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Abstract Wepresent a linear-time approximation scheme for solving the trust region
subproblem (TRS). It employs Nesterov’s accelerated gradient descent algorithm to
solve a convex programming reformulation of (TRS). The total time complexity is
less than that of the recent linear-time algorithm. The algorithm is further extended to
the two-sided trust region subproblem.
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1 Introduction

Consider the classical trust region subproblem

(TRS) min f (x) = 1

2
xT Ax + bT x

s.t. xT x ≤ 1,

where A ∈ R
n×n is symmetric and possibly indefinite and b ∈ R

n . (TRS) plays a great
role in trust region methods [2,14] for nonlinear programming. Efficient numerical
algorithms for (TRS) can be found in [5,8].When b = 0, (TRS) reduces to themaximal
eigenvector problem, which can be approximated in linear time [4]. Recently, the first
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linear-time approximation algorithm for (TRS) is proposed [6] based on strong duality,
approximate eigenvector oracle and the bisection scheme.

In this paper, we present a new and simple linear-time approximation scheme for
solving (TRS). Actually, our algorithm works for a more general version of (TRS),
the two-sided trust region subproblem:

(TTRS) min f (x) = 1

2
xT Ax + bT x (1)

s.t. α ≤ xT x ≤ 1, (2)

where 0 ≤ α ≤ 1. (TTRS) was first introduced in [11]. For a recent survey on (TTRS),
we refer to [10].

In the following, we study (TTRS) and keep in mind that (TRS) is a special case
of (TTRS) when α = 0. Our approximation scheme contains two main steps. First
we establish a new convex programming reformulation for (TTRS), which is differ-
ent from the existing convex reformulations [1,13]. Secondly, we employ Nesterov’s
accelerated gradient descent algorithm [9] to solve the convexified version of (TTRS).
The total worst-case time complexity is even less than that of the recent linear-time
algorithm [6], which only works for (TRS).

The remainder of this paper is as follows. Section 2 presents a new hidden convexity
for (TTRS). Section 3 applies Nesterov’s fast gradient method to solve the convex-
ified formulation of (TTRS) and then analyzes the worst-case time complexity. The
complexity is even less than the recent linear-time algorithm for (TRS). Conclusions
are made in Sect. 4.

2 Hidden convexity

In this section, we present a new convex quadratic constrained quadratic programming
reformulation for (TTRS).

Let v(·) be the optimal value of (·). Denote by λ1 the minimal eigenvalue of A.
Let v �= 0 be the corresponding eigenvector. Without loss of generality, we assume
bT v ≤ 0.

Theorem 1 (TTRS) is equivalent to the following convex programming relaxation

(C) minx,t
1

2
xT (A − λ1 I )x + bT x + 1

2
λ1t (3)

s.t. xT x ≤ t, α ≤ t ≤ 1, (4)

in the sense that v(TTRS) = v( C). Moreover, for any optimal solution of (C), denoted
by (x∗, t∗),

x∗ +
√

(x∗T v)2 − vT v(x∗T x∗ − t∗) − x∗T v

vT v
v (5)

globally solves (TTRS).
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Proof Let x̃ be an optimal solution of (TTRS). Then, (̃x, t̃ := x̃ T x̃) is a feasi-
ble solution of (C) whose objective value is equal to v(TTRS). Therefore, we have
v(TTRS) ≥ v(C). Now it is sufficient to show that the lower bound v(C) is attained
for (TTRS).

Let (x∗, t∗) be an optimal solution of (C). We assume x∗T x∗ < t∗, otherwise, we
are done. Define

x(γ ) = x∗ + γ v.

Then, (x(γ ), t∗) is a feasible solution of (C) for any γ such that x(γ )T x(γ ) ≤ t∗.
Moreover, the objective value of (x(γ ), t∗) is decreasing when γ ≥ 0 increases.
Consequently, (x(γ ), t∗) remains optimal for γ ≥ 0 and x(γ )T x(γ ) ≤ t∗.
Notice that the equation x(γ )T x(γ ) = t∗ in terms of γ has a positive root√

(x∗T v)2−vT v(x∗T x∗−t∗)−x∗T v

vT v
. The proof is complete. �	

When α = 0, Theorem 1 reduces to the following result for (TRS).

Corollary 1 ([3], Theorem 1) Let μ = min{λ1, 0}. (TRS) is equivalent to the convex
programming relaxation

(C0) min
xT x≤1

1

2
xT (A − μI )x + bT x + 1

2
μ

in the sense that v(TRS) = v(C0). Moreover, when λ1 < 0, for any optimal solution
of (C0), denoted by x∗,

x∗ +
√

(x∗T v)2 − vT v(x∗T x∗ − 1) − x∗T v

vT v
v (6)

globally solves (TRS).

To approximately calculateλ1, we need the following estimation [6] on themaximal
eigenvalue of A, denoted by λmax(A), which is based on the analysis by Kuczynski
and Wozniakowski [7].

Theorem 2 [6,7] Given a symmetric matrix A ∈ R
n×n with ‖A‖ ≤ ρ, parameters

ε, δ > 0 and let N (≥ n) is an upper bound of the number of non-zero entries in A,

the Lanczos method [4] runs in time O(
N

√
ρ√

ε
log n

δ
) and returns a unit vector x ∈ R

n

for which

xT Ax ≥ λmax(A) − ε

with probability at least 1 − δ.

Notice that ‖ρ I − A‖ ≤ 2ρ and the maximal eigenvalue of ρ I − A is equal to
ρ − λ1. Thus, applying Theorem 2 to ρ I − A yields the following estimation on λ1.
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Corollary 2 Given a symmetricmatrix A ∈ R
n×n with‖A‖ ≤ ρ , parameters ε, δ > 0

and let N (≥n) is an upper bound of the number of non-zero entries in A, the Lanczos

method [4] runs in time O(
N

√
ρ√

ε
log n

δ
) and returns a unit vector ṽ ∈ R

n for which

(λ1 ≤)̃vT Aṽ ≤ λ1 + ε

with probability at least 1 − δ.

Define λ̃1 = ṽT Aṽ − ε. Then,

A − λ̃1 I � A − λ1 I � 0.

As an approximation of (C), we turn to solve the following convex programming
problem

(AC) minx,t g(x, t) := 1

2
xT (A − λ̃1 I )x + bT x + 1

2
λ̃1t (7)

s.t. (x, t) ∈ X := {(x, t) | xT x ≤ t, α ≤ t ≤ 1}. (8)

It is not difficult to verify that

|v(AC) − v(C)| ≤ ε. (9)

3 Nesterov’s accelerated gradient method and complexity

In this section, we employ Nesterov’s accelerated gradient descent method [9] to solve
(AC) (7), (8) and then study the worst-case time complexity.

Notice that g(x, t) defined in (7) is a convex quadratic function. Then, the gradient
of g, denoted by ∇g, is Lipschitz continuous:

‖∇g(x1, t1) − ∇g(x2, t2)‖ ≤ 2ρ ‖(x1, t1) − (x2, t2)‖

where ρ is an upper bound of ‖A‖.
To solve (AC) (7), (8), we use the following algorithm in [12], which is a slightly

generalized version of Nesterov’s accelerated gradient method [9].
Algorithm 1 1. Choose θ0 = θ−1 ∈ (0, 1], (x0, t0) = (x−1, t−1) ∈ X. Let k := 0.
2. Let

(yk, sk) = (xk, tk) + θk(θ
−1
k−1 − 1)((xk, tk) − (xk−1, tk−1))

and ∇gk = ∇g(yk, sk). Update

(xk+1, tk+1) = arg min
(x,t)∈X ∇gTk (x, t) + ρ‖(x, t) − (yk, sk)‖2. (10)
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3. Choose θk+1 ∈ (0, 1] satisfying

1 − θk

θ2k+1

≤ 1

θ2k
.

If the stopping criterion does not hold, update k := k + 1, and go to step 2.

Theorem 3 [9,12] Let {(xk, tk)} be generated by Algorithm 1, (x∗, t∗) be the global
minimizer of (AC) (7), (8), then

g(xk, tk) − g(x∗, t∗) ≤ O
( ρ

k2

)
,∀k. (11)

That is, Algorithm 1 returns an ε-approximation solution of (AC) in O(
√

ρ/ε) itera-
tions.

In each iteration of Algorithm 1, the main computational cost is to solve (10). In the
following, we show the solution details of (10). We first rewrite the objective function
of (10) as follows

G(x, t) := ∇gTk (x, t) + ρ‖(x, t) − (yk, sk)‖2
= ρxT x + [(A − λ̃1 I − 2ρ I )yk + b]T x + ρt2 + (̃λ1/2 − 2ρsk)t + e

:= ρxT x + cT x + ρt2 + dt + e

where c = (A − λ̃1 I − 2ρ I )yk + b, d = λ̃1/2 − 2ρsk and e = ρ‖(yk, sk)‖2.
Now, (10) is equivalent to the following convex program:

min ρxT x + cT x + ρt2 + dt (12)

s.t. xT x ≤ t, (13)

t2 − (α + 1)t + α ≤ 0. (14)

It is sufficient to solve the KKT system of (12)–(14), which reads as follows:

2ρx + c + 2μ1x = 0, (15)

2ρt + d − μ1 + 2μ2t − (α + 1)μ2 = 0, (16)

μ1(x
T x − t) = 0, (17)

μ2(t
2 − (α + 1)t + α) = 0, (18)

xT x ≤ t, α ≤ t ≤ 1, μ1 ≥ 0, μ2 ≥ 0, (19)

where μ1 and μ2 are the Lagrangian multipliers corresponding to (13) and (14),
respectively.
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Notice that ρ > 0, μ1 ≥ 0 and μ2 ≥ 0. It follows from (15) and (16) that

x(μ1) = −c

2ρ + 2μ1
, (20)

t (μ1, μ2) = μ1 + (α + 1)μ2 − d

2ρ + 2μ2
. (21)

Consider the following different cases.

(a) Suppose μ1 = 0 and μ2 = 0. If x(0)T x(0) ≤ t (0, 0) and α ≤ t (0, 0) ≤ 1, then
(x(0), t (0, 0)) is the optimal solution of (10).

(b) Suppose μ1 = 0 and μ2 > 0. According to (18), t (0, μ2) = α or 1. Hence, μ2 is
solved. If x(0)T x(0) ≤ t (0, μ2), then (x(0), t (0, μ2)) is the optimal solution of
(10).

(c) Suppose μ1 > 0 and μ2 = 0. According to (17), we have x(μ1)
T x(μ1) =

t (μ1, 0). Consequently, μ1 is obtained by solving this cubic equation. If α ≤
t (μ1, 0) ≤ 1, then (x(μ1), t (μ1, 0)) is the optimal solution of (10).

(d) Suppose μ1 > 0 and μ2 > 0. It follows from (17) to (18) that x(μ1)
T x(μ1) =

t (μ1, μ2), and t (μ1, μ2) = α or 1. The first equation is cubic and the second is
linear. Therefore, combining both yields a cubic function of (μ1), which also has
an explicit solution. For the obtained (μ1, μ2), if x(μ1)

T x(μ1) ≤ t (μ1, μ2) and
α ≤ t (μ1, μ2) ≤ 1, then (x(μ1), t (μ1, μ2)) is the optimal solution of (10).

From above, we can see that (10) is modeled in O(N ) time and then solved in
O(n) time, where N (≥ n) is an upper bound of the number of non-zero entries in A.
According to Theorem 3, we have the following estimation.

Lemma 1 The time complexity of approximately solving (AC) is

O

(
N

√
ρ

ε

)
. (22)

Furthermore, combining (9), Theorem 1, Corollary 2, and Lemma 1 yields the
following main result.

Theorem 4 Given the parameters ε > 0, δ > 0, with probability at least 1−δ over the
randomization of an approximate eigenvector oracle, we can find an ε-approximation
solution of (TTRS), x̃ ∈ R

n, satisfying α ≤ x̃ T x̃ ≤ 1 and

f (̃x) ≤ v(TTRS) + ε,

in total time

O

(
N

√‖A‖√
ε

log
n

δ

)
. (23)
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We notice that Hazan and Koren’s approximation scheme [6] is particular to (TRS).
To the best of our knowledge, whether it can be extended to solve (TTRS) remains
open. Nevertheless, even for (TRS), our complexity (23) is clearly less than Hazan
and Koren’s [6]:

O

(
N

√
β√

ε
log

β

ε
log

(
n

δ
log

β

ε

))
,

where β = max(‖A‖ + ‖b‖ , 1).

4 Conclusions

Recently, the first linear-time algorithm for the trust region subproblem (TRS) is
proposed based on strong duality, approximate eigenvector oracle and the bisection
scheme. In this paper, we present a new linear-time approximation scheme for solving
the trust region subproblem (TRS). It trivially employsNesterov’s accelerated gradient
descent algorithm to solve a convex quadratic constrained quadratic programming
reformulation of (TRS). However, the total time complexity of our scheme is less than
that of the recent one for (TRS). Our approach is further extended to the two-sided
trust region subproblem. The future work will include more extensions to the other
nonconvex quadratic programming problems.
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