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Abstract In this paper, we introduce the vehicle routing problem with drones
(VRPD). A fleet of trucks equipped with drones delivers packages to customers.
Drones can be dispatched from and picked up by the trucks at the depot or any of
the customer locations. The objective is to minimize the maximum duration of the
routes (i.e., the completion time). The VRPD is motivated by a number of highly
influential companies such as Amazon, DHL, and Federal Express, actively involved
in exploring the potential use of commercial drones for package delivery. After stating
our simplifying assumptions, we pose a number of questions in order to study the
maximum savings that can be obtained from using drones; we then derive a number of
worst-case results. The worst-case results depend on the number of drones per truck
and the speed of the drones relative to the speed of the truck.

Keywords Vehicle routing · Drones · Worst-case analysis

1 Introduction and motivation

The vehicle routing problem (VRP) is a well-studied problem [6,10]. In its simplest
form, it seeks to route a fleet of homogeneous vehicles to deliver identical packages
from a depot to a number of customer locations while minimizing the total travel cost.
Following recent advancements in drone technology, Amazon [2,8], DHL [4], Federal

B Xingyin Wang
wangxy@umd.edu

1 Department of Mathematics, Mathematics Building, University of Maryland,
College Park, MD 20742-4015, USA

2 Robert H. Smith School of Business, University of Maryland, 4339 Van Munching Hall,
College Park, MD 20742-1815, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-016-1035-3&domain=pdf


680 X. Wang et al.

Express [3], and other large companies with an interest in package delivery, have
begun investigating the viability of incorporating drone delivery into their commercial
package delivery services. Drone delivery (from trucks) would enable trucks to visit
customers located centrally on the route and drones to visit farther-away customers.
In other words, trucks would get “close enough” to more distant customers and then
dispatch drones. Drone delivery could reduce the number of required trucks and drivers
on the road. Perhaps more significantly, drones might speed up delivery.

In 2013, Jeff Bezos, CEO of Amazon, expressed his desire to use drones to offer
delivery to Amazon’s elite customers within 30 min of ordering [9]. This is a primary
motivation for our work. Given Amazon’s focus on speed of delivery, we think the
most appropriate objective function here is to minimize the time until the last delivery.
However, since all vehicles have to return to the depot, we seek to minimize the
completion time. This is a good approximation to the time until last delivery when the
last customer is close to the depot.

To date, there has been very little research on drone delivery of packages from
trucks. Three recent papers are Murray and Chu [7], Agatz et al. [1], and Gambella
et al. [5]. All of these focus on developing computational techniques (either exact
or heuristic) for solving a variant of this problem. As far as we know, our paper is
the first to study the problem from a worst-case point of view. Given the emerging
status of drone and truck delivery technology, we think our results are especially
valuable. They indicate, in a quantitative way, that the maximal potential savings
relative to a traditional truck-based model to companies like Amazon and others are
very substantial. Actualizing even a fraction of the maximal potential savings would
likely justify the cost of adopting this technology.

2 Problem description

Suppose there are n customers to be served by a homogeneous fleet of m trucks, each
carrying k drones. Every customer demands one parcel, which can be delivered by
either a truck or a drone. There is no service time for a delivery. A truck has a capacity
of C parcels. We make the following assumptions about the drone behaviors:

A1. A drone can carry at most one parcel when airborne.
A2. A drone has a battery life ofU time units, which initially is arbitrarily large (the

effect of a limited battery life on the worst-case ratio will be studied in a sequel
paper).

A3. The trucks and drones follow the same distance metric. More specifically, we
assume that the truck and drone must travel from a to b along the street network.
Restricting drones to travel along the street network is a natural initial assump-
tion. Furthermore, in following the street network, drones will avoid obstacles
and private airspace. (In a sequel paper, we will relax this assumption.)

A4. Upon returning to the truck, the time required to prepare the drone for another
launch with a new package and a fresh battery is negligible.

A5. The speed of the drone is α times the speed of the truck.

We make the following assumptions about the coordination between the truck and
drones:
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A6. A drone launched from a truck must be picked up by the same truck.
A7. The truck can dispatch and pick up a drone only at a node, i.e., the depot or

a customer location. The truck can continue serving customers after a drone is
dispatched and pick up the drone at, possibly, a different node.

A8. The vehicle (truck or drone) that arrives at the pick-up node first has to wait for
the other one.

The objective is to minimize the completion time, i.e., from the time the trucks are
dispatched from the depot with the drones to the time when the last truck or the last
drone returns to the depot.

We will refer to this new vehicle routing problem as the Vehicle Routing Problem
with Drones, denoted by VRPDm,α,k , where m is the number of trucks in the fleet
and α is the ratio of the drone speed to the truck speed. Common notation used in the
remainder of this paper is listed below:

• Z(P): The optimal objective function value of problem P (e.g., VRPDm,α,k)
• Z f (P): The objective function value of a feasible solution f to the problem P
(the feasible solution will be specified whenever the notation is used)

• Lr : The length of route r
• T veh

r : The travel time by vehicle veh (veh = trc for truck, and veh = drn for drone)
on route r

• W veh
r : The waiting time by vehicle veh on route r

• Dveh
r = T veh

r + W veh
r : The duration of route r by vehicle veh.

The plan for the rest of the paper is as follows: In Sect. 3, we present themain results
of our analysis. In Sect. 4, we present our conclusions and directions for future work.
In a sequel paper, we will relax some of the model assumptions, explicitly consider
limited battery life, different distance metrics for drones and trucks, and a general cost
function. We will also explore the connection between the VRPD and some related
problems.

3 Main results

Before a company like Amazon commits to a delivery strategy predicated on the
utilization of drones, it might want to know the answer to a key question: Atmaximum,
how much time could be saved, in the best case, using trucks and drones vs. using
trucks only? If we look at this question from another angle, it becomes: How much
longerwill deliveries takewith trucks only?This is commonly referred to asworst-case
analysis.

In this section, our goal is to provide theoretical bounds on the benefit from using
drones. In each of the theorems presented, we compare two related problems Pt and
Ptd . The two problems have the same set of customers, but different fleets. In Pt ,
the fleet consists of trucks only. In Ptd , the fleet consists of trucks and drones. The
fleet in Ptd can serve the customers faster (due to parallelization). That is, we expect
Z(Ptd) ≤ Z(Pt ).Wewant to determine the lowest upper bound on the ratio Z(Pt )

Z(Ptd )
. For

example, in the theorem below, we compare the VRPD1,1,k with the TSP (traveling
salesman problem), i.e., the problem of finding a min-cost closed tour that visits every
node at least once.
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Fig. 1 A VRPD1,1,k solution
with k = 2

Theorem 1 Z(TSP)
Z(VRPD1,1,k )

≤ k + 1 and the bound is tight.

Remark 1 Theorem 1 is a special case of later theorems; nonetheless, we present a
proof here because it serves as an easy-to-follow template for the other proofs. We
remind the reader that k is the number of drones per truck throughout this paper.

Proof of Theorem 1 We start with the optimal VRPD1,1,k solution, and construct a
closed (not necessarily simple) walk of all the nodes. We then convert the closed walk
to a feasible TSP solution with bounded duration.

A VRPD1,1,k solution can be decomposed into k + 1 routes: one truck route and k
drone routes. Figures 1 and 2 illustrate the decomposition of a solution with k = 2.
The square labeled 0 represents the depot and the eight circles labeled 1–8 represent
the customers. The black line represents the path followed by the truck and the red
and blue lines are paths followed by the two drones, respectively. The dashed red (or
blue) lines are paths of the drone while in the air and the solid red (or blue) lines are
paths of the drone while it is on the truck. Therefore, the red drone is launched from
the truck at customer 1 to serve customer 2, and picked up at customer 5 where it is
immediately launched again to serve customer 7. The red drone is finally picked up at
customer 4 and returns to the depot with the truck. The blue drone is dispatched from
the depot to serve customer 8 and picked up at customer 4. This VRPD solution can be
decomposed into three routes as shown in Fig. 2c. The truck route is shown in Fig. 2a.
Its duration is the sum of the travel time of cycle 0 → 1 → 6 → 5 → 3 → 4 → 0 and
the waiting time at customer 5. The red drone route is shown in Fig. 2b. Its duration is
the sum of the travel time of cycle 0 → 1 → 2 → 5 → 7 → 4 → 0 and the waiting
time at customer 4. The blue drone route is shown in Fig. 2. Its duration is the sum
of the travel time of cycle 0 → 8 → 4 → 0 and the waiting time at customer 4. All
three routes have the same duration, which is equal to the objective function value.
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(a) (b) (c)Truck route Red drone route Blue drone route

Fig. 2 Decomposition of a VRPD1,1,k solution

Given an optimal VRPD1,1,k solution, we decompose it into k + 1 routes, and
construct a giant route, denoted by R, that traverses the k+1 routes, one after another.
In the example shown in Fig. 1, the sequence that the nodes are traversed in R is 0 →
1 → 6 → 5 → 3 → 4 → 0 → 1 → 2 → 5 → 7 → 4 → 0 → 8 → 4 → 0. Every
node is visited at least once in R and some are visited multiple times. In particular,
the depot is always visited k + 2 times, if we include both the start and the end of the
route. We have the travel time of R,

T trc
R ≤ Dtrc

R = (k + 1)Z(VRPD1,1,k). (1)

A feasible TSP solution can be obtained from R by deleting repeated customers and
keeping depots only at the beginning and the end. For the example shown in Fig. 1,
the feasible TSP solution is 0 → 1 → 6 → 5 → 3 → 4 → 2 → 7 → 8 → 0 as
shown in Fig. 3. Since the optimal TSP solution visits every node at least once, we
must have Z f (TSP) ≤ T trc

R . Therefore,

Z(TSP) ≤ Z f (TSP) ≤ (k + 1)Z(VRPD1,1,k) (2)

or

Z(TSP)

Z(VRPD1,1,k)
≤ (k + 1). (3)

To show that the bound is tight, we consider an example with k + 1 customers,
c0, c1, . . ., ck . All customers are located at a distance 1 from the depot. The distance
between every pair of customers is 2. (See Fig. 4a for the case with k = 2. The
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Fig. 3 A feasible TSP solution
from the optimal VRPD solution

(a) (b) (c)Problem Feasible VRPD1,1,k solution Optimal TSP solution

Fig. 4 A worst-case VRPD1,1,k example with k = 2

distances are given in parentheses next to the edges.) Both the truck and the drones
travel at a speed of 1. The capacity of the truck C = k + 1. An optimal TSP solution
visits the customers c0 to ck in sequence, and Z(TSP) = 2(k + 1) (see Fig. 4c). A
feasible VRPD1,1,k solution serves customer c0 with the truck and serves each of the
remaining customers using a drone, which is launched at the depot and picked up at
the depot. All vehicles return to the depot at the same time with Z f (VRPD1,1,k) = 2
(see Fig. 4b). In this example,

Z(TSP)

Z(VRPD1,1,k)
≥ Z(TSP)

Z f (VRPD1,1,k)
= 2(k + 1)

2
= k + 1. (4)

��
Theorem 2 uses the same construction procedure as in Theorem 1 and generalizes

Theorem 1.

Theorem 2 If α ≥ 1, Z(TSP)
Z(VRPD1,α,k )

≤ αk + 1 and the bound is tight.

Proof of Theorem 2 Without loss of generality, we assume the truck speed is 1 and
the drone speed is α (since we are interested in only the ratio of the objective function
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values). As in our proof of Theorem 1, we decompose an optimal VRPD1,α,k solution
into k+1 routes, denoted by r0, r1, . . ., rk , and traverse them one after another to form
a giant route R. If R is traveled by the truck, the travel time

T trc
R =

k∑

j=0

T trc
r j = T trc

r0 +
k∑

j=1

Lr j

1
≤ T trc

r0 +
k∑

j=1

αT drn
r j . (5)

In Eq. (5), we have the length of a drone route Lr j ≤ αT drn
r j , but not Lr j = αT drn

r j ,

because some part of Lr j might be traveled at the truck speed, which is not greater than
the drone speed. After we remove the revisited customers and depots in the middle of
R, we obtain Z f (TSP). This yields

Z(TSP) ≤ Z f (TSP) ≤ T trc
R ≤ T trc

r0 +
k∑

j=1

αT drn
r j . (6)

Therefore,

Z(VRPD1,α,k) = max{Dtrc
r0 , Ddrn

r1 , . . . , Ddrn
rk } (7)

≥ max{T trc
r0 , T drn

r1 , . . . , T drn
rk } (8)

≥ 1

αk + 1

⎛

⎝T trc
r0 +

k∑

j=1

αT drn
r j

⎞

⎠ (9)

≥ Z(TSP)

αk + 1
. (10)

Inequality (8) is valid because travel time on a route is never greater than the duration of
the route. Inequality (9) is valid because the maximum is never less than any weighted
average. Inequality (10) is due to inequality (6). Rearranging the terms, we have,

Z(TSP)

Z(VRPD1,α,k)
≤ αk + 1. (11)

To show the tightness of the bound, we consider an example with k + 1 customers,
c0, c1, . . ., ck . c0 is at a distance of 1 from the depot and c j , j > 0, is at a distance of
α from the depot. The distance between c0 and c j , j > 0, is 1 + α and the distance
between ci and c j , i �= j and i, j > 0, is 2α. (An example with k = 2 is shown
in Fig. 5.) The truck speed is 1 and the drone speed is α. The capacity of the truck
C = k+1.Anoptimal TSP solution serves c0 to ck in sequence and Z(TSP) = 2αk+2.
A feasible VRPD1,α,k solution serves customer c0 with the truck and each of the other
customers using a drone, which is launched at the depot and picked up at the depot.
All vehicles return to the depot at the same time with Z f (VRPD1,α,k) = 2. In this
example,

123



686 X. Wang et al.

(a) (b) (c)Problem Feasible VRPD1 solution Optimal TSP solution,α,k

Fig. 5 A worst-case VRPD1,α,k example with k = 2

Z(TSP)

Z(VRPD1,α,k)
≥ Z(TSP)

Z f (VRPD1,α,k)
= 2αk + 2

2
= αk + 1. (12)

��
Suppose the drone can travel 50 % faster than the truck and that the truck carries

k = 2 drones. Then, Theorem 2 tells us that completion time can be up to 4 times as
long without using drones as it is with drones. Based on this, it is easy to understand
the widespread interest in drones for package delivery.

The next theorem does not involve drones in particular, but its proof uses the same
approach as in the proofs of Theorems 1 and 2. We decompose an optimal VRPD
solution into several routes and traverse them one after another to form a giant route
R, from which we construct a feasible TSP solution with bounded objective value.

Theorem 3 Let n customers be served by a fleet of m trucks of different speeds, v1, v2,
. . ., vm, such that the combined speed, V = ∑m

i=1 vi . Denote the optimal (min-max)
objective function value by Z(VRP*). If these customers are served by one truck with
speed v and of sufficient capacity, the optimal objective function value is denoted by
Z(TSPv). We have

Z(TSPv)

Z(VRP*)
≤ V

v

and the bound is tight.

Proof of Theorem 3 See “Proof of Theorem 3” in Appendix. ��
In view of Theorem 3, we have an alternate proof of the inequality in Theorem 2.

There are two differences between VRPD1,α,k and VRP*. First, in VRP*, there is
no waiting time, but in VRPD1,α,k , duration is the sum of travel and waiting times.
Second, in VRP*, every route i is traversed at a constant speed, vi , but in VRPD1,α,k , a
drone route is traversed at the truck speed when the drone is on the truck and traversed
at the drone speed when the drone is in the air. We introduce average speeds in looking
at the optimal solution to the VRPD1,α,k so that it can be converted into a feasible
VRP* solution. The average speed on a route is the ratio of the route length to the route
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duration. The average speed of the truck route r0 is v0 ≤ 1 because of possible waiting
time by the truck. (We normalize the vehicle speed so that the truck speed is always 1).
The average speed on a drone route r j is v j ≤ α, j > 0, because of lower truck speed
and possible waiting by the drone. Therefore, the optimal VRPD1,α,k solution can be
viewed as a feasible VRP* solution with a combined speed as defined in Theorem 3,
V ≤ αk + 1. Therefore,

Z(TSPv=1)

Z(VRPD1,α,k)
= Z(TSPv=1)

Z f (VRP*)
≤ Z(TSPv=1)

Z(VRP*)
≤ αk + 1. (13)

The worst-case example is the same as in the original proof (see Fig. 5).
We generally expect that the drone travels faster than the truck, i.e., α > 1, but

we also consider the case in which drones travel slower, due to possible regulatory
restrictions. Both the original and the alternate proof of Theorem 2 encounter difficulty
if we relax the assumption α ≥ 1 in Theorem 2. In the original proof, the inequality
in (5) fails. In the alternate proof, the average speed of drone route r j , v j , j > 0, may
be greater than α, and, therefore, the combined speed, V , as defined in Theorem 3,
may be greater than αk + 1. Nevertheless, the worst-case bound still holds even if we
drop the assumption α ≥ 1, because of the following theorem.

Theorem 4 Z(TSP)
Z(VRPD1,α,k )

≤ αk + 1 and the bound is tight.

Proof of Theorem 4 We start with the truck route, denoted by r0, in the optimal
VRPD1,α,k and add customers served by the drones to form a feasible TSP solution.

Wedenote the duration of the truck route by Dtrc
r0 . (Note that D

trc
r0 = Z(VRPD1,α,k).)

We add all the customers served by the first drone to r0. The goal is to show the increase
in duration is not greater than αDtrc

r0 . Suppose customer k is served by the first drone
that is dispatched at node i and picked up at node j . Denote, by Dtrc

i j , the time taken

from the drone dispatchment at i to the truck’s arrival at j . Denote, by W trc
j , the

possible waiting time of the truck at j . Denote the lengths from i to k and from k to j
by Lik and Lkj , respectively. Let the possible waiting time of the drone at j be W drn

j .
We must have

Dtrc
i j + W trc

j = Lik + Lkj

α
+ W drn

j . (14)

Both sides of Eq. (14) measure the time elapsed from the launch of the drone to the
pick-up of the drone. The left-hand side measures it from the perspective of the truck
and the right-hand side measures it from the perspective of the drone. Rearranging
Eq. (14), we have

Lik + Lkj = α(Dtrc
i j + W trc

j − W drn
j ) (15)

≤ α(Dtrc
i j + W trc

j ). (16)
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(a)

(b)

(c)

Part of a VRPD1,α,k solution

Part of the intermediate route

Part of the feasible TSP solution

Fig. 6 Adding drone customers to truck route

If Lik ≤ Lkj , we loop customer k at i to form part of the route i − k − i − · · · − j .
We have the duration of this part of the route

2Lik + Dtrc
i j + W trc

j ≤ (Lik + Lkj ) + Dtrc
i j + W trc

j (17)

≤ α(Dtrc
i j + W trc

j ) + Dtrc
i j + W trc

j (18)

= (1 + α)(Dtrc
i j + W trc

j ). (19)

Inequality (17) is due to the assumption that Lik ≤ Lkj . Inequality (18) is due to
inequality (16). From (19), the additional duration is bounded by α(Dtrc

i j + W trc
j ). If

Lik > Lkj , we loop customer k at j to form the partial route i − · · · − j − k − j , and
the argument is the same.

In Fig. 6a, we show a typical part of an optimal VRPD1,α,k solution. The truck route
is in black and the drone route is in red. At customer 1, the drone is launched to visit
customer 8. At customer 4, the truck waits to pick up the drone, which is then launched
at customer 5 to serve customer 6. The drone reaches and waits at customer 7, where
it is picked up. In Fig. 6b, we show part of the intermediate route when customers 8
and 6, previously served by the drone, are added to the truck route. Since customer 1
is nearer than customer 4 to customer 8, we form a loop 1 → 8 → 1 around customer
1. Similarly, we loop customer 6 around customer 7, instead of customer 5. (After
all drone customers, including those served by other drones, are inserted, we skip the
revisited customers 1 and 7 to get part of the feasible TSP solution shown in Fig. 6c.)

For a particular drone, there is no overlap of the truck path on which this drone
is not with the truck. For example, in Fig. 6a, the path 1 → 2 → 3 → 4 and
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(a) (b)Illustrative examples of proofs of Theorems
1 and 2 (black→ red → blue)

Illustrative examples of proof of Theorem
4

Fig. 7 Comparison of the intermediate routes in TSP route construction

5 → 9 → 10 → 7 do not overlap. Therefore, we can add all the customers served by
a drone in the same manner such that the additional duration is bounded by αDtrc

r0 .
We then add the customers served by the second drone, and the third, and so on

until the kth drone. Each time the increase in duration is bounded by αDtrc
r0 . After

all customers served by the drones are added to the truck route, the duration is no
greater than (αk + 1)Dtrc

r0 . A feasible TSP solution is generated by removing all the
truck-related waiting time and revisits to customers. The objective function value is
also bounded by (αk+1)Dtrc

r0 and we have shown that the inequality holds (recall that
Dtrc
r0 = Z(V RPD1,α,k)).
To show the bound is tight, consider a VRPD1,α,k with k + 1 customers. Customer

c0 is located at a distance of 1 from the depot. Customers c1, c2, . . ., ck are located
at a distance of α from the depot. The distances between c0 and c j , j > 0 are 1 + α.
The distances between any two customers ci and c j , i > 0, j > 0, are 2α. The speed
of the truck is 1. An optimal TSP solution is to visit the customers in the sequence c0,
c1, . . . , ck , so Z(TSP) = 2(αk + 1). A feasible VRPD1,α,k solution is to dispatch the
k drones at the depot to serve customers c1 to ck , while the truck serves customer c0.
All vehicles will return to the depot at the same time, after 2 time units. Therefore,
Z f (VRPD1,α,k) = 2. So Z(TSP)

Z(VRPD1,α,k )
≥ Z(TSP)

Z f (VRPD1,α,k )
= αk + 1. ��

We constructed different TSP solutions from the same optimal VRPD1,α,k solution.
We compare the construction using the example shown in Fig. 1. The giant route in
the proofs of Theorems 1 and 2 and the intermediate route in the proof of Theorem 4
are shown in Fig. 7. The feasible TSP solutions are shown in Fig. 8.

In the next theorem, we consider VRPDm,α,k withm trucks, each carrying k drones.

Theorem 5 Z(TSP)
Z(VRPDm,α,k )

≤ m(αk + 1) and the bound is tight.

Proof of Theorem 5 Given an optimal VRPDm,α,k solution, we can decompose the
problem into m subproblems. Let Si be the set of customers served by either the
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(a) (b)Illustrative example of proofs of Theo-
rems 1 and 2(black→ red → blue)

Illustrative example of proof of Theo-
rem 4

Fig. 8 Comparison of the TSP solutions constructed in the proofs

i th truck or a drone on the i th truck. The i th subproblem is a VRPD1,α,k on the set
of customers Si . The optimal VRPDm,α,k solution gives feasible solutions to all m
subproblems. If we denote the TSP on Si by TSP(i), by Theorem 4, we have

Z(TSP(i)) ≤ (αk + 1)Z(VRPD(i)
1,α,k) ≤ (αk + 1)Z f (VRPD(i)

1,α,k). (20)

We join the TSP solutions to subproblems to form a giant route that serves all the
customers and then we skip the visits to the depot in the middle of the route. The result
is a feasible TSP solution over all the customers. Therefore,

Z(T SP) ≤
m∑

i=1

Z f (T SP(i)) (21)

≤
m∑

i=1

(αk + 1)Z f (VRPD(i)
1,α,k) (22)

≤ (αk + 1)
m∑

i=1

Z(VRPDm,α,k) (23)

= m(αk + 1)Z(VRPDm,α,k). (24)

Inequality (21) holds because its right-hand side is the duration of a route that vis-
its every customer exactly once and visits the depot m + 1 times. Inequality (22)
holds because of inequality (20). Inequality (23) holds because Z(VRPDm,α,k) =
maxi {Z f (VRPD(i)

1,α,k)}.
Rearranging the terms, we prove the inequality in Theorem 5. To prove that the

bound is tight, we consider a VRPDm,α,k with m(k + 1) customers, c(i)
j , where i ∈

I = {1, 2, . . . ,m} and j ∈ J = {0, 1, · · · , k}. The truck capacity is C = m(k + 1)
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(a) (b) (c)Problem Feasible VRPDm,α,k solu-
tion

Optimal TSP solution

Fig. 9 A worst-case VRPDm,α,k example with k = 2

parcels. The speeds of the trucks and the drones are 1 and α, respectively. The distance
metric is described below:

• Distance between the depot and customer c(i)
0 is 1, ∀i ∈ I

• Distance between the depot and customer c(i)
j is α, ∀i ∈ I,∀ j ∈ J\{0}

• Distance between customers c(i1)
0 and c(i2)

0 is 2, ∀i1, i2 ∈ I, i1 �= i2
• Distance between customers c(i1)

0 and c(i2)
j is 1 + α, ∀i1, i2 ∈ I and ∀ j ∈ J\{0}

• Distance between customers c(i1)
j1

and c(i2)
j2

is 2α, ∀i1, i2 ∈ I,∀ j1, j2 ∈
J\{0}, (i1, j1) �= (i2, j2).

An example withm = 2 and k = 2 is illustrated in Fig. 9. The example is intentionally
constructed as a symmetric example with perfect synchronicity between trucks and
drones by placing “drone nodes” at distance α and “truck nodes” at distance 1 from
the depot. This allows for zero wait time, constant utilization of all vehicles, and
knowledge that we are utilizing the most direct routes possible.

An optimal TSP solution has duration Z(TSP) = 2m(αk + 1). In fact, serving
the customers in any sequence will result in duration of 2m(αk + 1). A feasible
VRPDm,α,k solution dispatches all drones at the depot. The j th drone on the i th truck
serves customer c(i)

j . The i th truck serves customer c(i)
0 on a dedicated route. All

vehicles return to the depot at the same time and Z f (VRPDm,α,k) = 2. Therefore, in
this example, we have

Z(TSP)

Z(VRPDm,α,k)
≥ Z(TSP)

Z f (VRPDm,α,k)
= 2m(αk + 1)

2
= m(αk + 1), (25)

which proves the bound in Theorem 5 is achieved and, therefore, tight. ��
In the next theorem, we compare the VRPDm,α,k to the min-max VRP, denoted by

VRP*, with a fleet of m trucks and no drones.

Theorem 6 Z(VRP*)
Z(VRPDm,α,k )

≤ αk + 1 and the bound is tight.

123



692 X. Wang et al.

Proof of Theorem 6 The proof relies on the same decomposition used in the proof of
Theorem 5. Denote the set of customers served by the i th truck or a drone on the i th
truck by Si . The route in the optimal VRPDm,α,k solution that serves customers in
Si is feasible to the subproblem VRPD(i)

1,α,k . We denote the TSP on Si by TSP(i) and
reproduce inequality (20) below.

Z(TSP(i)) ≤ (αk + 1)Z f (VRPD(i)
1,α,k). (26)

The optimal objective function value of the min-max VRP is never greater than the
maximum of the Z(TSP(i))’s; otherwise we have a better VRP* solution consisting
of the routes from the optimal TSP(i) solutions.

Z(VRP*) ≤ max{Z(TSP(1)), Z(TSP(2)), . . . , Z(TSP(m))} (27)

≤ (αk + 1)max
i

{Z f (VRPD(i)
1,α,k)} (28)

= (αk + 1)Z(VRPDm,α,k). (29)

Rearranging the terms, we have the inequality in Theorem 6.
To show that the bound is tight, we consider the same example ofm(k+1) customers

as in the proof of Theorem 5. In the optimal VRP* solution, we serve the customers
c(i)
j , ∀ j ∈ J , by the i th truck. All routes have the same duration and Z(VRP*) =

2(αk + 1) is the optimal objective function value because if Z(VRP*) < 2(αk + 1),
we will have a TSP solution over all the m(k + 1) customers and the depot with
Z(TSP) < 2m(αk + 1). A feasible VRPDm,α,k solution described in the proof of
Theorem 5 has Z f (VRPDm,α,k) = 2. Therefore, in this example,

Z(VRP*)

Z(VRPDm,α,k)
≥ Z(VRP*)

Z f (VRPDm,α,k)
= 2(αk + 1)

2
= αk + 1. (30)

��
The next theorem compares VRPDm,α,k and VRPDm,β,k , i.e., VRPDwith different

drone speeds. The idea is to address the following question: If a more advanced (and
faster) set of drones becomes available, how much time can we save in delivering all
packages?

Theorem 7 Let α < β. We have Z(VRPDm,α,k)

Z(VRPDm,β,k)
≤ β

α
and the bound is tight.

To prove Theorem 7, we first define a regular feasible solution as one in which a
truck leaves a pick-up node as soon as it picks up all the drones it must pick up at
that node. We then introduce a lemma that is true for all regular feasible solutions
of VRPD. Suppose an ant crawls onto the truck just before it is dispatched from the
depot. The ant can crawl from a drone to the truck or from the truck to a drone, only
when the drone is on the truck. It stays on one of the vehicles (the truck or a drone)
until the fleet returns to the depot.

The duration of the route followed by the ant, i.e., the sum of the travel times on
one or more vehicles plus the waiting times, is equal to the objective function value of
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the feasible solution because the ant starts its journey when the fleet leaves the depot
and finishes its journey when all vehicles return to the depot.

Lemma 1 For every regular feasible solution to the VRPD, there is a strategy for the
ant to always stay on a vehicle that is in motion.

Proof of Lemma 1 See “Proof of Lemma 1” in Appendix. ��
We illustrate the ant’s strategy using the example in Fig. 1. The truck returns

to the depot with the two drones, so the ant stays on the truck on the last leg
LG(N )

AN ,0. Tracing the truck route backwards, the first drone pick-up is at customer
4 (AN = BN−1 = 4), where the truck arrives after the two drones. The ant
stays on the truck on the leg LG(N−1)

AN−1,4
. Tracing the truck route backwards, the

next pick-up is at 5 (AN−1 = BN−2 = 5), where the red drone arrives last.
The ant, therefore, stays on the red drone on the leg LG(N−2)

AN−2,5
. This leg starts at

1 (AN−2 = BN−3 = 1), where the red drone is dispatched. The ant stays on
the truck on the leg LG(N−3)

AN−3,1
. When we trace the truck route backwards from

BN−3 = 1, we encounter the depot again, so AN−3 = 0 and N − 3 = 1. The ant
route is 0(on the truck) → 1(crawls onto the red drone) → 2(on the red drone) →
5(crawls back onto the truck) → 3(on the truck) → 4(on the truck) → 0(on the
truck). There is nowaiting timeon this route. In addition, the ant route canbe segmented
according to the vehicle that the ant stays on. In the above example, the segments are
0 → 1 on the truck, 1 → 2 → 5 on the drone, and 5 → 3 → 4 → 0 on the truck.

With Lemma 1 proved, we now prove Theorem 7.

Proof of Theorem 7 We start with a fleet with only one truck with k drones and show
first

Z(VRPD1,α,k)

Z(VRPD1,β,k)
≤ β

α
. (31)

Suppose we have a regular optimal VRPD1,β,k solution. (A regular optimal solution
always exists because we can dispatch the truck immediately after it picks up all the
drones it is supposed to pick up at the node.) We construct a feasible VRPD1,α,k

solution by following the same routing plan, but serving the customers with the α

drones. It is possible that with the β drones, the truck is the last vehicle to arrive at a
pick-up node, but now with the slower α drones, a drone is the last vehicle to arrive at
a pick-up node. Nevertheless, the solution is still regular. In this VRPD1,α,k solution,
there is a strategy for the ant to always stay on a moving vehicle by Lemma 1. The
ant never waits, so its travel time is the duration of the ant route (Rα), which is also
the objective value of the solution to the VRPD1,α,k . The ant route can be partitioned
into segments based on the vehicle the ant is on. On the other hand, if the ant chooses
the same path (Rβ ) in the optimal VRPD1,β,k solution, there may be waiting times.
The duration of Rβ is equal to the optimal objective function value of the VRPD1,β,k .
Rβ has the same length as Rα but different duration because of shorter travel times
and possible waiting times. Rβ can be partitioned in exactly the same way as Rα . For
every element of the partition, if the path is traveled with the truck speed, the travel
time on that path in both the VRPD1,α,k and VRPD1,β,k solutions are equal; if the path
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is traveled by the drone, the travel time of that path in the VRPD1,α,k solution is no
more than β

α
times the travel time of the path in the VRPD1,β,k solution. Therefore,

the total travel time by the ant in the VRPD1,α,k solution is no more than β
α
times the

travel time in the VRPD1,β,k solution. Because of possible waiting times on route Rβ

and because there is no waiting time on route Rα , the duration of Rα is no more than
β
α
times the duration of Rβ . Hence, inequality (31) holds.
To generalize inequality (31) to problems with multiple trucks, we partition the

VRPDm,β,k into m subproblems of VRPD1,β,k according to the optimal VRPDm,β,k

solution. Let Si be the set of customers served by either the i th truck or a drone on the
i th truck. The problem of serving all customers in Si using one truck and k β drones
is the i th subproblem, denoted by VRPD(i)

1,β,k . We assume the i th route in the optimal

VRPDm,β,k solution also solves the subproblem VRPD(i)
1,β,k optimally. (If not, we

can always replace the i th route of the VRPDm,β,k solution with the optimal solution

to the VRPD(i)
1,β,k without increasing the objective function value of the VRPDm,β,k

solution.)We solve the i th subproblem using theα drones to obtain an optimal solution
whose objective function value is denoted by Z(VRPD(i)

1,α,k). By inequality (31), we
have

Z(VRPD(i)
1,α,k) ≤ β

α
Z(VRPD(i)

1,β,k) (32)

max
i

Z(VRPD(i)
1,α,k) ≤ β

α
max
i

Z(VRPD(i)
1,β,k) = β

α
Z(VRPDm,β,k). (33)

We put the optimal solutions to the m subproblems VRPD(i)
1,α,k together to form a

feasible solution to the VRPDm,α,k . This yields the desired inequality:

Z(VRPDm,α,k) ≤ Z f (VRPDm,α,k) = max
i

Z(VRPD(i)
1,α,k) ≤ β

α
Z(VRPDm,β,k).

(34)

To show the bound is tight, we consider two cases. If 1 ≤ α < β, let customer c0 be
the only customer, which is at a distance of 1 from the depot. Since, the drones travel
faster than the truck in both VRPD1,α,k and VRPD1,β,k , it is optimal to have a drone to

serve c0. Z(VRPD1,α,k) = 1
α
and Z(VRPD1,β,k) = 1

β
. Therefore, Z(VRPD1,α,k )

Z(VRPD1,β,k)
= β

α

in this example.
If α < 1, we consider an example with the number of drones per truck k ≥ 1

α
. Let

the number of customers be k + 1. Customer c0 is at a distance of 1 from the depot
and customers c1 to ck are at a distance of β from the depot. The distance between c0
and c j with j > 0 is 1 + β and the distance between ci and c j with i, j > 0 is 2β. A
feasible solution, denoted by Sα , to VRPD1,α,k is to serve c0 by the truck and c1 to ck
by the drones. The objective function value of Sα is 2β

α
. 2β

α
is also a lower bound of

all feasible solutions to VRPD1,α,k . If a customer c j with j > 0 is served by a drone,
it is on a route with duration at least 2β

α
. If all customers c j with j > 0 are served by

the truck, the duration of the truck route is at least 2kβ ≥ 2β
α
. Therefore, Sα is also
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the optimal solution and Z(VRPD1,α,k) = 2β
α
. A feasible solution to the VRPD1,β,k

is to have the truck serving c0 and the drones serving c j with j > 0 and the objective
function value is Z f (VRPD1,β,k) = 2. Therefore, in this example,

Z(VRPD1,α,k)

Z(VRPD1,β,k)
≥ Z(VRPD1,α,k)

Z f (VRPD1,β,k)
= β

α

��
If we can replace our current set of drones with an advanced set of drones which

travel twice as fast, we can reduce the delivery completion time by up to 50 %.

4 Conclusions and future work

The idea of delivering packages by drones (launched from trucks) as well as directly
from trucks, as is the common practice, is intriguing and is being seriously considered
by numerous prominent companies in the U.S. and in Europe. There are, however,
numerous technological and regulatory obstacles to overcome. In order for the com-
mercialization of this idea to make sense, the potential savings in delivery completion
time must be considerable.

After describing the VRPD and defining notation, we prove several worst-case
theorems. Each result reveals the amount of time that could be saved, in the best case,
as a result of using trucks and drones rather than trucks alone in delivering packages
to customers. For example, suppose a drone travels 50 % faster than a truck, there are
m trucks, and at most two drones per truck. Theorem 6 tells us that, in the best case,
we can reduce delivery completion time by 75 %.

In future work, we will present a number of interesting extensions and explore
connections to related problems (e.g., the close enough VRP). There is also a need for
smart exact and heuristic approaches to solve the VRPD and simulation studies that
aim to determine the expected benefits of using drones and trucks to deliver packages
rather than trucks alone.

Overall, we think theVRPD represents a very exciting newdirection in logistics.We
expect to see substantial progress on this problem in both the academic literature and
in practice over the next decade. Furthermore, we expect the academic and practitioner
communities to feed off of one another. What we have shown represent bounds on
maximal savings. Further research could give us better indications of actual savings
in real-life settings.

Appendix

Proof of Theorem 3

We use the truck with speed v to traverse the giant route R formed by joining the
m routes in the optimal VRP* solution, one after another. The length of route R is
denoted by LR . There is no waiting time in a VRP* solution. Denote the travel time
of the i th truck in the optimal VRP* solution by Ti . We have
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(a) (b) (c)Problem Feasible VRP* solution Optimal TSP solution

Fig. 10 A worst-case VRP* example with m = 3

Z(VRP*) = max{T1, T2, . . . , Tm} (35)

≥ v1T1 + v2T2 + · · · + vmTm
v1 + v2 + · · · + vm

(36)

= LR

V
(37)

= LR

v

v

V
. (38)

Again (36) is valid because a weighted average never exceeds the maximum. After
we skip the depots in the middle of R, we have a feasible TSP solution such that
LR ≥ vZ(TSPv). Therefore,

Z(VRP*) ≥ Z(TSPv)
v

V
, (39)

i.e.,

Z(TSPv)

Z(VRP*)
≤ V

v
. (40)

To show the tightness of the bound, we construct an example of m customers, c1
to cm (an example with m = 3 is shown in Fig. 10). The distance from ci to the depot
is vi . The distance between ci and c j , i �= j , is vi + v j . An optimal TSP solution has
objective function value Z(TSP) = 2(v1 + v2 + · · · + vm)/v = 2V/v. A feasible
VRP* solution serves customer ci on a dedicated route by the truck with speed vi . All
trucks finish their routes with the same travel time 2. The objective function value is
Z f (VRP*) = 2. Therefore, in this example,

Z(TSPv)

Z(VRP*)
≥ Z(TSPv)

Z f (VRP*)
= V

v
. (41)

��
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Proof of Lemma 1

The ant’s journey can be divided into legs, denoted by {LG(i)
Ai ,Bi

}Ni=1, where N , the

number of legs, is not known initially. Each leg LG(i)
Ai ,Bi

starts at node Ai and ends at
node Bi , so Ai = Bi−1, for i = 2, 3, . . . , N , and both A1 and BN are the depot. We
determine the rest of the Ai ’s and Bi ’s and the vehicle used by the ant using a recursive
algorithm, starting backwards from the last leg LG(N )

AN ,BN
to the first leg LG(1)

A1,B1
. For

the i th leg, we first determine the vehicle used, then Ai , which is also Bi−1.
On the last leg, the ant has to stay on the vehicle that returns to the depot last. Ties

are broken arbitrarily, but if a drone is on the truck when it reaches the depot, it is
not considered. If the last vehicle used by the ant is the truck, AN is the first pick-up
node of some drone when one traces the truck route in reverse order. If the last vehicle
used is a drone, then AN is the node where this drone was dispatched. Therefore, AN ,
hence BN−1, is always a pick-up node or a dispatch node.

For the other legs, the vehicle used is determined by its end point, Bi . If it is a pick-
up node, the ant should stay on the vehicle that arrives at Bi last. If Bi is a dispatch
node, the ant stays on the truck. After we determine the vehicle, we locate Ai . If the
ant stays on the truck, then Ai is the first pick-up node when one traces the truck route
in reverse order starting from Bi . If the ant stays on a drone, Ai is the node where that
drone is dispatched.

The algorithm continues until we reach the depot again. ��
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