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Abstract This paper considers a family of cutting planes, recently developed for
mixed 0–1 polynomial programs and shows that they define facets for the maximum
edge-weighted clique problem. There exists a polynomial time exact separation algo-
rithm for these inequalities. The result of this paper may contribute to the development
of more efficient algorithms for the maximum edge-weighted clique problem that use
cutting planes.

Keywords Edge-weighted clique problem · Cutting planes · Separation algorithm ·
Integer programming · Boolean quadric polytope · Facet defining inequalities

1 Introduction

The maximum edge-weighted clique problem (MEWCP) is a well known combina-
torial optimisation problem which consists of finding a maximum weight clique with
no more than b nodes in a node- and edge-weighted complete graph. The weight of a
clique is defined as the sum of the weights of all its nodes and edges. More formally,
the MEWCP is defined as follows. Given a complete undirected graph G = (N , E)

with node set N , edge set E , an integer number b ≤ |N | − 1, weights wi ∈ R associ-
ated with each node i ∈ N and weights ce ∈ R associated with each edge e ∈ E , the
MEWCP consists of finding a sub-clique C = (U, F) of G such that the sum of the
weights of nodes inU and edges in F is maximised and |U | ≤ b. It can be formulated
as follows:
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max
∑

i∈N
wi xi + ∑

e∈E
ce ye (1a)

s.t.
∑

i∈N
xi ≤ b (1b)

yi j ≤ xi for (i, j) ∈ E (1c)

yi j ≤ x j for (i, j) ∈ E (1d)

xi + x j ≤ yi j + 1 for (i, j) ∈ E (1e)

xi ∈ {0, 1} for i ∈ N (1f)

ye ∈ {0, 1} for e ∈ E (1g)

Note that due to the McCormick inequalities [12] (1c)–(1e) and the constraint (1f),
the variables ye, e ∈ E can be assumed to be continuous between 0 and 1.

The MEWCP has many applications, especially in certain facility location prob-
lems, see [3,10,17,18]. Other important applications of the MEWCP that arise in
molecular biology are given in Hunting [6]. The MEWCP is a generalization of the
well studied maximum clique problem, which is known to be NP-hard, see [20] for a
review of solution approaches for the maximum clique problem. On the other hand,
the above formulation of the MEWCP can also be seen as a particular case of the
quadratic knapsack problem for which plenty of exact and heuristic methods exist, see
[2,5,16].

Numerous solution methods have been proposed in the literature for the MEWCP.
We refer the reader to Wu and Hao [20] for a recent review of exact and heuristic
solution methods for the MEWCP. The most successful algorithms proposed in the
literature for the MEWCP use a branch-and-cut framework. The availability of strong
valid inequalities is key to the success of these algorithms. Ideally, one would like
to use cutting planes that are facet defining and computationally ‘easy’ to generate.
Several families of facet defining inequalities are proposed in the literature for this
purpose, see for example [7–9,11,13,14,19].

In this paper, we first consider a family of cutting planes that have recently been
developed by Djeumou Fomeni et al. [4] for the general mixed 0–1 polynomial pro-
grams, and which can be separated efficiently in polynomial time. Then we prove that
under certain conditions, one of the inequalities in this family defines a facet for the
MEWCP. This result may contribute to the development of more efficient algorithms
for the MEWCP that use cutting planes.

The rest of this paper is organised as follows. In Sect. 2, we review the relevant
literature, and in Sect. 3 we provide the proof that the (s, t) inequalities define facets
of the MEWCP.

2 Literature review

We refer the reader to [1,3,7–9,11,13,14,19] for more details on other existing facet
defining inequalities and solution methods for the MEWCP. For the sake of brevity,
we restrict our literature review to the paper of Djeumou Fomeni et al. [4] in which
they presented the cutting planes that are discussed in this paper.

123



A new family of facet defining inequalities for the maximum. . . 49

2.1 The family of (s, t) inequalities for 0–1 quadratic programs

Given a linear inequalityαT x ≤ β, withα ∈ Q
n ,β ∈ Q let us define the corresponding

quadratic knapsack polytope as

Q := conv
{
(x, y) ∈ {0, 1}n+(n2) : αT x ≤ β, yi j = xi x j for (i, j) ∈ E

}

For any S ⊂ N and any α ∈ Q
n , we will let α(S) denote

∑
i∈S αi , S+ denote

{i ∈ S : αi > 0} and S− denote {i ∈ S : αi < 0}.
The method for generating inequalities presented in [4] is based on the following

idea. First, we construct a cubic valid inequality, by which we mean a non-linear
inequality that involves products of up to three x variables, but no y variables. Then,
we weaken the cubic inequality, in order to make it valid for Q. For example, we can
take the inequality αT x ≤ β, and two binary variables, say xs and xt , and form the
following three cubic inequalities:

(β − αT x)xs xt ≥ 0 (2)

(β − αT x)xs(1 − xt ) ≥ 0 (3)

(β − αT x)(1 − xs)(1 − xt ) ≥ 0. (4)

Since quadratic terms of the form xi x j can be replacedwith yi j , and linear and constant
terms can be left unchanged, the only real issue is how to deal with cubic terms, of
the form xi x j xk . The following lemma addresses this issue:

Lemma 1 Let xi , x j and xk be three variables, all constrained to lie in the interval
[0, 1]. Let yi j = xi x j , and similarly for yik and y jk . Then we have the following lower
bounds on xi x j xk:

xi x j xk ≥ max
{
0, yi j + yik − xi , yi j + y jk − x j , yik + y jk − xk

}
, (5)

and the following upper bounds:

xi x j xk ≤ min
{
yi j , yik, y jk, 1 − xi − x j − xk + yi j + yik + y jk

}
. (6)

It is shown in [4] that (5) and (6) provide the best possible under- and over-estimators
of the product term xi x j xk .

The following theorem characterises the cutting planes that can be derived by
weakening the cubic inequalities (2), (3) and (4), respectively. It turns out that they
give rise to three huge (exponentially-large) families of valid inequalities for Q.

Theorem 1 For any pair {s, t} ⊂ N, let S, T and W be disjoint subsets of N\{s, t}
and let R denote N\({s, t} ∪ S ∪ T ∪ W ).

1. Then the following (s, t) inequalities are valid for Q:

∑

i∈S∪W
αi yis +

∑

i∈T∪W
αi yi t −

∑

i∈W
αi xi ≤ −α(W−) + α(S+ ∪ W−)xs

+ α(T+ ∪ W−)xt + (
β − α({s, t} ∪ S+ ∪ T+ ∪ W− ∪ R−)

)
yst . (7)
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2. The following mixed (s, t) inequalities are valid for Q:

∑

i∈W
αi xi +

∑

i∈T∪R

αi yis−
∑

i∈T∪W
αi yi t ≤ α(W+)+(

β − α({s} ∪ S− ∪ W+)
)
xs

− α(W+ ∪ T−)xt + (
α({s} ∪ S− ∪ T− ∪ W+ ∪ R+) − β

)
yst . (8)

3. The following reverse (s, t) inequalities are valid for Q:

∑

i∈S∪T∪R

αi xi −
∑

i∈T∪R
αi yis−

∑

i∈S∪R

αi yi t ≤ β−α(W−) + (
α(S+ ∪ W−) − β

)
xs

+ (
α(T+ ∪ W−) − β

)
xt + (

β − α(S+ ∪ T+ ∪ W− ∪ R−)
)
yst . (9)

These inequalities can be strengthened further, see [4] for details. Our contribution
in this paper consists of proving that under certain conditions, the (s, t) inequalities
(7) are facet defining. We also remark that the particular case of the mixed (s, t)
inequalities obtained when S = T = R = ∅ and α = (1, . . . , 1)was previously given
in [7] and proved to be facet defining for the MEWCP.

2.2 Separation of the (s, t) inequalities inO(n3) time

Since the inequalities presented in Theorem 1 are exponential in number, we need
separation algorithms. For a given family of inequalities, the separation algorithm
takes a fractional point (x∗, y∗), solution of the LP relaxation, as input, and outputs a
violated inequality in that family, if one exists.

It turns out that the separation problems for the (s, t) inequalities (7), mixed (s, t)
inequalities (8) and reverse (s, t) inequalities (9) can each be solved exactly inO(n3)
time [4]. Indeed, there are

(n
2

)
choices for the pair {s, t}. Now assume that s and t are

fixed. The (s, t) inequality can be rewritten as:

∑

i∈S+
αi (yis + yst − xs) +

∑

i∈T+
αi (yit + yst − xt ) +

∑

i∈W+
αi (yis + yit − xi )

+
∑

i∈S−
αi yis +

∑

i∈T−
αi yi t +

∑

i∈W−
αi (1 − xi − xs − xt + yis + yit + yst )

+
∑

i∈R−
αi yst ≤ (β − αs − αt )yst .

Observe that, in this form, the right-hand side is a constant for the given α, β, s and t .
Then, to find a most-violated (s, t) inequality, if any exists, it suffices to maximise the
left-hand side. This can be done using the following algorithm. Consider each node
i ∈ N\{s, t} in turn. If αi > 0, place i in one of the sets S, T , W or R, according
to which of the following four quantities is largest: y∗

is + y∗
st − x∗

s , y
∗
i t + y∗

st − x∗
t ,

y∗
is + y∗

i t − x∗
i and zero. (Ties can be broken arbitrarily.) If αi < 0, place i in S,

T , W or R according to which of the following four quantities is smallest: y∗
is , y

∗
i t ,

1− x∗
i − x∗

s − x∗
t + y∗

is + y∗
i t + y∗

st and y∗
st . (Again, ties can be broken arbitrarily.) If
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αi = 0, then i can be placed in an arbitrary set, since it has no effect on the violation.
Note that, for any i , only a constant number of comparisons is needed. Therefore the
algorithm runs in O(n) time for the given α, β, s and t .

3 Facet proof

In this Section, we provide the proof that under certain conditions, the family of (s, t)
inequalities (7) are facet defining for the MEWCP. We can note from the cardinality
constraint (1b) that the coefficients αi , i = 1, . . . , n, are all positive and equal to 1,
i.e. S = S+, T = T+,W = W+, R = R+ and for each of these sets, the sum of
coefficients α is simply equal to its cardinality (for example α(S) = |S|). For these
reasons, the (s, t) inequality for the MEWCP can be written as follows:

∑

i∈S∪W
yis +

∑

i∈T∪W
yit −

∑

i∈W
xi ≤ (|S|)xs + (|T |)xt + (b − 2 − |S| − |T |) yst .

(10)
For the rest of this paper, the set Q corresponds to

Q := conv

{

(x, y) ∈ {0, 1}n+(n2) :
n∑

i=1

xi ≤ b, yi j = xi x j for (i, j) ∈ E

}

Theorem 2 Let s, t , S, T and W be defined as in Sect. 2. If S and T are non empty,
|S| ≤ b − 2, |T | ≤ b − 2, W = ∅ and |S ∪ T | ≥ b − 1, then the (s, t) inequalities
(10) define facets of Q.

Note that with the settings of Theorem 2, the supporting graph of the (s, t) inequal-
ities (10) is a double star tree as follows.

• •

• •

s t

• •

•

Proof Under the hypothesis that W = ∅, the (s, t) inequalities (10) becomes

∑

i∈S
yis +

∑

i∈T
yit ≤ (|S|)xs + (|T |)xt + (b − 2 − |S| − |T |) yst . (11)
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Let F = {(x, y) ∈ Q : (11) holds with equality}, and a(x, y) ≤ a0 i.e. let

a1x1 + a2x2 + · · · + anxn + a12y12 + a13y13 + · · · an−1,n yn−1,n ≤ a0

be an inequality valid for Q such that every point (x, y) ∈ F satisfies a(x, y) = a0.
We will use some integer points in Q that satisfy (11) to equality i.e integer points in
F to find the coefficients a and a0 uniquely up to scalar multiplication.

Let ei be i th unit vector of size n, ei j the
(n
2

)
-vector with all components equal to

zero except the (i, j) − th component which is equal to 1.

1. The vector (x, y) = (0, 0) ∈ F ; this implies that a0 = 0.
2. (ei , 0) ∈ F for i 	= s, t ; this implies that ai = 0 for all i 	= s, t . Note that the

nodes s and t can be isolated in the set N without ambiguity since |S| ≤ b − 2
and |T | ≤ b − 2.

3. (ei + e j , ei j ) ∈ F for all i, j 	= s, t and i 	= j ; it follows that ai j = 0 for all
i, j 	= s, t and i 	= j .

4. We now prove that ait = 0 for any node i ∈ N\ (T ∪ {s, t}). Let i ∈
N\ (T ∪ {s, t}), we define:
• Cs

it to be a star tree with node set T ∪ {i, t} (it is possible to have such a star
tree since T 	= ∅) such that all the edges are incident to t . Since Cs

it ∈ F , it
follows that

at +
∑

k∈T
akt + ait = 0 (i)

• Ci
t to be a star tree with node set T ∪ {t} such that all the edges are incident to

t this is the same as the star tree Cs
it without the edge (i, t). Since Ci

t ∈ F , it
follows that

at +
∑

k∈T
akt = 0 (i i)

Subtracting (i i) from (i) yields ait = 0 for i ∈ N\ (T ∪ {s, t}).
5. Similarly to the above point, a js = 0 for j ∈ N\ (S ∪ {s, t}), also using the fact

that S 	= ∅.
6. For i, j ∈ S ∪ T , we want to show that: a) ais = a js when i, j ∈ S, b) ait = a jt

when i, j ∈ T , and c) ais = a jt when i ∈ S and j ∈ T . Let i, j ∈ S ∪ T with
i 	= j and let A ⊆ S ∪ T \{i, j} such that |A| = b − 3, (since |S ∪ T | ≥ b − 1).
Let C j

ist be a double star tree with node set A∪ {i, s, t} obtained by linking all the
nodes in A ∩ S to s, all the nodes in A ∩ T to t and connecting the node s to the
node t .
• Since C j

i,s,t ∈ F , it follows that

as + at +
∑

k∈A∩S

aks +
∑

k∈A∩T
akt + ais + ait + ast = 0 (i i i).
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• Since Ci
j,s,t ∈ F , it follows that

as + at +
∑

k∈A∩S

aks +
∑

k∈A∩T
akt + a js + a jt + ast = 0 (iv).

Subtracting (i i i) from (iv) yields ais + ait = a js + a jt . So, using steps 4 and 5
we have the following:
(a) If i, j ∈ S then ais = a js .
(b) If i, j ∈ T then ait = a jt .
(c) If i ∈ S and j ∈ T , then ais = a jt .

7. Using ait = a jt for i, j ∈ T , as given by b) in the above point, and considering

equation (i i), we have at + |T |ait = 0 for i ∈ T . Therefore, ait = − at
|T | , (since

T 	= ∅).
Similarly, as + |S|ais = 0 for i ∈ S, i.e ais = − as

|S| , (since S 	= ∅).
8. Let i ∈ S and j ∈ T , we define the set A as in step 6 and denote ωs = |A∩ S| + 1

and ωt = |A ∩ T |. It follows from (i i i) that as + at + ωsais + ωt a j t + ast = 0

i.e. ast = −as − at + asω

|S| + atωt

|T | for i ∈ S and j ∈ T .

9. Finally, considering the above steps, the inequality

a1x1 + a2x2 + · · · + anxn + a12y12 + a13y13 + · · · an−1,n yn−1,n ≤ a0

reduces to

asxs + at xt +
∑

i∈S
ais yis +

∑

i∈T
ait yit + ast yst ≤ 0

which, using the identities ais = a jt , a jt = − at
|T | and ais = − as

|S| for i ∈ S, j ∈
T , is equivalent to

asxs + at xt − as
|S|

∑

i∈S
yis − at

|T |
∑

i∈T
yit +

(
asωs

|S| + atωt

|T | − as − at

)

yst ≤ 0.

We finally have

as
|S|

[

|S|xs + |T |xt −
∑

i∈S
yis −

∑

i∈T
yit − (|S| + |T | − ωs − ωt )yst

]

≤ 0.

Since (es, 0) satisfies the inequality a(x, y) ≤ a0, i.e as ≤ 0, and given that
ωs + ωt = b − 2, this ends the proof.
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