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Abstract The restricted strong convexity is an effective tool for deriving globally
linear convergence rates of descent methods in convex minimization. Recently, the
global error bound and quadratic growth properties appeared as new competitors. In
this paper, with the help of Ekeland’s variational principle, we show the equivalence
between these three notions. To deal with convex minimization over a closed convex
set and structured convex optimization, we propose a group of modified versions and
a group of extended versions of these three notions by using gradient mapping and
proximal gradient mapping separately, and prove that the equivalence for the modified
and extended versions still holds. Based on these equivalence notions,we establish new
asymptotically linear convergence results for the proximal gradient method. Finally,
we revisit the problem of minimizing the composition of an affine mapping with a
strongly convex differentiable function over a polyhedral set, and obtain a strengthened
property of the restricted strong convex type under mild assumptions.

Keywords Restricted strong convexity · Global error bound · Quadratic growth
property · Gradient mapping · Linear convergence

1 Introduction

To obtain globally linear convergence rates of gradient-type methods for minimizing
convex (not necessarily strongly convex) differentiable functions, we recently pro-
posed the restricted strong convexity (RSC) [19,20], which is a strictly weaker concept
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than the strong convexity. Up to now, it has been proved that the RSC property is a
very powerful tool for analyzing descentmethods including (in)exact gradientmethod,
restarted nonlinear CG, BFGS and its damped limited memory variants L-D-BFGS
[17,20]. Almost parallel to work [19], the authors of [11,18] defined the global error
bound (GEB) property in the spirit of Hoffman’s celebrated result on error bounds for
systems of linear inequalities [7,10]. They showed that the GEB property also guaran-
tees globally linear convergence results for descent methods. Moreover, they figured
out a class of convex programs that frequently appear in machine learning obeying the
GEB property. Very recently, the authors of [6,9,13] proposed the quadratic growth
(QG) property with different names; it was called second order growth property in
[13], optimal strong convexity in [9], and semi-strongly convex property in [6]. They
showed that the QG property can guarantee globally linear convergence results for
descent methods as well. Since each of these three notions contributes as a linear
convergence guarantee, it should be interesting to see what is the relationship between
them. With the help of Ekeland’s variational principle, we show that they are actually
equivalent.

To deal with convex minimization over a closed convex and structured convex opti-
mization, we propose a group of modified versions and a group of extended versions
of these three notions by using gradient mapping and proximal gradient mapping
separately [14] to replace the gradient notion. Similarly, the modified and extended
versions can be used to derive globally linear convergence results for a large class
of descent methods in convex minimization [3,5,6,13]. If the objective function in
convex program involves the gradient-Lipschitz-continuous property, we prove that
the equivalence for the modified and extended versions still holds. Based on these
equivalence notions, we establish new asymptotically linear convergence results for
the proximal gradient method, that are complementary to recently appearing theory.

The equivalence results in this paper provide us with alternative ways to check
whether a given convex minimization problem satisfies the RSC property; in some
cases, to check one of the equivalence properties might be much easier than to check
the others. As a case study, we investigate the problem of minimizing the composition
of an affine mapping with a strongly convex differentiable function over a polyhedral
set, which is very popular in machine learning. We prove that this problem enjoys a
strengthened property of the RSC type and hence the modified GEB property without
any compactness assumption of polyhedral sets.

At the time of writing this paper, the authors of [4] showed the equivalence
between the error bound (corresponding to our growth property) and the Kurdyka-
Łojasiewicz inequality for convex functions having a moderately flat profile near the
set of minimizers. As the convex functions are differentiable, this paper might pro-
vide complementary results to that in [4]. When our paper was under review, the
authors of [5] posted their paper concerning the equivalence between the error bound
and quadratic growth properties on arXiv. They defined the error bound condition by
using the proximal gradient mapping, that generalizes our modified error bound prop-
erty and the global error bound from the beginning proposed in [18]. However, they
did not discuss the equivalence to the RSC property. Besides, our convergence results
for the proximal gradient method are new and might be of interest in themselves.
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The restricted strong convexity revisited... 819

The rest of paper is organized as follows. In Sect. 2, we present the basic notations
and concepts discussed in this paper. In Sect. 3, we analyze the relationship of different
notions. In Sect. 4, we discuss the convergence of proximal gradient method implied
by the equivalence notions. In Sect. 5 is devoted to a case study.

2 Notation and definitions

We denote by d(x,Y) the distance from a point x to a nonempty closed set Y; that
is, d(x,Y) = inf y∈Y ‖x − y‖. When Y is a single point set, i.e., Y = {y}, we use
d(x, y) to replace d(x,Y) for simplicity. We will consider functions that take values
in the extended real line R := R

⋃{+∞}. The projection of x onto a nonempty
closed convex set Y is denoted by [x]+Y . The spectral norm of a matrix X is given by
‖X‖. The terminology below follows from [14]. A convex differentiable function g is
gradient-Lipschitz-continuous if there exists a positive scalar L such that

‖∇g(x) − ∇g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ R
n, (1)

or equivalently,

0 ≤ g(y) − g(x) − 〈∇g(x), y − x〉 ≤ L

2
‖y − x‖2, ∀x, y ∈ R

n, (2)

and strongly convex if there exists a positive scalar μ such that

〈∇g(x) − ∇g(y), x − y〉 ≥ μ‖x − y‖2, ∀x, y ∈ R
n . (3)

2.1 Original versions for unconstrained convex program

Definition 1 Let f : Rn → R be convex differentiable. Denote f ∗ = minx∈Rn f (x)
and X = argminx∈Rn f (x) and assume that X is nonempty. Then the unconstrained
convex program

minimize
x∈Rn

f (x)

obeys

(a) the restricted strongly convex property with constant ν > 0 if it satisfies the
restricted secant inequality

〈∇ f (x), x − [x]+X 〉 ≥ ν · d2(x,X ), ∀x ∈ R
n . (4)

(b) the global error bound property with constant κ > 0 if it satisfies the error upper
bound inequality

‖∇ f (x)‖ ≥ κ · d(x,X ), ∀x ∈ R
n . (5)
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820 H. Zhang

(c) the quadratic growth property with constant τ > 0 if it satisfies the second order
growth of the function value

f (x) − f ∗ ≥ τ

2
· d2(x,X ), ∀x ∈ R

n . (6)

We use RSC(ν), GEB(κ), and QG(τ ) to stand for the defined properties above
respectively.

To ensure that [x]+X is well defined, we need X to be closed; this is implied by the
differentiable of f (x).

Remark 1 The RSC property first appeared in [8] as a restricted secant inequality.
The authors of [19,20] formally defined it and figured out a class of non-trivial RSC
functions.

The authors of [11,18] proposed the GEB property in the spirit of Hoffman’s error
bounds [7]. The local version of GEB only implies asymptotic linear convergence
rates [10].

The QG property appeared in a couple of papers [6,9,13] with different names.
The equivalence between the RSC and the QG of convex differentiable functions was
shown in [17,20].

2.2 Modified versions for constrained convex program

To deal with constrained convex programs, we first introduce the gradient mapping
[14].

Definition 2 Let γ > 0 be a fixed constant and Q be a closed convex set, and let
x̄ ∈ R

n . Denote

xQ(x̄; γ ) = argmin
x∈Q

[
f (x̄) + 〈∇ f (x̄), x − x̄〉 + γ

2
‖x − x̄‖2

]

G f
Q(x̄; γ ) = γ (x̄ − xQ(x̄; γ )).

We call G f
Q(x̄; γ ) the gradient mapping of function f on Q.

When Q = R
n , we have that

xQ(x̄; γ ) = x̄ − 1

γ
∇ f (x̄) and G f

Q(x̄; γ ) = ∇ f (x̄).

The latter implies that the gradient mapping generalizes the gradient notion.

Definition 3 Let f : R
n → R be a convex differentiable function and let Q be a

nonempty closed convex set. Denote X = argminx∈Q f (x) and f ∗ = minx∈Q f (x)
and assume that X is nonempty. Let γ > 0 be a fixed constant. Then the constrained
convex program

minimize
x∈Q f (x)
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The restricted strong convexity revisited... 821

obeys

(a) the modified restricted strongly convex property on Q with constant ν > 0 if it
satisfies the restricted secant inequality

〈G f
Q(y; γ ), y − [y]+X 〉 ≥ ν · d2(y,X ), ∀y ∈ Q. (7)

(b) the modified global error bound property on Q with constant κ > 0 if it satisfies
the error upper bound inequality

‖G f
Q(y; γ )‖ ≥ κ · d(y,X ), ∀y ∈ Q. (8)

(c) the modified quadratic growth property on Q with constant τ > 0 if it satisfies
the second order growth of the function value

f (y) − f ∗ ≥ τ

2
· d2(y,X ), ∀y ∈ Q. (9)

We usemRSC(ν),mGEB(κ), andmQG(τ ) to stand for the defined properties above
respectively.

Again, the closedness of X is guaranteed by the differentiable of f (x) and hence
[y]+X is well defined.

Remark 2 The author of [17] also proposed a modified RSC by considering a convex
constraint set Q. But they required that both X f = argminx∈Rn f (x) and Q

⋂
X f are

nonempty. Such assumptions are very strong conditions and many practical problems
may fail to satisfy.

Remark 3 When Q = R
n , the modified versions return to the corresponding original

versions sinceG f
Q(x̄; γ ) = ∇ f (x̄). Therefore, themodifiedDefinition3 canbeviewed

as a generalization of Definition 1.

2.3 Extended versions via proximal gradient mapping

To introduce extended versions of the previous notions for structure convex optimiza-
tion, we need the concept of proximal gradient mapping [2].

Definition 4 Let γ > 0 be a fixed constant, f : Rn → R be a differentiable function,
g : Rn → R be a closed convex function, and x̄ ∈ R

n . Denote

p f
g (x̄; γ ) = argmin

x

[
f (x̄) + 〈∇ f (x̄), x − x̄〉 + γ

2
‖x − x̄‖2 + g(x)

]

G f
g (x̄; γ ) = γ (x̄ − p f

g (x̄; γ )).

We call G f
g (x̄; γ ) the proximal gradient mapping of functions f and g.
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822 H. Zhang

Let Q be a closed nonempty convex set. When g is the indicator function

IQ(x) =
{
0, x ∈ Q,

+∞, x /∈ Q,

we have that

p f
g (x̄; γ ) = xQ(x̄; γ ).

This implies that the proximal gradient mapping generalizes the gradient mapping.

Definition 5 Let f : Rn → R be a convex differentiable function and g : Rn → R

be a closed convex function. Denote X = argminx ϕ(x) := f (x) + g(x) and ϕ∗ =
minx ϕ(x) and assume that X is nonempty. Let γ > 0 be a fixed constant. Then the
following convex program

minimize
x

ϕ(x) = f (x) + g(x)

obeys

(a) the extended restricted strongly convex property with parameter ν, ω > 0 if it
satisfies the restricted secant inequality

〈G f
g (y; γ ), y − [y]+X 〉 ≥ ν · d2(y,X ), ∀y ∈ [ϕ ≤ ϕ∗ + ω]. (10)

(b) the extended global error bound property with parameter κ, ω > 0 if it satisfies
the error upper bound inequality

‖G f
g (y; γ )‖ ≥ κ · d(y,X ), ∀y ∈ [ϕ ≤ ϕ∗ + ω]. (11)

(c) the extended quadratic growth property with constant parameter τ, ω > 0 if it
satisfies the second order growth of the function value

ϕ(y) − ϕ∗ ≥ τ

2
· d2(y,X ), ∀y ∈ [ϕ ≤ ϕ∗ + ω]. (12)

We use eRSC(ν, ω), eGEB(κ, ω), and eQG(τ, ω) to stand for the defined properties
above respectively.

It is easy to see that ϕ(x) is lower semicontinuous over Rn and hence X is closed;
see e.g. Lemma 2.6.3 in [16]. This ensures that [y]+X is well defined.

Remark 4 The eQG appeared in [6] under the name of semi-strongly convex property.
The authors of [21] proposed an analog of the eGEB property and exploited it by
borrowing tools from set-valued analysis. The authors of [5] introduced the eGEB and
proved that it is equivalent to the eQG. Our novelty here lies in the definition of eRSC.
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The restricted strong convexity revisited... 823

3 Equivalence analysis

3.1 Equivalence among the original versions

In what follows, we prove that the notions defined in Definition 1 are actually equiv-
alent. The idea of proof is mainly inspired by the seminal paper [1] and heavily relies
on the well-known Ekeland’s variational principle in Lemma 1.

Theorem 1 Under the setting of Definition 1, the restricted strongly convex property,
the global error bound property, and the quadratic growth property are equivalent in
the following sense:

QG(ν) ⇒ RSC
(ν

2

)
⇒ GEB

(ν

2

)
⇒ QG

(ν

4

)
.

Proof The implication of QG(ν) ⇒ RSC( ν
2 )has been shown in [17,20]. The implica-

tion RSC( ν
2 ) ⇒ GEB( ν

2 ) is a direct consequence after applying theCauchy-Schwartz
inequality. It only needs to prove GEB(ν) ⇒ QG( ν

2 ). Now assume that f has the
GEB property with constant ν > 0. It suffices to prove that for all 0 ≤ α < 1

4 , the
following holds:

f (z) − f ∗ ≥ αν · d2(z,X ), ∀z ∈ R
n .

If this is not true, then there must exist z0 ∈ R
n such that

f (z0) < f ∗ + αν · d2(z0,X ).

Clearly, z0 /∈ X and hence d(z0,X ) > 0 since X is a nonempty closed set. Let
λ = 1

2d(z0,X ). By Ekeland’s variational principle with ε = αν ·d2(z0,X ) = 4ανλ2,
there exists x0 ∈ R

n such that d(x0, z0) ≤ λ and

f (x) ≥ f (x0) − ε

λ
d(x, x0) = f (x0) − 4ανλ · d(x, x0), ∀x ∈ R

n .

Then, x0 minimizes the convex function f (x) + 4ανλ · d(x, x0). By the first-order
optimality condition, we get

0 ∈ ∇ f (x0) + 4ανλ · ∂(‖ · −x0‖)(x0) = ∇ f (x0) + 4ανλ · Y,

where Y = {y ∈ R
n : ‖y‖ ≤ 1} [16]. Hence, we can find y0 ∈ Y such that

∇ f (x0) = −4ανλy0. Since

2λ = d(z0,X ) ≤ d(x0, z0) + d(x0,X ) ≤ λ + d(x0,X ),

we have d(x0,X ) ≥ λ. Therefore,

‖∇ f (x0)‖ = 4ανλ‖y0‖ ≤ 4ανλ ≤ 4αν · d(x0,X ) < ν · d(x0,X ),

which contradicts the GEB property. This completes the proof. ��
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824 H. Zhang

3.2 Equivalence among the modified and extended versions

In this part, we deduce the equivalence among the modified and extended versions.

Theorem 2 Let f : Rn → R be a convex differentiable function whose gradient is
Lipschitz-continuous with positive scalar L and g : R

n → R be a closed convex
function. Let γ ≥ L be a fixed constant. Then the extended versions are equivalent in
the following sense

eRSC(ν1, ω) ⇒ eGEB(κ1, ω) ⇒ eQG(τ1, ω)

and

eQG(τ2, ω) ⇒ eGEB(κ2, ω) ⇒ eRSC(ν2, ω),

where ω ∈ (0,+∞] is a fixed constant and the other parameters satisfy κ1 = τ1 = ν1
and

κ2 = τ2γ
2

(2γ + τ2)(γ + L)
, ν2 = κ2

2

γ
.

In particular, the equivalence among the modified versions also holds in the same way
by letting ω = +∞.

Proof The equivalence of eGEB(κ, ω) and eQG(τ, ω)has been shown in [5] recently;
see Lemma 2. Applying the Cauchy-Schwartz inequality to the left-hand side term of
eRSC gives the eGEB property. It remains to prove that eGEB implies eRSC . By
using Lemma 3 with x = [y]+X and x̄ = y, we get

〈G f
g (y; γ ), y − [y]+X 〉 ≥ 1

2γ
‖G f

g (y; γ )‖2 + ϕ(p f
g (y; γ )) − ϕ([y]+X ). (13)

Noticing that ϕ(p f
g (y; γ )) − ϕ([y]+X ) = ϕ(p f

g (y; γ )) − ϕ∗ ≥ 0 and applying the
eGEB property, we obtain

〈G f
g (y; γ ), y − [y]+X 〉 ≥ κ2

2

2γ
d2(y,X ), ∀y ∈ [ϕ ≤ ϕ∗ + ω], (14)

which completes the proof. ��

4 Convergence analysis

In this section, we discuss asymptotically linear convergence of the proximal gradient
method, based on the equivalence notions defined before.
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The restricted strong convexity revisited... 825

The proximal gradient method, also known as the forward-backward splitting
method, is fundamental for the following structured optimization problem

minimize
x

ϕ(x) := f (x) + g(x),

where f is a convex function with the gradient-Lipschitz-continuous property and g
is a closed convex function. It can be stated as

xk+1 = xk − 1

γ
G f

g (xk; γ ),

where the constant γ > 0 is appropriately chosen. Based on the eGEB property, the
authors of [5] observed that an asymptotically Q-linear convergence in function values
can be assured for this method, and moreover, if the iterates xk have some limit point
x∗, then xk asymptotically converge R-linearly. Motivated by the arguments in [20],
we have established below an asymptotically Q-linear convergence in the distance
values d(xk,X ), and proved that xk themselves asymptotically converge R-linearly
to a limit point x∗ under a compactness assumption on the minimizer set X . The
following result is complimentary to that of [5] and might be of interest in itself.

Theorem 3 Let f : R
n → R be a convex differentiable function whose gradient

is Lipschitz-continuous with positive scalar L and g : Rn → R be a closed convex
function.DenoteX = argminx ϕ(x) := f (x)+g(x) andϕ∗ = minx ϕ(x) and assume
that X is nonempty. Let γ ≥ L be a fixed constant. Suppose that minimizex ϕ(x)
satisfies the eQG(τ, ω) property (equivalently, the eGEB(κ, ω) property). Then, the
iterates xk generated by the proximal gradient method asymptotically converge Q-
linearly, that is there exists an index m such that the inequality

d(xk+1,X ) ≤
√

γ

γ + τ
d(xk,X )

holds for all k ≥ m. Moreover, if X is compact, then the iterates xk asymptotically
converge R-linearly to some limit point x∗ ∈ X in the sense that

d2(xk+m, x∗) ≤ C ·
(

1 − κ

2γ

)k

holds for all k ≥ 1, wherem > L
2ωd

2(x0,X ) andC= 2(ϕ(xm)−ϕ∗)
γ

(∑∞
i=0(1 − κ

2γ )
i
2

)2
.

The proof idea below is partially inspired by [5,20].

Proof Let m = � L
2ωd

2(x0,X )� where �x� denotes the smallest integer larger than x .
By using the standard sublinear estimate [2]

ϕ(xk) − ϕ∗ ≤ L · d2(x0,X )

2k
,

123



826 H. Zhang

we deduce that ϕ(xk) − ϕ∗ ≤ ω holds for all k ≥ m. Denote the projection point of x
onto X by x ′. By invoking Lemma 3 with x = x ′

k and x̄ = xk , we have that

〈G f
g (xk; γ ), xk − x ′

k〉 ≥ 1

2γ
‖G f

g (xk; γ )‖2 + ϕ(xk+1) − ϕ∗. (15)

Now, together with the eQG(τ, ω) property, we derive that for all k ≥ m

d2(xk+1,X ) = ‖xk+1 − x ′
k+1‖2 ≤ ‖xk+1 − x ′

k‖2 (16a)

= ‖xk − x ′
k − 1

γ
G f

g (xk; γ )‖2 (16b)

= ‖xk − x ′
k‖2 − 2

γ
〈G f

g (xk; γ ), xk − x ′
k〉 + 1

γ 2 ‖G f
g (xk; γ )‖2 (16c)

≤ ‖xk − x ′
k‖2 − 2

γ
(ϕ(xk+1) − ϕ∗) (16d)

≤ d2(xk,X ) − τ

γ
d2(xk+1,X ), (16e)

which yields the asymptotically Q-linear convergence of xk .
To prove the convergence of {xk} themselves, we first consider the sequence {x ′

k} ⊆
X , whichmust have a subsequence, denoted by {x ′

ki
}, converging to somepoint x∗ ∈ X

due to the compactness assumption on X . We claim that x ′
k → x∗ as k → ∞.

Otherwise, there must exist another subsequence of {xk}, denoted by {x ′
k j

}, converging
to a different point x̂ ∈ X . Notice that

d(x∗, x̂) ≤ d(x∗, x ′
ki ) + d(x ′

ki , x
′
k j ) + d(x ′

k j , x̂)

and d(x ′
ki

, x ′
k j

) ≤ d(xki , xk j ),where the latter follows from the nonexpansive property
of projection operator. We get that

d(x∗, x̂) ≤ d(x∗, x ′
ki ) + d(x ′

k j , x̂) + d(xki , xk j ). (17)

Denote �1 = min{ki , k j } and �2 = max{ki , k j }; then

d(xki , xk j ) ≤
�2−1∑

i=�1

d(xi , xi+1) ≤
∞∑

i=�1

d(xi , xi+1).

By invoking Lemma 3 with x = x̄ = xi , we have that

ϕ(xi ) − ϕ(xi+1) ≥ 1

2γ
‖G f

g (xi ; γ )‖2 = γ

2
‖xi − xi+1‖2. (18)
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On the other hand, inequality (15) implies

ϕ(xi+1) − ϕ∗ ≤ ‖G f
g (xi ; γ )‖2

(
‖xi − x ′

i‖
‖G f

g (xi ; γ )‖
− 1

2γ

)

. (19)

Applying the eGEB(κ, ω) property to (19) and combining with (18), we get that

ϕ(xi+1) − ϕ∗ ≤
(

1 − κ

2γ

)

(ϕ(xi ) − ϕ∗), i ≥ m. (20)

Let �1 ≥ m and i ≥ m; then

d2(xi , xi+1) = ‖xi − xi+1‖2 ≤ 2

γ
(ϕ(xi ) − ϕ(xi+1)) ≤ 2

γ
(ϕ(xi ) − ϕ∗) (21a)

≤ 2

γ

(

1 − κ

2γ

)i−m

(ϕ(xm) − ϕ∗) (21b)

and hence

d(xki , xk j ) ≤
∞∑

i=�1

d(xi , xi+1) ≤
√
2(ϕ(xm) − ϕ∗)

γ

∞∑

i=�1

(

1 − κ

2γ

) i−m
2

(22a)

= D ·
(

1 − κ

2γ

) �1−m
2 → 0, as �1 → ∞, (22b)

where D =
√

2(ϕ(xm)−ϕ∗)
γ

∑∞
i=0

(
1 − κ

2γ

) i
2

< ∞. Together with the fact that x ′
ki

→
x∗ as ki → ∞ and x ′

k j
→ x̂ as k j → ∞, we immediately get d(x∗, x̂) = 0 by using

(17) with ki → ∞ and k j → ∞, which contradicts x∗ �= x̂ . Therefore, x ′
k → x∗ as

k → ∞ indeed holds. Finally, in light of the asymptotically Q-linear convergence of
xk , we have that

d(xk, x
∗) ≤ d(xk, x

′
k) + d(x ′

k, x
∗) = d(xk,X ) + d(x ′

k, x
∗) → 0, as k → ∞,

which implies that the iterates xk converge to x∗ ∈ X . The asymptotically R-linear
convergence of {xk} follows by setting ki = �1 = k + m and letting k j → +∞ in
(22). This completes the proof. ��
Remark 5 Although (22) implies that {xk} is a Cauchy sequence and hence converges,
it can not ensure its convergence to a point belonging to X without the compactness
assumption on X .
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5 A case study: composition minimization with constraints

The authors of [21] presented a unified framework for establishing error bounds for a
class of structured convex optimization problems.By the equivalence between the error
bound condition and quadratic growth, the authors of [5] streamlined and illuminated
the arguments in [21] and also extended their results to a wider setting. Here, in a
transparent way we derive a strengthened property of the RSC type for the following
constrained convex program

minimize f (x), subject to x ∈ Q, (23)

where Q is a polyhedral set in the n-dimensional Euclidean space, and f is the compo-
sition of an affine mapping with a strongly convex differentiable function. We assume
that f and Q are of the special form:

f (x) = g(Ex), Q = {x ∈ R
n|Ax ≤ b},

where E is some m × n matrix, A is some k × n matrix, b ∈ R
k is some vector, and

g is strongly convex and gradient-Lipschitz-continuous with positive scalars μ and L
respectively.

The convex program (23) has been extensively studied for its wide applications in
data networks and machine learning.

Theorem 4 Under the setting of Definition 3 and letting γ ≥ L‖EET ‖, we have that
the constrained convex program (23) obeys the strengthened property of the RSC type:

〈G f
Q(y; γ ), y − [y]+X 〉 ≥ 1

2γ
‖G f

Q(y; γ )‖2 + C1 · d2(y,X ), ∀y ∈ Q, (24)

and the modified quadratic growth property:

f (y) ≥ f ∗ + C2 · d2(y,X ), ∀y ∈ Q, (25)

where Ci , i = 1, 2 are positive constant depending on matrices E and A and the
positive scalar μ.

Proof By using (29) in Lemma 5 with x = [y]+X , x̄ = y and noticing that
f (xQ(y; γ )) ≥ f ([y]+X ) = f ∗, we get

〈G f
Q(y; γ ), y − [y]+X 〉 ≥ 1

2γ
‖G f

Q(y; γ )‖2 + μ

2
‖Ey − E[y]+X ‖2. (26)

Since g is strongly convex, theremust exist a unique vector t∗ such that Ex = t∗,∀x ∈
X ; please refer to [10,18]. Thus,

X = {x |Ex = t∗}
⋂

{x |Ax ≤ b}.
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Due to the result of Hoffman’s error bound in Lemma 6, there must exist a constant
θ > 0 depending on matrices E and A such that for any y ∈ Q = {x |Ax ≤ b} it
holds

‖Ey − E[y]+X ‖2 = ‖Ey − t∗‖2 ≥ θ‖y − [y]+X ‖2 = θ · d2(y,X ).

Thus, the strengthened property of the RSC type follows from this and the inequality
(26).

By Lemma 7, for any x∗ ∈ X we have G f
Q(x∗; γ ) = 0 and hence x∗ = xQ(x∗; γ ).

Therefore, using (29) Lemma 5 with x̄ = [y]+X and the fact of ‖Ey − E[y]+X ‖2 ≥
θ ·d2(y,X ), we get the modified quadratic growth property. This completes the proof.

��
Remark 6 By Lemma A.8 in [18], we get

‖G f
Q(y; γ )‖ = ‖γ (y − [y − 1

γ
∇ f (y)]+X )‖ ≤ γ max(1, γ −1)‖y − [y − ∇ f (y)]+X ‖.

Thus, using this and applying the Cauchy-Schwartz inequality to (24), we get

γ max(1, γ −1)‖y − [y − ∇ f (y)]+X ‖ ≥ C1 · d(y,X ).

Or, equivalently there exists a constant C3 > 0 such that

C3 · d(y,X ) ≤ ‖y − [y − ∇ f (y)]+X ‖.

On the contrast, the authors of [18] derived the following error bound

d(y,X ) ≤ κ3‖y − [y − ∇ f (y)]+X ‖, ∀y ∈ Q and f (y) − f ∗ ≤ M

for f (x) = g(Ex) + qT x . Although this bound enables the incorporation of the
additional linear term, the constant κ3 depends on the positive parameter M and hence
on the variable y. To avoid such dependence, the authors of [3] derived the quadratic
growth property

f (y) ≥ f ∗ + κ4 · d2(y,X ), ∀y ∈ Q

for f (x) = g(Ex)+qT x by assuming that Q is compact, where κ4 > 0 is a constant.
Here, we can drop the compactness assumption by neglecting the linear term qT x .

Remark 7 There is an alternative way in [13] to prove the modified QG property.
Indeed, By the strong convexity of g and the fact of ‖Ey − E[y]+X ‖2 ≥ θ · d2(y,X ),
we derive for ∀y ∈ Q that

f (y) − f ∗ = f (y) − f ([y]+X ) = g(Ey) − g(E[y]+X ) ≥ μ

2
‖Ex − E[x]+X ‖2

≥ μθ

2
· d2(y,X ).
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Thus, by Theorem 2 we immediately get the mRSC property

〈G f
Q(y; γ ), y − [y]+X 〉 ≥ C4 · d2(y,X ),

where C4 is some positive constant.
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6 Appendix

Lemma 1 (Ekeland’s variational principle, [1]) Let (X, d(·, ·)) be a complete metric
space and let f : Rn → R be a lower semicontinuous function bounded from below,
where d(x, y) stands for the Euclidean distance. Suppose that for some ε > 0 and
z ∈ X, f (z) < inf f + ε. Then for any λ > 0 there exist y ∈ X such that d(z, y) ≤ λ

and

f (x) + ε

λ
d(x, y) ≥ f (y), ∀x ∈ X.

Lemma 2 (Corollary 3.6, [5]) Let f be gradient-Lipschitz-continuous with posi-
tive scalar L and g : R

n → R be a closed convex function. Then the eQG(τ, ω)

implies eGEB(κ, ω) with κ = τγ 2

(2γ+τ)(γ+L)
. Conversely, the eGEB(κ, ω) implies the

eQG(τ, ω) with any τ ∈ (0, κ).

The following result describes an important property of the proximal gradient map-
ping.

Lemma 3 ([2]) Let f (x) be gradient-Lipschitz-continuous with positive scalar L,
g : R

n → R be a closed convex function, γ ≥ L, and x̄ ∈ R
n. Denote ϕ(x) =

f (x) + g(x). Then, for any x ∈ Q we have

ϕ(x) − ϕ(p f
g (x̄; γ )) ≥ 〈G f

g (x̄; γ ), x − x̄〉 + 1

2γ
‖G f

g (x̄; γ )‖2. (27)

Lemma 4 Let f (x) = g(Ex) with g satisfying the properties (1) and (3), and denote
L̂ = L‖EET ‖. Then, we have

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + μ

2
‖Ey − Ex‖2, ∀x, y ∈ R

n,

and

f (y) ≤ f (x) + 〈∇ f (x), y − x〉 + L̂

2
‖y − x‖2, ∀x, y ∈ R

n .
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Proof By applying integration, we derive ∀x, y ∈ R
n that

f (y) − f (x) − 〈∇ f (x), y − x〉 (28a)

=
∫ 1

0
〈∇ f (x + τ(y − x)) − ∇ f (x), y − x〉dτ (28b)

=
∫ 1

0
〈∇g(Ex + τ · E(y − x)) − ∇g(Ex), Ey − Ex〉dτ. (28c)

Thus, by the strong convexity we get

f (y) − f (x) − 〈∇ f (x), y − x〉 ≥
∫ 1

0
μτ‖Ey − Ex‖2dτ = μ

2
‖Ey − Ex‖2,

and by the Lipschitz property and the Cauchy-Schwartz inequality we have

f (y) − f (x) − 〈∇ f (x), y − x〉 ≤
∫ 1

0
Lτ‖Ey − Ex‖2dτ ≤ L‖EET ‖

2
‖y − x‖2,

both of which complete the proof. ��

To deal with the gradient mapping of f (x) = g(Ex), we need the following result
which is motivated by Theorem 2.2.7 in [14].

Lemma 5 Let f (x) = g(Ex) with g satisfying the properties (1) and (3), and let
γ ≥ L̂(= L‖EET ‖) and x̄ ∈ R

n. Then, for any x ∈ Q we have

f (x) ≥ f (xQ(x̄; γ )) + 〈G f
Q(x̄; γ ), x − x̄〉 + 1

2γ
‖G f

Q(x̄; γ )‖2 + μ

2
‖Ex − Ex̄‖2.

(29)

Proof Denote xQ = xQ(x̄; γ ),G = G f
Q(x̄; γ ) and let

φ(x) = f (x̄) + 〈∇ f (x̄), x − x̄〉 + γ

2
‖x − x̄‖2.

Then, ∇φ(x) = ∇ f (x̄) + γ (x − x̄) and for any x ∈ Q we have

〈∇ f (x̄) − G, x − xQ〉 = 〈∇φ(xQ), x − xQ〉 ≥ 0.
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With this inequality and by Lemma 4, we derive that

f (x) − μ

2
‖Ex − Ex̄‖2 ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 (30a)

= f (x̄) + 〈∇ f (x̄), xQ − x̄〉 + 〈∇ f (x̄), x − xQ〉 (30b)

≥ f (x̄) + 〈∇ f (x̄), xQ − x̄〉 + 〈G, x − xQ〉 (30c)

= φ(xQ) − γ

2
‖xQ − x̄‖2 + 〈G, x − xQ〉 (30d)

= φ(xQ) + 1

2γ
‖G‖2 + 〈G, x − x̄〉 (30e)

≥ f (xQ) + 1

2γ
‖G‖2 + 〈G, x − x̄〉, (30f)

where the last inequality follows from f (x) ≤ φ(x) since γ ≥ L̂ . Hence, the desired
result holds. ��
Lemma 6 (Hoffman’s error bound, [7,12,15]) Let E be an m × n matrix and A be a
k × n matrix, and let b be a vector in Rk . Then, there exists a scalar θ > 0 depending
on E and A only such that, for any y satisfying Ax ≤ b and any t∗ ∈ R

m such that
the linear system Ex = t∗, Ax ≤ b is consistent, there is a point ȳ ∈ {u : Eu =
t∗, Au ≤ b} satisfying θ‖y − ȳ‖2 ≤ ‖Ey − t∗‖2.
Lemma 7 Let γ > 0. Then x̄ ∈ Q is optimal for (23) if and only if G f

Q(x̄; γ ) = 0

The proof is identical to the proof of Lemma A.6 in [18]. Hence we omit the
arguments.
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