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Abstract Wepresent new tight performance guarantees for the greedymaximization
of monotone submodular set functions. Our main result first provides a performance
guarantee in terms of the overlap of the optimal and greedy solutions.As a consequence
we improve performance guarantees of Nemhauser et al. (Math Program 14:265–
294, 1978) and Conforti and Cornuéjols (Discr Appl Math 7:251–274, 1984) for
maximization over subsets, which are at least half the size of the problem domain. As
a further application, we obtain a new tight approximation guarantee in terms of the
cardinality of the problem domain.

Keywords Approximation · Cardinality · Convex optimization · Greedy algorithm ·
Maximization · Steepest ascent

1 Introduction

Let X be a finite set, X = {x1, . . . , xn}, and let T be an integer such that 0 < T ≤ n.
We consider the cardinality-constrained maximization problem

max{ f (S) : |S| = T, S ⊂ X}, (1)
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where f : 2X → R+ is a submodular set function. Recall that f is submodular if

f (S) + f (R) ≥ f (S ∪ R) + f (S ∩ R) (2)

for all S, R ⊂ X ; see, e.g., [1]. We further assume that f is nondecreasing; f (S) ≤
f (R) for all S ⊂ R, and, without loss of generality, that f (∅) = 0. We consider the
following well-known greedy algorithm for solving problem (1):

Algorithm A

Step 0: Set S0 = ∅. Go to Step 1.
Step t (1 ≤ t ≤ T ): Select any xt ∈ St−1 such that

f (St−1 ∪ {xt }) = max{ f (St−1 ∪ {x}) : x ∈ X\St−i }.

Set St = St−1 ∪ {xt }. Go to step t + 1.
Step T + 1: Set Sgr = ST . Stop.

Algorithm A has been extensively studied in the literature. It is well known [2,3],
that it finds an optimal solution when f is an additive set function, i.e., when (2)
holds with an equality for all S, R ⊂ X . Nemhauser et al. [1] (see also [4,5]) gave the
following performance guarantee for Algorithm A for nonadditive functions f :

f (Sgr )

f (Sopt )
≥ 1 −

(
1 − 1

T

)T

=: GNWF (T ), (3)

where Sopt is an optimal solution to problem (1). Conforti andCornuéjols [2] improved
(3) to

f (Sgr )

f (Sopt )
≥ 1

α

(
1 −

(
1 − α

T

)T
)

=: GCC (T, α), (4)

for α ∈ (0, 1], where α ∈ (0, 1] is the total curvature

α = max

{
1 − f (X) − f (X\{x})

f ({x}) − f (∅)
: x ∈ X, f ({x}) 
= f (∅)

}
.

It is known that α ∈ (0, 1] if and only if f is nonadditive [2]. We also clearly have
GNWT (T ) = GCC (T, 1) and GCC (T, α) → 1 as α → 0+. The above performance
guarantees further satisfy the estimates

GCC (T, α) ≥ max

{
GNWF (T ),

1 − e−α

α

}
≥ 1 − e−1,

for all α and T . The guarantees (3) and (4) are tight for suitable choices of parameters
T and α. For example, for all α ∈ (0, 1] and T ≥ 1 there is a problem of the type
(1) and the corresponding greedy solution Sgr such that f (Sgr ) = GCC (T, α) f (Sopt )
[2].
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Submodular optimization has played a central role in operations research and com-
binatorial optimization [6]. By now it has applications in various fields, including
computer science [7], economics [8] and, more recently, ecology [9–11]. Problem (1)
and the above performance guarantees have been extended to various other settings and
problem structures, related to, for example, matroid [2,12] and knapsack [13,14] con-
straints, continuous algorithms [15,16], nonmonotone functions [17], nonsubmodular
functions [18] and supermodular minimization [19,20].

To authors’ knowledge, previously presented performance guarantees either do
not depend on T or n, or, like (3) and (4), they are decreasing in T . However, when
T = n, it is clear that Sopt = Sgr , so the greedy algorithm returns the optimal solution.
This suggests that any performance guarantee should in fact be improving when T
approaches and is close enough to n. We show that this is indeed the case. More
generally, we show that increasing degree of overlap m = |Sopt ∩ Sgr | between the
sets Sopt and Sgr improves the approximation guarantees. While in applications the
overlap m may not be known, we can give this quantity a useful lower bound. In fact,
when T > n/2, we have m ≥ 2T − n > 0. Our results thus have particular relevance
for optimization problems where the maximum is sought over subsets of cardinality
larger than n/2.

Let

G(T, α,m) = 1

α

(
1 −

(
1 − αm

T

) (
1 − α

T

)T−m
)

and G̃(T, α, n) = G(T, α,max{0, 2T − n}). Our main result is the following.

Theorem 1 Let α ∈ (0, 1], let 1 ≤ T ≤ n and let Sopt and Sgr be an optimal,
respectively a greedy, solution to problem (1) and let m = |Sopt ∩ Sgr |. Then

f (Sgr )

f (Sopt )
≥ G(T, α,m) ≥ G̃(T, α, n). (5)

Moreover, these bounds are tight in the following sense: for every α ∈ (0, 1] and
numbers n and T such that 1 ≤ T ≤ n, there is a problem of the type (1) and its
greedy solution Sgr such that max{0, 2T − n} = |Sopt ∩ Sgr | and

f (Sgr )

f (Sopt )
= G̃(T, α, n).

We postpone the proof of Theorem 1 to Sect. 2.

Remark 1 Theorem 1 strictly improves (4) and provides further examples of cases
where the performanceguarantee equals one. Indeed, for allT andn such thatT > n/2,
we have the strict inequality

G̃(T, α, n) > GCC (T, α).
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For T = n, we get G̃(n, α, n) = 1. Note that, by (4), limα→0+ G̃(T, α, n) = 1.
Moreover, in the casem = T , we again getG(T, α, T ) = 1. Note also thatG(T, α,m)

is decreasing in α, so (5) can be substituted by a weaker but simpler approximation
guarantee

f (Sgr )

f (Sopt )
≥ 1 −

(
1 − m

T

) (
1 − 1

T

)T−m

.

Using Theorem 1, one can derive other new performance guarantees for the greedy
algorithm. As an example of independent interest, we present the following perfor-
mance guarantee in terms of n only.

Corollary 1 Let α ∈ (0, 1], 1 ≤ T ≤ n, and let Sopt and Sgr be an optimal, respec-
tively a greedy, solution to problem (1). Then

f (Sgr )

f (Sopt )
≥ 1

α

⎛
⎝1 −

(
1 − α⌊ n

2

⌋
)� n

2 �⎞⎠ ≥ 1

α

(
1 −

(
1 − 2α

n

)n/2
)

, (6)

where �x� denotes the largest integer not greater than x. The left-hand estimate is
tight in the following sense: for every α ∈ (0, 1] and n ≥ 2, there is a problem of the
type (1) and its greedy solution Sgr such that

f (Sgr )

f (Sopt )
= 1

α

⎛
⎝1 −

(
1 − α⌊ n

2

⌋
)� n

2 �⎞⎠ .

Proof If n is an odd integer, it is easy to check that the minimum of G̃(T, α, n) over
all integers T with 0 ≤ T ≤ n is G̃((n − 1)/2, α, n). Moreover, when treated as a
continuous function of T , G̃(T, α, n) attains its minimum at T = n/2. Together with
Theorem 1 this yields (6). Tightness of the left-hand inequality in (6) follows from
Theorem 1 with the choice T = ⌊ n

2

⌋
.

2 Proof of Theorem 1

In this section we present a proof of Theorem 1. We first prove (5). Note that the
right-hand inequality in (5) follows directly fromm = |Sopt ∩ Sgr | ≥ max{0, 2T −n}
and the fact that G(T, α,m) is increasing in m.

We next prove the left-hand inequality in (5). We may assume that 0 < m < T .
Indeed, ifm = T , then Sgr = Sopt and the claim is trivial. Ifm = 0, the claim follows
from (4).

Let S0 = ∅ and St = {y1, . . . , yt } ⊂ X be the successive sets chosen by the greedy
algorithm for t = 1, . . . , T , so that S0 ⊂ S1 ⊂ · · · ⊂ ST . Let

at = f (St ) − f (St−1)

f (Sopt )
,
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for t = 1, . . . , T . Because f is nondecreasing, each at is nonnegative and

f (Sgr )

f (Sopt )
=

T∑
i=1

ai .

Let 1 ≤ j1 ≤ · · · ≤ jm ≤ T denote the indices for which Sgr ∩ Sopt = {y j1 , . . . y jm }.
Denote j0 = 0 and jm+1 = T . We will use the following lemma from [2].

Lemma 1 ([2, Lemma 5.1]) We have

α
∑

{i : yi∈St−1\Sopt }
ai +

∑
{i : yi∈St−1∩Sopt }

ai + (T − |St−1 ∩ Sopt |)at ≥ 1,

for t = 1, . . . , T .

Using Lemma 1, we get

f (Sgr )

f (Sopt )
≥ B(J ), (7)

where J = { j1, . . . , jm} and, for U ⊂ {1, . . . , T }, B(U ) denotes the minimum of the
linear program

minimize
T∑
i=1

bi

s.t. α
∑

i∈Vt−1\U
bi +

∑
i∈U∩Vt−1

bi + (T − |U ∩ Vt−1|)bt ≥ 1, t = 1, . . . , T

bt ≥ 0, t = 1, . . . , T,

(8)

where Vt = {1, . . . , t}. The following lemma refines [2, Lemma 5.2].

Lemma 2 B(J ) ≥ B({T − m + 1, T − m + 2, . . . , T }).
Proof Fix 1 ≤ r ≤ m and consider q = jr ∈ J . We first show that bq ≤ bq+1
for some optimal solution to (8) with U = J . To this end, assume that this does not
hold for some optimal solution b = (b1, . . . , bT ). Then ε := bq − bq+1 > 0. The
constraints q and q + 1 are

α
∑

i∈Vq−1\J
bi +

∑
i∈J∩Vq−1

bi + (T − r + 1)bq ≥ 1;

α
∑

i∈Vq\J
bi +

∑
i∈J∩Vq

bi + (T − r)bq+1 ≥ 1.
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Because Vq\J = Vq−1\J and J ∩ Vq = (J ∩ Vq−1) ∪ {q}, the constraint q + 1 is
equivalent to

α
∑

i∈Vq−1\J
bi +

∑
i∈J∩Vq−1

bi + bq + (T − r)bq+1 ≥ 1.

Therefore

α
∑

i∈Vq−1\J
bi +

∑
i∈J∩Vq−1

bi + (T − r + 1)bq ≥ 1 + ε(T − r) > 1,

which shows that the constraint q is not tight. Form a new solution b′ = (b′
1, . . . , b

′
T )

by setting b′
i = bi for 1 ≤ i ≤ q − 1, b′

q = bq − ε(T − r)/(T − r + 1) and
b′
i = bi + ε/(T − r + 1) for q + 1 ≤ i ≤ T . It is easy to check that b′ is feasible.
Moreover,

b′
q − b′

q+1 = bq − ε(T − r)

T − r + 1
− bq+1 − ε

T − r + 1
= 0

and

T∑
i=1

b′
i =

T∑
i=1

bi + ε(T − q)

T − r + 1
− ε(T − r)

T − r + 1
≤

T∑
i=1

bi ,

because r ≤ q. Hence b′ is an optimal solution with b′
q ≤ b′

q+1.
Assume next that q = jr ∈ J and q + 1 /∈ J for some r . Let b = (b1, . . . , bT ) be

a feasible solution to (8) with U = J , so that

α
∑

i∈Vt−1\J
bi +

∑
i∈J∩Vt−1

bi + (T − |J ∩ Vt−1|)bt ≥ 1, (9)

for 1 ≤ t ≤ T . Assume also that bq ≤ bq+1. Let J ′ = { j1, . . . , jr−1, q +
1, jr+1, . . . , jm}. We will show that b is a feasible solution to (8) with U = J ′.
Consider first 1 ≤ t ≤ q. Then Vt−1\J ′ = Vt−1\J and J ′ ∩ Vt−1 = J ∩ Vt−1, so

α
∑

i∈Vt−1\J ′
bi +

∑
i∈J ′∩Vt−1

bi + (T − |J ′ ∩ Vt−1|)bt ≥ 1,
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by (9). Consider next t = q + 1. Then Vt−1\J ′ = (Vt−1\J ) ∪ {q} and J ′ ∩ Vt−1 =
(J ∩ Vt−1)\{q}. By (9) and using bq ≤ bq+1, we get

α
∑

i∈Vq\J ′
bi +

∑
i∈J ′∩Vq

bi + (T − |J ′ ∩ Vq |)bq+1

= α
∑

i∈Vq\J
bi + αbq +

∑
i∈J∩Vq

bi − bq + (T − |J ∩ Vq | + 1)bq+1

≥ 1 + αbq − bq + bq+1 ≥ 1.

Finally, consider t = q + k for k ≥ 2. Then Vt−1\J ′ = ((Vt−1\J ) ∪ {q})\{q + 1}
and J ′ ∩ Vt−1 = ((J ∩ Vt−1)\{q}) ∪ {q + 1}. By (9) and using bq ≤ bq+1, we get
similarly as above

α
∑

i∈Vq+k−1\J ′
bi +

∑
i∈J ′∩Vq+k−1

bi + (T − |J ′ ∩ Vq+k−1|)bq+k

≥ 1 + (bq+1 − bq)(1 − α) ≥ 1.

This shows that b is a feasible solution to (8) with U = J ′.
By combining the above results, we get

B(J ) ≥ B(J ′).

The proof of Lemma 2 is completed by repeating this argument sufficiently many
times. ��

Lemma 2 and (7) now imply

f (Sgr )

f (Sopt )
≥ B({T − m + 1, T − m + 2, . . . , T }).

By the weak duality theorem, we get

f (Sgr )

f (Sopt )
≥

T∑
i=1

c∗
i , (10)
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where c∗ = (c∗
1, . . . , c

∗
T ) is an optimal solution to the dual problem of (8):

maximize
T∑
i=1

ci (11)

s.t. T ct + α

T∑
i=t+1

ci ≤ 1, 1 ≤ t ≤ T − m (12)

(2T − m + 1 − t)ct +
T∑

i=t+1

ci ≤ 1, T − m + 1 ≤ t ≤ T (13)

ci ≥ 0, i = 1, . . . , T . (14)

Define the vector c = (c1, . . . , cT ) by

ct =
{

1
T

(
1 − αm

T

) (
1 − α

T

)T−m−t
, 1 ≤ t ≤ T − m,

T−m
(2T−m+1−t)(2T−m−t) , T − m + 1 ≤ t ≤ T .

We will need the following two straightforward indentities:

T−m∑
i=s

ci = 1

α

(
1 − αm

T

) (
1 −

(
1 − α

T

)T−m−s+1
)

, 1 ≤ s ≤ T − m; (15)

T∑
i=k

ci = T − k + 1

2T − m − k + 1
, T − m + 1 ≤ k ≤ T + 1. (16)

Lemma 3 The vector c is a feasible solution to problem (11).

Proof Consider first 1 ≤ t ≤ T − m − 1. By (15) and (16),

T∑
i=s

ci =
T−m∑
i=s

ci +
T∑

i=T−m+1

ci = 1

α

(
1 − αm

T

) (
1 −

(
1 − α

T

)T−m−s+1
)

+ m

T
,

for 1 ≤ s ≤ T − m. Hence

T ct + α

T∑
i=t+1

ci =
(
1 − αm

T

) (
1 − α

T

)T−m−t

+
(
1 − αm

T

) (
1 −

(
1 − α

T

)T−m−t
)

+ αm

T

= 1,

so ct satisfies the constraint (12).

123



New performance guarantees for the greedy. . . 663

By (16),

T cT−m + α

T∑
i=T−m+1

ci =
(
1 − αm

T

)
+ αm

T
= 1,

so cT−m also satisfies the constraint (12).
For T − m + 1 ≤ t ≤ T , we get from (16) that

(2T − m + 1 − t)ct +
T∑

i=t+1

ci = 1,

so ct satisfies the constraint (13).
Finally, it is clear from the definition that each ct satisfies the constraint (14). This

completes the proof of Lemma 3. ��
Lemma 3 and (10) imply

f (Sgr )

f (Sopt )
≥

T∑
i=1

ci .

Moreover, by (15) and (16),

T∑
i=1

ci = 1

α

(
1 − αm

T

) (
1 −

(
1 − α

T

)T−m
)

+ m

T
= G(T, α,m),

which yields the desired estimate

f (Sgr )

f (Sopt )
≥ G(T, α,m)

and completes the proof of (5).
We next show the tightness of G̃(T, α, n) by modifying the proof of [2, Theorem

5.4]. Let 1 ≤ T < n be any positive numbers. Pick any number 1 ≤ r ≤ n/2, let
X = {a1, . . . , ar , b1, . . . , bn−r } and let f : 2X → R+ be the set function

f ({ai1 , . . . , ais , b j1 , . . . , b ju }) = u +
(
1 − αu

T

) s∑
k=1

(
1 − α

T

)ik−1
,

defined for all subsets {ai1 , . . . , ais , b j1 , . . . , b ju } ⊂ X . Then f (∅) = 0. For any
S = {ai1 , . . . , ais , b j1 , . . . , b ju } � X , where s < r and u ≤ n − r , and ai ∈ X\S, we
have

f (S ∪ {ai }) − f (S) =
(
1 − αu

T

) (
1 − α

T

)i−1 ≥ 0.
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For any S = {ai1 , . . . , ais , b j1 , . . . , b ju } � X , where s ≤ r and u < n − r , and
b j ∈ X\S, we have

f (S ∪ {b j }) − f (S) = 1 − α

T

s∑
k=1

(
1 − α

T

)ik−1 ≥ 0.

By recalling that a set function g : 2X → R+ is submodular if and only if

g(S ∪ {x}) − g(S) ≥ g(R ∪ {x}) − g(R),

for all S ⊂ R � X and x ∈ X\R (e.g., [1]), these inequalities show that f is
submodular and nondecreasing. Moreover,

max

{
1 − f (X) − f (X\{x})

f ({x}) : x ∈ X, f ({x}) 
= 0

}

= 1 − f (X) − f (X\{ai })
f ({ai }) = α,

for any 1 ≤ i ≤ r , so f has total curvature α.
Consider next the case where T > n/2. Set r = n − T , so that r < n/2 < T

and n − r = T . It is easy to verify that Sopt = {b1, . . . , bT } is an optimal solution to
problem (1) with f (Sopt ) = T . Since f ({a1}) = f ({b j }) = 1, for any 1 ≤ j ≤ T ,
the greedy algorithm can choose the element a1 at the first iteration. Assume next that
the greedy algorithm has chosen St−1 = {a1, . . . , at−1} for some t ≤ n − T . Using
the fact

l∑
k=1

(
1 − α

T

)k−1 = T

α

(
1 −

(
1 − α

T

)l)

it is easy to see that

f (St−1 ∪ {at }) = f (St−1 ∪ {b j }) =
t∑

i=1

(
1 − α

T

)i−1
,

so the greedy algorithm can choose at at the t th iteration. We therefore can have
Sgr = {a1, . . . an−T , b1, . . . , b2T−n}. This solution has the value

f (Sgr ) = T

α

(
1 −

(
1 − αm

T

) (
1 − α

T

)n−T
)

.

The claim follows because m = |Sopt ∩ Sgr | = 2T − n, whence we obtain n − T =
T − m.

The proof of case T ≤ n/2 is easier, so we omit its proof.
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