of a path from
s to t. We assume that the set of s — ¢ paths in the network G is nonempty.

The delay experienced by a message sent via path P depends on the message
forwarding mechanism used at the intermediate nodes [18]. If o data units are sent at
a constant rate from s to ¢ along the s — ¢ path P with no buffering at intermediate
nodes (circuit switching mode), the minimum transmission time or end-to-end delay
of path P is

o
I5(P) =1(P) + P ey

where [(P) = Zf:ll I(ui, ui1+1) denotes the delay time of path P and c(P) =
min; =, x—1 c(u;i, u;+1) denotes its capacity.
Hence, the QPP can be formulated as finding an s — ¢ path so that:

min T, (P)
P

s.t. Pisan s-tpathin the network G @

A characteristic of the QPP is that, in general, the size of the message has a strong
influence on the optimal path. When o is small with respect to the arc capacities,
the transmission time is controlled by the arc delays and a shortest path with respect
to the arc delay could be a good solution to the problem. However, when o is very
large, the transmission time is controlled by the arc capacities and the problem could
be approached by computing the shortest path with respect to the arc delay among

@ Springer

The energy-constrained quickest path problem 1321

all paths with the largest capacity. It is also worth mentioning that the QPP does not
satisfy the property known as ‘the optimality principle’, i.e. an s” — ¢’ subpath of an
optimal s — ¢ path is not necessarily an s’ — ¢’ optimal path.

The QPP was first proposed by Moore [11] to model flows of convoy-type traffic.
Then it was proposed by Chen and Chin [5] in the context of modeling transmission
problems in communication networks where nodes represent transmitters/receivers
without data memories and arcs represent communication channels. Climaco et al. [6]
applied the model to the routing of data packets in Internet networks. Hamacher and
Tijandra [8] proposed the QPP for a special evacuation problem where evacuees may
use only a single path or tunnel from their initial position. Martins and Santos [10]
and Pelegrin and Ferndndez [16] approached the QPP as a special minsum-maxmin
bi-objective path problem. They proved that any optimal solution of the QPP is a
nondominated solution of the bi-objective problem in which the delay time is min-
imized and the capacity of the path is maximized. Hence, a quickest path can be
obtained by solving this bi-objective problem and selecting a nondominated path with
the minimum transmission time.

Several polynomial time algorithms have been proposed in the literature, all with
the same time complexity. They are based on solving a shortest path problem in an
enlarged network [2,5], solving a sequence of shortest path problems with respect
to the delay time on networks where the minimum capacity increases [10,11,16,19],
using a label-setting algorithm [12] or taking into account that a quickest path is a
supported efficient solution of the aforementioned bi-objective problem [20].

Several variants and extensions of the QPP have been addressed in the literature. The
problem of finding the first K quickest paths in nondecreasing order of transmission
time has been analyzed in [4,6,13,15,19]. The QPP constrained to contain a given
subpath has been studied in [3,19]. The problem of determining the transmission
process when data are transmitted in batches of variable size but with required limits has
been considered in [1]. The problem of computing the quickest path whose reliability
is not lower than a given threshold has been analyzed in [2]. Pascoal et al. [14] provide
a survey on the subject.

When formulating the QPP, no attention is paid to the characteristics of the trans-
mitters/receivers represented by the nodes. It is implicitly assumed that they have
unlimited energy available for transmitting messages. Usually, this can be the case
in wired networks. However, for mixed networks which combine wired and radio
link connections, some of the nodes can have limited power to transmit messages.
This available power must be taken into account when computing the QPP since the
energy consumed at node « during the transmission of the message along the arc (u, v)
depends on the units of time during which node u is active, i.e. while it is sending
data. Hence, it depends on the rate at which data are transmitted. In this paper, we
introduce the energy-constrained quickest path problem (EQPP) which aims to obtain
a quickest path whose nodes are able to support the transmission of o data units. We
formulate the problem and develop a polynomial time algorithm to solve it based on
computing shortest paths with respect to the delay time in a sequence of subnetworks
of the original network. Although it is a constrained QPP, the time complexity of the
algorithm is the same as that of any of the algorithms developed for solving the QPP.
In the second part of the paper we address the minsum—minsum bi-objective variant

@ Springer

1322 H. I. Calvete et al.

of this problem (BEQPP) in which the total transmission time and the total consumed
energy are minimized. We approach this NP-hard problem by determining a complete
set of efficient paths and develop an exact algorithm based on solving bi-objective
shortest path problems. The paper is structured as follows. Sections 2 and 3 formally
set out the EQPP and prove the main theoretical results which support the algorithm
developed for solving it. Section 4 goes on to develop a polynomial algorithm to solve
the EQPP and shows its computational complexity. In Sect. 5 the bi-objective EQPP is
formulated as well as its properties are proved and the algorithm is developed to find
a complete set of efficient paths. Section 6 displays the results of the computational
experiment carried out to assess the performance of the proposed algorithms. Finally,
our conclusions are presented in Sect. 7.

2 The energy-constrained quickest path problem

Let G = [N, A] be the directed network introduced in Sect. 1. In order to formu-
late the EQPP, we assume that each arc (u, v) € A is endowed with an energy rate
w(u, v) > 0 which measures the energy required at node u to transmit data units along
the arc (u, v) per time unit. This energy typically depends on the characteristics of the
arc (delay time and capacity).

Each node u € N is endowed with a power b, which represents the limited energy
available for transmission at node u. If o data units are transmitted as a continuous
stream from node u to node v along the arc (u, v) at a constant flow rate p, then the
node u is active, i.e. sending data, during % time units. Hence the required energy at
node u is w (u, v) %. Without loss of generality, we assume that

w(u,v)ﬁ < b, V. v) € A 3)

If the arc (u, v) does not hold this condition it cannot support the transmission of the
o data units and so can be removed.

Taking into account the message forwarding mechanism, o data units are sent along
the s — ¢ path P at a constant rate c(P). Therefore, the total energy required to transmit
o data units using the path P is:

Es(P) = Zw(u,, Ui+1) W)

Let us denote W(P) = Zf:ll o, Ujt+1)-
The residual energy b, (o, P) at node u after transmitting o data units through the
path P is

bu—w(ui,ui+1)c("—P) ifu=u,i=1,...,k—1

b,(o, P) = by, otherwise

@ Springer

The energy-constrained quickest path problem 1323

In order for P to be an s — ¢ feasible path, b,(o, P) > 0, Vu € P. That is to
say, the feasibility of a path P is measured through the availability of its nodes to
transmit the whole data units at a rate c¢(P). Hence, the energy-constrained quickest
path problem (EQPP) can be formulated as finding an s — ¢ path so that:

min T, (P)
P

stt. by(o,P)>0,ueN (5)
P is an s-t path in the network G

The special characteristics of the side constraint on the residual energy allow us to
develop an algorithm which is based on successively solving shortest path problems
in subnetworks of the original network G which guarantee the feasibility of the path
with respect to the energy availability at the nodes.

3 Main theoretical results

In what follows, we assume without loss of generality that there are r different capac-
ities ¢; < ¢3 < -+ < ¢, in the network G. Let us assign to each arc (u, v) € A the
label
min _ : [. _ Z]
c™"(u,v) = min {¢; :b, —w(u,v) >0
i=1,..,r Ci

This label provides the minimum capacity at which the node u is able to support the
transmission of the o data units along the arc (u, v). Therefore, it gives an idea of the
feasible paths in which this arc can be included. Note that (#, v) can be an arc of an
s — t feasible path P only if ¢(P) > ¢™"(u, v).

WedefineG; = [N, Ajl,j=1,... ,r,tobeasubnetworkofg where (1, v) € A;
if and only if (u, v) € A, c(u, v) > ¢; and ¢™"(u, v) < cj.

It is worth mentioning that, in general, the network G; 1 is not a subnetwork of G;
and so the number of arcs in the successive networks does not necessarily decrease.
For illustration, Fig. 1 displays a network G with the capacities 1, 2, 3 and 4, and the
associated networks G ;.

Lemmal Let P = (s = uy,uz,...,uy =1t) be an s —t path in the network G;.
Then, P is an s — t feasible path for the EQPP.

Proof If P is an s — ¢ path in the network G;, then c(P) > ¢; > M (i wig),
i=1,...,k— 1. Hence

o o
b,.(o0,P)=0b,, — o, ujr1)—— =2 by, —wuj,uj) ——— >
u,() u; (i z+l)c(P) = Du; (i l+1)Cmm(btl',u,'+1) =

For the remaining nodes u of the network, b, is not modified when the ¢ data units
are transmitted. Therefore, b, (o, P) > 0 Yu € N and the result follows. O

Lemma2 Let P = (s =uy,up,...,ur =t)beans —t feasible path for the EQPP
with capacity c(P) = cj. Then, P is an s — t path in the network G;.

@ Springer

1324

H. I. Calvete et al.

1200 15000

@ (10,3,3)

(10,1,1)
(80,3,192)
(10,1,1)

1200

(20,

3,12
30,3,27
2700 ¢)

(40,4,64) (30,3,27)

—
1800 (30,3.27) 1800

(a) Network G. On the arcs,
(H(u,v), c(u,v), w(u,v)). On the nodes by.

Data units o = 120.

©)

N

® O

(C) Network G1

@/i /

(e) Network G3

®

Fig. 1 Networks G and gj,j =1,...,4

Proof Since P is feasible

bu;(U» P) = bu;

(D/@

- C()(Mi, M[+])

B
1,3 1,1 ﬁ
33 1,1
O,

34 23

@—»

(b) On the arcs,c™™ (u, v), c(u,v)

e

@—»

(d) Network Go

©) ®
©

® ©

(f) Network G4

>0,i=1,....,k—1

c(P)

Hence, ¢™™(u;, uiy1) < ¢(P) = ¢; < c(ui, uiy1),i = 1,...,k — 1. Taking into
account the definition of the network G;, we conclude that the arc (u;, u;y1), i =
I,...,k—1,isin A;,and so P isans — ¢ pathin G;. O

@ Springer

The energy-constrained quickest path problem 1325

It is worth pointing out that an s — ¢ feasible path P for the EQPP with capacity
c(P) > c;j is not necessarily an s — ¢ path in the network G;. For instance, in the
example displayed in Fig. 1, the capacity of the path 1 — 3 — 4 — 6 is equal to 3.
However, this path is neither in network G; nor in network G,. In other words, the
network G; contains the paths P = (s = u1, ua, ..., ux =t) of G which are feasible
for the EQPP with capacity greater than or equal to ¢, for which

o
bui(U’ P)Zbu,- _w(ulﬂulJr])_ 2071 = 1"'~7k_1
€j

i.e., whose nodes are able to support the transmission with capacity c;. In particular,
the network G; contains all the s — ¢ feasible paths for the EQPP with capacity c;.
Hence, if there is no s — ¢ path in the network G;, then there will not be an optimal
solution of the EQPP with capacity c;.

Let us consider the following SPP with respect to the delay time in G;:

SPP;: min [(P)
L . (6)
s.t. Pisans — tpathin the network gj

Lemma 3 Let P be an optimal solution of the SPP; and ¢(P) = ¢, > cj. Then, there
is no optimal solution of the EQPP with capacity c;.

Proof Let Q be an s — ¢ feasible path for the EQPP with capacity c¢;. Then Q is a path
inG; and
o o
T,(P)=I(P)+ = <1(Q) + = = T,(Q)
ch Cj
Thus, Q cannot be an optimal solution of the EQPP. O

Next we prove that any optimal solution to the EQPP can be obtained as a shortest
path with respect to the delay time.

Theorem 1 Let P* be an optimal solution of the EQPP and ¢(P*) = cy. Then, P*
is an optimal solution of the SPPy, and any optimal solution of the SPPy, is an optimal
solution of the EQPP.

Proof Since P* is an s — ¢ feasible path for the EQPP with capacity ¢y, then P* is
an s — t path in G;,. Let Q be an s — ¢ path in the network G;,. Thus, ¢(Q) > ¢j. If
1(Q) < I(P*), then

T,(Q) =1 —— < I(P* —_TP
(Q) =UQ) + (Q)<()+ (P7)

which contradicts the optimality of P*. Furthermore, by applying Lemma 3, the capac-
ity of any s — 7 shortest path P in Gy, is ¢(P) = cj,. Hence, P is an s — 1 feasible path
for the EQPP such that T(P) = T (P*) and so is an optimal solution of the EQPP. O

@ Springer

1326 H. I. Calvete et al.

4 EQPA: an algorithm for solving the EQPP

As a consequence of Theorem 1, the optimal solutions of the EQPP can be obtained
by computing shortest paths with respect to the delay time in the networks G; and
determining those which have minimum transmission time.

The algorithm EQPA
Step 0.
Setj=1
Step 1.
Solve the SPP;.
If there is no s — ¢ shortest path in G; with capacity c;, go to Step 2.
Otherwise, let P; be an optimal solution of the SPP; with ¢(P;) = ;.
Step 2.
If j = r, go to Step 3. Otherwise, set j = j + 1 and go to Step 1.
Step 3.

Find the index € {1, ..., r} such that 75 (Py) = rrllin 15 (Pj)
j=lor
Py, is an optimal solution of the EQPP.

It is worth at this point emphasizing the important differences existing between the
networks F;, j =1, ..., r constructed by the algorithms proposed in [10,11,16,19]
to solve the QPP and the networks G;, j =1, ...,r.

The network Fj = [N, A ;j1is defined to be a subnetwork of G where (u, v) € A jif
and only if (4, v) € Aand c¢(u, v) > c;. Hence 1 D F, D --- D F,. This property
allows the algorithms in [10,11,16,19] to skip analyzing some of the networks F;
when solving the QPP. In fact, if the shortest path in the network F; has capacity
¢’ > c;, the networks from 7 to ;s can be omitted since they cannot provide a
better candidate for the optimal solution of the QPP. However, as the networks G j do
not satisfy that property, when solving the EQPP it is necessary to solve the shortest
path problem in each of the networks G ;. No network can be skipped since arcs which
are not in the network G; can be in the network G, and vice versa.

Notice also that, at the iteration j, the algorithm saves the shortest path Q as a
candidate to be the optimal solution of the EQPP only if its capacity equals ¢; (Step 1).
Otherwise, it is of no interest at this point of the algorithm. Indeed, if c(Q) = ¢j» > ¢},
by applying Lemma 3 no path with capacity c; can be an optimal solution of the EQPP.
Moreover, the path Q will be one of the s — ¢ paths in G;» and only if Q isans —¢
shortest path in the network G; will it be a candidate to be the optimal solution of
the EQPP.

Finally, notice that if there are P* and Q* optimal paths with capacities ¢; =
c(P*) # c(Q") = cjr, the algorithm is able to provide both paths because they are
s — t shortest paths in G; and G/, respectively.

Theorem 2 The time complexity of the Algorithm EQPA is O(r(m + nlog(n))) and
uses O(n + m) space.

Proof It is enough to realize that the algorithm essentially amounts to solving r times
a shortest path problem each running in O (m + nlog(n)) time [7]. O

@ Springer

The energy-constrained quickest path problem 1327

5 The bi-objective energy-constrained quickest path problem

In this section we propose to take into consideration not only the transmission time but
also the total energy used and thus to minimize both over the set of feasible paths. The
bi-objective energy-constrained quickest path problem (BEQPP) can be stated as:

min - (T5(P), Eq(P))

st. by(o,P)=>0,ueN @)
P is an s-t path in the network G

According to the theory of multi-objective optimization, a feasible solution P is
efficient if and only if there is no other feasible solution Q so that 75 (Q) < T5(P)
and E; (Q) < E, (P) with at least one strict inequality. If P is an efficient solution,
it will be called an s — ¢ efficient path. The image (7, (P), E5(P)) of P is called a
non-dominated point. Two feasible solutions P and Q are called equivalent if they
have the same image. A complete set of efficient solutions is a set of efficient solutions
X, such that every feasible solution not in X, is either dominated or equivalent to at
least one feasible solution in X,.

The BEQPP is NP-hard since the bi-objective shortest path problem (BSPP) is also
NP-hard [17]. Note that the BSPP can be obtained as a particular case of the BEQPP
when » = 1 and the b, is big enough not to constrain the transmission. The following
theorem allows us to conclude that the efficient paths of the BEQPP can be obtained
by solving bi-objective shortest path problems in G;.

Theorem 3 Let P bean's —t efficient path for the BEQPP and ¢(P) = cy. Then, P
is an s — t efficient path with respect to:

BSPP;, : mlin ((P), W(P))

8)
s.t. Pisan s-t path in the network G (
Proof The path Pisans —1¢ path in the network Gy, by construction of this network.
Let us assume that there is an s —7 path Q in G; which dominates P with respect to the
bi-objective function (I, W). Then, c(Q) > ¢; and [(Q) < [(P) and W(Q) < W(P)
with at least one strict inequality. Let us assume for the time being that [(Q) < I(P).
Then,

T l +——=< 4+ — <I(P)+ —= =T, (P
(Q)=1(0) (Q) 1(Q) () <I(P) (P) (P)
and
E; W(Q)—— — — =E;
(Q) =W(0) (Q) W(Q) (P) W (P) (P) (P)
which contradicts that P is an s — ¢ efficient path for the BEQPP. The other case is
analogous. O

As a consequence of Theorem 3, the description of the algorithm BEQPA proposed
to solve the BEQPP is as follows:

@ Springer

1328 H. I. Calvete et al.

The algorithm BEQPA

Step 0.
Setj=1,E=0

Step 1.
Solve the BSPP;.
If there isno s — ¢ path in G, go to Step 2.
Otherwise, let £; be a complete set of efficient paths of the BSPP;.
For each P € &, compute (T, (P), E;(P))
& = Merge(€, &)

Step 2.
If j = r, stop. & solves the BEQPP.
Otherwise, set j = j + 1 and go to Step 1.

where the operation Merge is defined as follows:

Merge(&, &) = {P € EU & : ThereisnoQ € £ U & such that Q dominates P
with respect to the bi — objective function (T4, Ey)}

Note that in Step 1 of the algorithm there is only the need to compute a complete set
of efficient paths. Indeed, let P and Q be equivalent efficient paths for the BSPP; with
capacities ¢(P) = cp, ¢(Q) = ¢; such that ¢, > ¢; > c¢;. Since they are equivalent,
[(P) =1(Q) and W(P) = W(Q). Hence,

o o
Io(P) =U(P)+ — < l(Q)+ — =T5(0)

c(P) «(0)
E,(P) = W(P)% < W(Q)%Q) = E,(Q)

Therefore, P dominates Q with respect to the bi-objective function (75, E,) and so
the path Q is not relevant. In the case that the algorithm records Q, the path P would
be considered for sure when solving the BSPPy,.

6 Computational experience

This section presents the results of the computational experiment carried out to evaluate
the performance of the algorithms EQPA and BEQPA proposed in this paper. The
numerical experiments have been performed on a PC Intel® Core™ [7-3820 CPU at
3.6 GHz x 8 having 32 GB of RAM under Ubuntu Linux 14.04 LTS. Although we
had a multi-processor computer at hand, only one processor was used in our tests. The
code has been written in C++, GCC 4.8.2. The algorithm EQPA involves a Dijkstra’s
algorithm whose implementation is based on a min-priority queue implemented using
a binary heap data structure. In the implementation of the algorithm BEQPA, we have
used the Biobjective Label Correcting Algorithm as described in [17] to solve the
BSPP;. As mentioned above, the EQPP can be solved in polynomial time whereas the
BEQPP is NP-hard. Due to this very distinctive characteristic, we have used different
sets of test problems to assess the performance of the algorithms. Notice also that both

@ Springer

The energy-constrained quickest path problem 1329

algorithms heavily rely on the performance of the algorithms to solve the SPP and the
BSPP which they have embedded.

6.1 The EQPA performance evaluation

We have considered three different sets of test problems as in [20]. Set 1 uses the
network generator NETGEN [9] to provide the skeleton of the network. Set 2 is
based on the network generator GRIDGEN, which is able to provide larger networks.
It has been obtained from ftp://dimacs.rutgers.edu/pub/netflow/generators/network/
gridgen/gridgen.c. Finally, Set 3 is based on seven USA road networks which have
been obtained from http://www.dis.uniromal.it/challenge9/download.shtml.

Table 1 shows the parameters n, m and r of the networks in Sets 1 and 2. There are
60 problem groups defined by the number of nodes n, the number of arcs m and the
number of distinct capacities r in Set 1 and 75 in Set 2. For each problem group, we
have generated 10 instances. Delay time and capacity coefficients are generated from
uniform distributions in the range [10, 10,000]. To generate problems with a fixed
number of capacities, first the required number of capacities is generated from the
corresponding uniform distribution. Then, each arc is assigned one of the capacities
generated with a uniform probability. The energy rate of the arc (u, v) is computed as
w(u,v) = 10_5c(u, v)lz(u, v). The power at the nodes has been fixed at 3 x 108. For
assessing the effect of the number of items which are sent, we have taken o7 = 100,
o2 = 10,000 and o3 = 1,000,000.

Tables 2 and 3 display the results provided by the EQPA for Sets 1 and 2. The first
to third columns show the value of the parameters r, n and m. The fourth to sixth
columns display the mean of the s — ¢ shortest paths computed by the algorithm in the
10 runs which are candidate to be an optimal solution of the EQPP, depending on the
size of 0. The seventh to ninth columns show the mean CPU time in seconds of the 10
runs for the different values of o. In the algorithm, there are as many networks G; as
distinct capacities. Hence, in principle, we could expect to have as many candidate s —¢
shortest paths as distinct capacities. However, with an increasing number of distinct
capacities, the number of candidate s — ¢ shortest paths increases more slowly. For
instance, when r = 10, the mean of the s — 7 shortest paths computed by the algorithm
varies between 4.3 and 8.5 for Set 1 and between 5.1 and 9.1 for Set 2. However,
when r = 1000, the range is 11.1-36.9 for Set 1 and 14.3-38.3 for Set 2. Regarding
the CPU times, these are almost negligible when the number of distinct capacities is
r = 10. As expected, the CPU time increases as long as the number of capacities and
the size of the network increases, but for the largest problems the average CPU time is

Table 1 Parameters of test problems Set 1 and Set 2

n m r
Set 1 10,000, 20,000, 30,000, 40,000 10n, 20n, 30n, 40n, 50n 10, 100, 1000
Set 2 20,000, 40,000, 60,000, 80,000, 100, 000 10n, 20n, 30n, 40n, 50n 10, 100, 1000

@ Springer

ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen/gridgen.c
ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen/gridgen.c
http://www.dis.uniroma1.it/challenge9/download.shtml

1330

H. I. Calvete et al.

Table 2 EQPA test results: Set 1

r n m # Shortest paths CPU time
o1 02 o3 o1 02 o3
10 10,000 100,000 6.5 6.5 4.3 0.04 0.04 0.03
200,000 7.8 7.8 7.1 0.08 0.09 0.08
300,000 8.4 8.4 7.4 0.13 0.13 0.13
400,000 7 7 6.6 0.15 0.15 0.15
500,000 7.4 7.4 7.2 0.20 0.20 0.19
20,000 200,000 7 7 4.7 0.10 0.10 0.08
400,000 7.6 7.6 7.1 0.20 0.20 0.19
600,000 7.3 7.2 6.4 0.27 0.27 0.25
800,000 8.3 8.3 7.7 0.35 0.35 0.36
1,000,000 8.5 8.5 8.4 0.44 0.44 0.45
30,000 300,000 6.4 6.4 5 0.17 0.17 0.15
600,000 8.2 8.2 7.2 0.34 0.34 0.31
900,000 8.1 8.1 7.5 0.45 0.46 0.44
1,200,000 8.3 8.3 8.3 0.61 0.61 0.60
1,500,000 7.7 7.7 7.3 0.71 0.71 0.71
40,000 400,000 6.7 6.7 4.6 0.25 0.25 0.21
800,000 7.8 7.8 6.7 0.47 0.47 0.42
1,200,000 7.8 7.8 6.8 0.62 0.62 0.60
1,600,000 7.9 7.9 7.4 0.77 0.77 0.76
2,000,000 8.1 8.1 8 0.95 0.95 0.95
100 10,000 100,000 13.4 134 8.8 0.23 0.23 0.15
200,000 17.1 17.1 15.5 0.36 0.36 0.31
300,000 20.1 20.1 18.8 0.57 0.57 0.50
400,000 16.9 16.9 14.6 0.70 0.70 0.61
500,000 20.1 20.1 19.1 0.74 0.75 0.67
20,000 200,000 17 17.1 12 0.61 0.62 0.38
400,000 18.8 18.8 133 1.04 1.05 0.78
600,000 18 18 14.8 1.38 1.39 1.06
800,000 19.8 19.8 19.3 1.73 1.74 1.59
1,000,000 22.5 22.5 19.5 2.18 2.21 1.97
30,000 300,000 18.1 18.1 11.6 1.07 1.08 0.71
600,000 18 18 15.1 1.81 1.82 1.50
900,000 20.9 20.9 16.9 2.45 2.45 2.12
1,200,000 222 222 19.6 3.00 3.02 2.66
1,500,000 24.4 24.4 20.9 4.24 4.28 3.73

@ Springer

The energy-constrained quickest path problem 1331

Table 2 continued

r n m # Shortest paths CPU time
o1 02 o3 o1 02 o3
40,000 400,000 19.8 19.8 9.5 1.62 1.63 0.95
800,000 18 17.9 15.9 2.45 2.47 1.83
1,200,000 18.3 18.3 14.4 3.33 3.35 2.83
1,600,000 24.3 24.3 23.1 4.60 4.62 3.99
2,000,000 24.8 24.8 20.8 5.14 5.18 4.37
1000 10,000 100,000 17.1 17.1 11.1 2.15 2.15 1.25
200,000 24.4 24.4 23 3.64 3.64 2.77
300,000 24.6 24.6 20.3 5.13 5.14 4.05
400,000 24.1 24.1 194 5.57 5.59 4.12
500,000 27.5 27.5 23.8 8.18 8.20 6.38
20,000 200,000 17.2 17.2 15.1 4.76 4.76 2.80
400,000 235 23.5 18.2 8.86 8.87 6.35
600,000 22.3 22.3 19.6 12.41 12.41 9.13
800,000 27.7 27.7 23.7 16.44 16.47 14.24
1,000,000 30.4 30.4 23.3 21.29 21.32 17.81
30,000 300,000 21.8 21.8 13.9 9.09 9.11 6.64
600,000 22.4 22.4 21.1 18.79 18.82 15.10
900,000 274 274 223 18.84 18.89 15.65
1,200,000 30.2 30.2 23.8 29.03 29.09 24.10
1,500,000 35.7 35.7 22.8 3512 3521 27.44
40,000 400,000 19.1 19.1 11.6 13.58 13.58 7.24
800,000 26.7 26.7 20.3 2226 22.24 16.20
1,200,000 28.5 28.5 23.1 3420 3426 26.50
1,600,000 29.6 29.6 25.1 33.58 33.74 26.94
2,000,000 36.9 36.9 25.5 4143 41.61 3341

Mean of the number of candidate s — ¢ shortest paths P; and mean of the computing time (CPU time in
seconds)

less than 6 min and usually takes less than 1 min. In order to get an overall picture of
the CPU time invested by the algorithm in these sets of instances, Fig. 2 displays the
boxplot of the CPU time for each number of capacities and each value of o, depending
on the type of network generator. Every boxplot summarizes the information of 200
problems when using Set 1 and 250 problems when using Set 2. Note that in both
groups the variability increases when the number of capacities increases. Networks of
Set 2 are larger and so CPU times are longer.

As for Set 3, Table 4 displays the characteristics of these USA road networks: name
of the network, number of nodes and arcs, and the destination node ¢. In all cases, the
node originis s = 1. The energy rate of the arcs and the power of the nodes is the same
as in Sets 1 and 2. Based on these networks we have constructed two different groups
of test problems. In the first group, the delay is taken as the parameter distance of

@ Springer

1332

H. I. Calvete et al.

Table 3 EQPA test results: Set 2

r n m # Shortest paths CPU time
o1 02 o3 o1 02 o3
10 20,000 200,000 7.4 7.1 5.1 0.14 0.14 0.12
400,000 8.2 8.0 6.9 0.32 0.30 0.26
600,000 7.9 8.4 7.3 0.48 0.48 0.46
800,000 8.2 7.5 7.6 0.65 0.64 0.64
1,000,000 8.5 8.9 7.6 0.78 0.79 0.76
40,000 400,000 5.6 7.0 5.1 0.31 0.35 0.28
800,000 7.3 7.3 7.1 0.63 0.78 0.68
1,200,000 8.6 7.9 7.9 1.04 0.95 0.96
1,600,000 8.6 7.8 7.9 1.48 1.14 1.30
2,000,000 8.3 7.8 7.7 1.57 1.52 1.55
60,000 600,000 7.7 7.5 6.5 0.53 0.53 0.41
1,200,000 8.4 7.5 6.8 1.08 1.12 0.93
1,800,000 8.9 8.5 8.7 1.48 1.55 1.35
2,400,000 8.0 8.6 8.4 1.99 2.10 1.98
3,000,000 9.0 8.5 8.6 2.63 2.31 2.39
80,000 800,000 7.5 7.3 6.2 0.85 0.82 0.65
1,600,000 8.0 7.9 7.4 1.45 1.48 1.32
2,400,000 7.8 8.4 7.0 1.90 2.02 1.76
3,200,000 8.5 8.5 8.9 2.88 2.69 2.67
4,000,000 8.3 8.4 8.7 2.82 3.21 3.32
1,00,000 1,000,000 7.1 7.2 4.5 0.97 1.00 0.72
2,000,000 8.6 8.7 7.6 1.95 1.85 1.67
3,000,000 8.4 8.2 7.8 2.92 2.74 2.45
4,000,000 9.0 9.1 8.1 3.64 3.40 3.09
5,000,000 8.6 8.4 8.4 4.49 4.53 4.52
100 20,000 200,000 17.5 15.1 16.1 0.77 0.88 0.62
400,000 18.1 20.4 16.1 1.92 2.14 1.82
600,000 22.1 21.0 19.1 3.38 343 2.97
800,000 23.0 22.1 17.0 4.58 4.53 3.58
1,000,000 23.0 22.5 21.6 5.50 5.11 5.40
40,000 400,000 15.4 18.9 14.3 2.69 2.65 2.20
800,000 21.0 20.7 18.4 5.45 5.74 4.86
1,200,000 214 233 194 6.34 6.90 6.51
1,600,000 26.8 23.1 20.8 10.39 9.04 7.88
2,000,000 21.7 23.9 20.0 11.11 11.33 10.31
60,000 600,000 19.0 17.4 17.1 3.92 3.53 2.32
1,200,000 21.9 19.1 19.5 8.09 7.08 6.55
1,800,000 24.7 25.0 22.3 10.39 10.91 9.30

@ Springer

The energy-constrained quickest path problem

1333

Table 3 continued

r n m # Shortest paths CPU time
ol 02 o3 o1 02 o3
2,400,000 23.8 23.1 21.5 14.34 15.76 13.05
3,000,000 24.4 24.6 24.2 16.11 16.96 15.05
80,000 800,000 19.8 16.2 13.9 5.99 6.32 4.07
1,600,000 23.7 21.4 20.7 11.20 9.89 9.26
2,400,000 22.7 23.4 22.7 13.46 13.15 14.53
3,200,000 25.5 25.6 21.8 18.86 18.47 15.41
4,000,000 24.6 26.3 21.9 24.07 22.62 20.98
100,000 1,000,000 17.0 18.2 11.2 7.01 7.69 4.40
2,000,000 229 242 21.7 14.74 15.03 11.03
3,000,000 25.9 23.8 20.8 23.22 22.43 16.20
4,000,000 24.8 24.5 22.5 24.34 23.00 19.95
5,000,000 26.5 26.7 23.1 35.49 32.16 27.34
1000 20,000 200,000 16.4 21.2 17.4 7.05 7.64 5.59
400,000 28.3 24.7 20.3 18.83 16.80 13.81
600,000 28.4 25.2 20.0 33.84 28.61 26.85
800,000 31.4 32.5 24.7 40.10 42.63 35.63
1,000,000 32.4 30.4 26.4 47.70 47.07 45.59
40,000 400,000 21.6 20.4 14.3 24.66 23.38 15.10
800,000 235 25.1 19.9 45.14 45.88 41.90
1,200,000 35.9 30.1 20.4 60.73 63.05 57.30
1,600,000 31.8 36.7 27.5 84.54 81.46 82.87
2,000,000 30.9 30.1 28.7 99.68 109.98 105.14
60,000 600,000 21.8 16.1 15.8 39.21 31.20 22.96
1,200,000 29.9 26.8 21.7 65.34 72.31 59.27
1,800,000 28.7 32.4 26.2 92.61 87.70 78.63
2,400,000 31.8 353 23.0 124.92 141.53 104.93
3,000,000 36.0 322 34.1 170.26 161.07 135.22
80,000 800,000 21.8 214 16.5 57.94 51.97 37.74
1,600,000 28.4 27.0 28.7 89.25 90.94 81.56
2,400,000 31.6 31.8 26.5 130.03 143.72 108.45
3200,000 35.0 35.9 33.9 148.90 168.41 164.46
4,000,000 37.0 38.3 314 223.11 214.16 207.19
100,000 1,000,000 22.3 22.5 17.7 66.68 58.03 43.85
2,000,000 28.7 27.3 17.5 134.51 115.37 105.83
3,000,000 30.3 323 25.4 194.02 212.43 174.07
4,000,000 35.7 354 30.0 229.23 216.92 199.08
5,000,000 36.0 347 30.5 320.52 308.50 265.57

Mean of the number of candidate s — ¢ shortest paths P; and mean of the computing time (CPU time in

seconds)

@ Springer

1334 H. I. Calvete et al.

70 500
*

60 * * x N
= * * 2 400 H # *
=] * * =l
£ 504 g ¥
3] * IS
2 40 g 300 1 %
2 2 :
o 5}

E 30 E 200
2 204 =}
o) 0 & 100
*
04 == l%l — % —_ lil 0 - % 4 % - ==
10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000
sigma_1 sigma_2 sigma_3 sigma_1 sigma_2 sigma_3
(a) Networks of Set 1 (b) Networks of Set 2

Fig. 2 Boxplots of CPU time depending on the number of capacities and the value of o

Table 4 Dimension and destination nodes of the network in Set 3

Road network n m Dest. 1 Dest. 2 Dest. 3 Dest. 4
NY 264,346 733,846 264,346 132,173 857 20
BAY 321,270 800,172 321,270 160,635 567 18
COL 435,666 1,057,066 435,666 217,833 660 19
FLA 1,070,376 2,712,798 1,070,376 535,188 1035 21
NE 1,524,453 3,897,636 1,542,453 762,227 1235 21
CAL 1,890,815 4,657,742 1,890,815 945,408 1375 21
LKS 2,758,119 6,885,658 2,758,119 1,379,060 1661 23

Table S Arcs delay empirical distribution

l(u,v) 11 16 25 42 73 128 227 410 744 1365 2520 4681 8700
% 23 54 85 100 120 11.0 100 11.0 &85 7.0 5.0 5.0 43

the road network [20]. The capacity is computed from the parameter time of the road
network. The range of the arc times is partitioned in 100 intervals of equal length. In
order to have integer capacities, the intervals are rounded off by applying the ceiling
function to the upper endpoint and properly adjusting the intervals. For instance, if
(a1, a2], (a2, az] are the first two intervals of the partition, the resulting intervals would
be (a1, [az21], ([aa21, [a31]. Then, if an arc time is in the interval (a, b], the arc capacity
is b. Therefore, problems with 100 distinct capacities are obtained.

The second group of instances built with the USA road networks takes the arc delay
and capacity from the empirical distributions proposed in [6], which are displayed in
Tables 5 and 6. For this group, 10 instances have been generated for each problem.

Table 7 provides the results. Now the first column displays the name of the network
and the second column shows the destination node. The other columns display, for the
first group, the number of candidate shortest paths and the CPU time depending on
the size o. For the second group, the columns which contain the number of candidate
shortest paths and CPU time provide the average of the 10 instances. Note that the

@ Springer

The energy-constrained quickest path problem 1335
Table 6 Arcs capacity empirical distribution
c(u, v) 1360 64 128 256 800 1680 2640 4000 8000
% 51.30 7.15 5.30 0.88 4.40 19.47 4.40 2.70 4.40
Table 7 EQPA test results: Set 3
Dest. First group Second group
Shortest paths CPU time # Shortest paths CPU time
o1 02 o3 o1 02 03 o1 02 o3 o1 o2 o3
NY 4 2 2 0 1.36 1.36 136 22 22 00 044 040 031
3 2 2 1 1.36 1.36 136 32 31 23 029 029 031
2 1 1 0 1.45 1.45 .36 32 37 01 049 050 031
1 1 1 0 1.39 1.40 .36 22 27 00 043 044 031
BAY 4 1 1 0 1.46 1.45 146 16 1.6 0.0 038 037 035
3 1 1 0 1.49 1.48 146 19 1.6 0.0 041 041 035
2 1 1 0 1.51 1.51 146 1.8 22 0.0 045 047 035
1 1 1 0 1.54 1.55 145 17 16 0.0 050 050 035
COL 4 1 1 0 2.02 2.02 203 14 19 03 048 047 047
3 1 1 0 2.02 2.02 203 30 32 00 048 046 047
2 1 0 0 2.04 2.02 203 27 3.0 00 050 051 047
1 1 0 0 2.14 2.03 202 1.0 09 00 070 071 047
FLA 4 1 1 0 3.89 3.88 38 12 1.1 00 124 1.17 1.18
3 1 1 0 3.88 3.87 389 10 12 00 124 1.19 1.18
2 1 1 0 3.97 3.98 389 12 10 00 127 128 1.18
1 1 1 0 3.90 3.93 388 13 1.1 00 120 121 1.18
NE 4 1 1 0 9.57 9.57 960 35 40 03 198 1.8 192
3 1 1 0 9.56 9.57 959 27 32 02 218 209 194
2 1 1 0 9.89 9.97 960 16 14 00 349 347 193
1 1 1 0 9.79 9.92 960 1.1 09 00 327 336 193
CAL 4 1 1 0 9.93 9.91 992 21 21 00 220 221 232
3 1 0 0 9.94 9.90 994 10 10 00 230 232 232
2 1 0 0 10.34 9.91 993 10 10 00 280 281 232
1 1 0 0 10.12 9.93 993 10 10 00 250 248 232
LKS 4 1 1 0 1478 1476 1483 2.0 19 09 343 340 3.56
3 1 1 0 1487 1485 1482 35 29 0.0 3.60 349 3.58
2 1 1 0 1548 1537 1483 27 26 0.0 526 520 3.56
1 1 1 0 1484 1487 1483 26 24 00 410 422 355

First group: Number of candidate s — ¢ shortest paths P; and computing time. Second group: Mean of the
number of candidate s — # shortest paths P; and mean of the computing time. (CPU time in seconds)

@ Springer

1336

H. I. Calvete et al.

Table 8 BEQPA test results

r n m #Efficient paths P; # Efficient paths CPU time
o] o2 03 o] 02 o3 o] 02 o3
2 1000 10,000 6.0 4.8 39 5.7 4.8 39 001 001 0.00
20,000 5.3 4.4 3.5 4.6 4.1 32 003 002 001
50,000 5.3 4.9 4.4 4.4 4.4 43 0.06 0.04 0.03
5000 50,000 6.2 5.7 4.7 5.5 52 44 0.09 0.07 0.04
100,000 6.6 6.5 6.1 6.4 6.3 59 019 015 0.10
250,000 5.4 54 5.4 5.0 5.1 52 047 045 026
10,000 100,000 59 5.9 42 5.0 5.3 40 027 019 0.11
200,000 6.3 6.3 6.0 5.7 6.1 59 048 046 025
500,000 6.9 6.9 6.9 6.1 6.6 6.6 143 1.11 0.71
5 1000 10,000 9.7 8.5 5.7 6.0 5.7 40 0.02 0.01 0.0l
20,000 10.9 9.9 8.2 5.7 6.1 53 004 003 002
50,000 132 125 10.5 7.2 7.8 75 011 008 0.05
5000 50,000 11.6 10.1 7.7 5.9 6.5 56 017 0.11 0.06
100,000 132 13.1 120 7.7 8.9 87 038 029 0.17
250,000 153 153 149 105 113 113 1.10 092 0.63
10,000 100,000 12.7 10.9 7.9 7.5 7.7 6.8 050 031 0.11
200,000 137 134 123 102 108 10.1 1.07 080 0.58
500,000 163 162 158 88 105 11.0 286 237 1.5]
10 1000 10,000 209 158 9.0 6.1 5.8 46 004 0.02 0.01
20,000 22.8 19.1 124 108 103 81 008 005 003
50,000 235 226 183 102 109 10.1 020 0.15 0.09
5000 50,000 215 189 123 8.2 9.0 6.8 029 020 0.09
100,000 277 263 198 106 127 114 0.68 051 0.29
250,000 298 292 276 126 138 134 198 158 1.02
10,000 100,000 202 17.0 10.5 7.4 8.1 6.6 091 058 020
200,000 303 29.0 260 100 11.8 11.7 1.83 145 084
500,000 314 312 30.1 128 147 163 564 423 265
20 1000 10,000 381 29.8 15.0 5.4 6.3 50 007 0.04 0.01
20,000 40.1 326 265 103 11.0 97 014 009 005
50,000 443 414 357 115 134 128 034 024 0.14
5000 50,000 473 425 230 94 104 80 056 037 0.15
100,000 46.6 428 36.5 7.9 8.6 89 121 087 051
250,000 56.7 559 528 155 186 203 392 295 196
10,000 100,000 435 356 244 8.3 8.3 78 160 095 042
200,000 537 521 456 7.0 94 10.6 357 274 164
500,000 66.0 656 620 160 19.0 220 930 7.1 496

@ Springer

The energy-constrained quickest path problem 1337

Table 8 continued

r n m #Efficient paths P; # Efficient paths CPU time
o] o 03 o1 o 03 o1) 03
30 1000 10,000 57.8 51.1 26.8 5.2 6.6 49 0.09 0.06 0.02

20,000 67.5 524 37.1 8.9 9.7 92 021 0.13 0.06

50,000 68.1 657 549 134 145 152 049 036 0.19

5000 50,000 64.1 584 37.1 8.6 9.7 89 0.63 040 0.17
100,000 65.6 632 564 106 119 127 144 1.03 0.59

250,000 80.5 794 176 149 174 20 4.61 345 231

10,000 100,000 63.7 517 309 9.8 109 9.1 1.67 1.05 0.40
200,000 792 76.1 677 11.8 143 154 4.08 299 181

500,000 100.7 99.7 96.7 166 203 23.8 11.85 9.06 6.30

Mean of the number of candidate s — ¢ efficient paths P;, mean of the cardinality of the complete set of
efficient paths of the BEQPP and mean of the computing time (CPU time in seconds)

number of candidates as well as the CPU time are small. It is worth pointing out that
the USA road networks considered are not very dense. In fact, the average degree of
the nodes is 2.6.

6.2 The BEQPA performance evaluation

As mentioned above, it is harder to solve these problems. We present the results of a
set of smaller networks which have been generated using NETGEN. The parameters
have been assigned as follows. Delay time and capacity coefficients are generated
from uniform distributions in the range [1, 50] and [10, 50], respectively. The energy
rate of the arc (u, v) is computed as w(u, v) = 0.0lc(u, v)I2(u, v). The power at
the nodes has been fixed at 3 x 10°. There are 45 problem groups defined by the
number of nodes n = 1000, 5000 and 10,000, the number of arcs m = 10n, 20n and
50n and the number of distinct capacities r = 2, 5, 10, 20 and 30. For each problem
group, we have generated 10 instances. The size of the message has been taken to be
o1 = 10,000, o2 = 20,000 and o3 = 50,000.

Table 8 presents the results provided by the BEQPA. The first to third columns
show the value of the parameters r, n and m. The fourth to sixth columns display the
mean of the candidate s — ¢ efficient paths computed by the algorithm in the 10 runs
by solving problem (8), depending on the size of o. The seventh to ninth columns
show the mean of the cardinality of the complete set of efficient paths of the BEQPP
computed by the algorithm in the 10 runs. Finally, the tenth to twelfth columns display
the mean CPU time in seconds of the 10 runs for the different values of o. We can
see that the number of efficient solutions is reasonably small, as suggested in practical
applications for the BSPP [17]. Moreover, computing times are also short, less than
twelve seconds on average for all the problems.

@ Springer

1338 H. I. Calvete et al.

7 Conclusions

In this paper we have introduced the energy-constrained quickest path problem, a
variant of the QPP with a side constraint on the consumption of energy at the nodes.
Taking into account its properties, this problem can be reformulated as the problem
of finding shortest paths with respect to the delay time on a sequence of as many
subnetworks of G as different capacities. These subnetworks satisty, by construction,
that there is energy available at the nodes for transmitting the data units. A polyno-
mial algorithm has been developed with the same time complexity as the algorithms
developed to solve the QPP. The bi-objective variant of the energy-constrained quick-
est path problem is also considered which aims to minimize transmission time and
consumed energy. The problem is transformed into finding a complete set of efficient
shortest paths in the same networks. The results of the computational study show the
good performance of the algorithms.

Acknowledgements This research work has been funded by the Gobierno de Aragén under Grant E58
(FSE) and by UZ-Santander under Grant UZ2012-CIE-07. The authors gratefully acknowledge the anony-
mous referee for his/her valuable suggestions to improve the presentation of the paper.

References

1. Calvete, H., del-Pozo, L.: The quickest path problem with batch constraints. Oper. Res. Lett. 31(4),
277-284 (2003)

2. Calvete, H., del-Pozo, L., Iranzo, J.: Algorithms for the quickest path problem and the reliable quickest
path problem. Comput. Manag. Sci. 9(2), 255-272 (2012)

3. Chen, G., Hung, Y.: Algorithms for the constrained quickest path problem and the enumeration of
quickest paths. Comput. Oper. Res. 21, 113-118 (1994)

4. Chen, Y.: Finding the k quickest simple paths in a network. Inf. Process. Lett. 50, 89-92 (1994)

5. Chen, Y., Chin, Y.: The quickest path problem. Comput. Oper. Res. 17(2), 153-161 (1990)

6. Climaco, J., Pascoal, M., Craveirinha, J., Captivo, M.: Internet packet routing: application of a k-
quickest path algorithm. Eur. J. Oper. Res. 181, 1045-1054 (2007)

7. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization algorithms.
J. Assoc. Comput. Mach. 34(3), 596-615 (1987)

8. Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems: a state of the art. In:
Schreckenberg, M., Sharma, S. (eds.) Pedestrian and Evacuation Dynamics, pp. 227-266. Springer,
Berlin (2002)

9. Klingman, D., Napier, A., Stutz, J.: Netgen: a program for generating large scale capacitated assign-
ment, transportation, and minimum cost flow network problems. Manag. Sci. 20(5), 814-821 (1974)

10. Martins, E., Santos, J.: An algorithm for the quickest path problem. Oper. Res. Lett. 20(4), 195-198
(1997)

11. Moore, M.: On the fastest route for convoy-type traffic in flowrate-constrained networks. Transp. Sci.
10(2), 113-124 (1976)

12. Park, C.K., Lee, S., Park, S.: A label-setting algorithm for finding a quickest path. Comput. Oper. Res.
31(14), 2405-2418 (2004)

13. Pascoal, M., Captivo, M., Climaco, J.: An algorithm for ranking quickest simple paths. Comput. Oper.
Res. 32(3), 509-521 (2005)

14. Pascoal, M., Captivo, M., Climaco, J.: A comprehensive survey on the quickest path problem. Ann.
Oper. Res. 147(1), 5-21 (2006)

15. Pascoal, M., Captivo, M., Climaco, J.: Computational experiments with a lazy version of a k quickest
simple path ranking algorithm. TOP 15(2), 372-382 (2007)

16. Pelegrin, B., Fernandez, P.: On the sum-max bicriterion path problem. Comput. Oper. Res. 25(12),
1043-1054 (1998)

@ Springer

The energy-constrained quickest path problem 1339

17.

18.

20.

Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems.
Comput. Oper. Res. 36(4), 1299-1331 (2009)

Rao, N., Grimmell, W., Radhakrishan, S., Bang, Y., Manickam, N.: Quickest paths for different network
router mechanisms. In: Proceedings of ninth International Conference on Advanced Computing and
Communications (2001)

. Rosen, J., Sun, S., Xue, G.: Algorithms for the quickest path problem and the enumeration of quickest

paths. Comput. Oper. Res. 18(6), 579-584 (1991)
Sedefio-Noda, A., Gonzdlez-Barrera, J.: Fast and fine quickest path algorithm. Eur. J. Oper. Res. 238(2),
596-606 (2014)

@ Springer

	The energy-constrained quickest path problem
	Abstract
	1 Introduction
	2 The energy-constrained quickest path problem
	3 Main theoretical results
	4 EQPA: an algorithm for solving the EQPP
	5 The bi-objective energy-constrained quickest path problem
	6 Computational experience
	6.1 The EQPA performance evaluation
	6.2 The BEQPA performance evaluation

	7 Conclusions
	Acknowledgements
	References

