Optim Lett (2017) 11:1155-1167 @ CrossMark
DOI 10.1007/511590-016-1017-5

ORIGINAL PAPER

A metaheuristic approach to the dominating tree
problem

Zorica Drazi¢! . Mirjana Cangalovié? -
Vera Kovacevi¢-Vujéié?

Received: 31 January 2014 / Accepted: 3 February 2016 / Published online: 29 February 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper considers a recently introduced NP-hard problem on graphs,
called the dominating tree problem. In order to solve this problem, we develop a vari-
able neighborhood search (VNS) based heuristic. Feasible solutions are obtained by
using the set of vertex permutations that allow us to implement standard neighborhood
structures and the appropriate local search procedure. Computational experiments
include two classes of randomly generated test instances and benchmark test instances
from the literature. Optimality of VNS solutions on small size instances is verified
with CPLEX.

Keywords Dominating tree problem - Graphs - Variable neighborhood search -
Optimization

1 Introduction

The dominating tree problem, discussed in this paper, has been recently introduced
by Shin et al. in [13]. This problem is defined as follows: Let G = (V, E) be an
undirected, connected, edge-weighted graph, where V denotes the set of vertices and
E denotes the set of edges. To each edge e € E, a non-negative weight w, is assigned.

B Mirjana Cangalovié
canga@fon.bg.ac.rs

Zorica Drazi¢
zdrazic@matf.bg.ac.rs

Vera Kovacevi¢-Vujci¢
verakov @fon.bg.ac.rs

Faculty of Mathematics, University of Belgrade, Studentski Trg 16, Belgrade, Serbia

Faculty of Organizational Sciences, University of Belgrade, Jove Ilia 154, Belgrade, Serbia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-016-1017-5&domain=pdf

1156 Z. Drazi¢ et al.

Atree T = (V(T), E(T)) of graph G is called dominating if each vertex v € V that
isnotin 7 is adjacent to a vertex in T'. The weight of tree 7T is defined as ZeeE(T) We,
i.e. as the sum of all edge weights in 7. Now, the dominating tree problem (DTP) is
to construct a dominating tree 7' of graph G with the minimal weight.

The DTP has several applications in network design and network routing. Multi-
casting is one example, given in [13], whose goal is simultaneous delivery of the same
data to a group of destination computers. Servers are connected by a tree network
structure 7', and all other computers are one hop away from a server. If weights rep-
resent the cost, or energy to transmit data from one server to another, the sum of edge
weights in 7 equals to overall cost to transmit data from one server to all others.

In [13] the DTP is proved to be NP-hard in the general case, and an approximation
framework is provided. Due to the high runtime complexity of this approximation
algorithm, the authors propose a polynomial time heuristic. They also propose an
integer programming formulation of the DTP.

The first metaheuristic approaches for solving the DTP were proposed in [14], where
the authors implemented two swarm inteligence techniques: artificial bee colony and
ant colony optimization. The ant colony optimization algorithm produced better results
on most of large instances, but it was slower than the artificial bee colony optimization
algorithm.

Problems related to the DTP are: the connected dominating set problem (CDSP)
[5,11,15,16] and the tree cover problem (TCP) [1,3,4]. Subset D of vertices of graph
G is a dominating set of G if each vertex of G is either in D or adjacent to a vertex in
D. Now, the CDSP can be formulated as follows: For a given graph, find a minimum
size connected dominating set. In some variants of this problem, vertices might have
weights and the problem is formulated as to minimize the total weighted sum of
the vertices that form a connected dominating set. Note that in the DTP weights are
associated with edges and not with vertices.

On the other hand, the TCP considers a graph where each edge has a nonnegative
weight. The problem is to find a tree 7' of graph G with the minimal weight that
represents a vertex cover of G, i.e. every edge of G has at least one endpoint in 7'. In
this case, the resulting tree represents an edge dominating set, contrary to the DTP,
where the resulting tree is a vertex dominating set.

2 Variable neighborhood search for DTP

The variable neighborhood search (VNS) is a local search based metaheuristic pro-
posed by Mladenovi¢ and Hansen [8] in 1997. The concept of the basic VNS can be
outlined as follows: The main idea is to use more than one neighborhood structure
and to proceed with their systematic change in search for a better solution. Given an
incumbent solution, the shaking procedure generates randomly a feasible solution in
the current neighborhood. Then, a local search is applied around the generated fea-
sible solution in order to obtain a possibly better solution than the incumbent. If the
local search gives a better solution, it becomes the new incumbent. Otherwise, the
neighborhood is changed.

@ Springer

A metaheuristic approach to the dominating. .. 1157

A detailed description of different VNS variants can be found in [6,7]. An exten-
sive computational experience with various optimization problems shows that the
VNS often gives high-quality solutions in a reasonable time. In particular, we have
shown that the VNS approach outperforms genetic algorithms in case of some NP-hard
graph optimization problems [9, 10]. This experience motivated us to apply the VNS
approach to the recently introduced dominating tree problem and to compare it with
the existing swarm intelligence-based approaches: ant and bee colony optimization
algorithms.

The main characteristics of the VNS metaheuristic applied to the DTP are the
following. The feasible solution set X contains all permutations of vertex indices
from graph G. To each permutation x € X, the corresponding dominating tree 7 of
G is assigned and the objective function value of x is obtained as the sum of all edge
weights from 7. The neighborhood structures and the shaking step are defined in the
usual way for searching in a set of permutations. The details of the VNS for the DTP
are given in a pseudo-code in Fig. 1 and explained in more details below.

The feasible solution set To each vertex v € V of graph G, let us assign an unique
integer index number. The set of feasible solutions X is defined as the set of all
permutations of vertex indices from graph G. To each permutation x € X, the cor-
responding dominating tree T of G is assigned by the procedure DominatingTree
described in Fig. 2. The procedure first generates a dominating set B of vertices in
graph G by including vertices one by one from the beginning of permutation x, until
this set becomes a dominating set of G. If subgraph Gp of G induced by B is not
connected, the procedure adds more vertices to set B using the order given by x, until
G p becomes connected. The procedure then finds MST(G p) as the minimal spanning
three T of G p, which represents a dominating tree of G, since it contains all vertices
from dominating set B of G, and G p is connected.

Select a set of neighborhood structures Ny, & = Emin, - - - s Kmax
that will be used in the search;
T +MST (G);
T + RemoveLeaves(T);
z < MakePermutation(T);
fe ZeGE(T) We
¥ —x, f* <~ f;
repeat the following steps until the stopping criterion is met
k < kmin;
1: repeat the following steps until k£ > kmax
2! < Shaking(z,k);
x// — x/
f"" < LocalSearch(x");
if f” < f* then
z* < ", f* + f" and goto 1;

elseif f/" == f*

With probability p set * < x| f* + f" and goto 1;
endif T
k+—k+1;

end
end
Stop. Point xz* is an approximative solution of the problem.

Fig. 1 The VNS algorithm for DTP

@ Springer

1158 Z. Drazi¢ et al.

Fig. 2 Procedure Input: Permutation z of vertices
DominatingTree Output: The corresponding dominating tree T'
B+ 0;
74 0

repeat the following steps until B is dominating set of G
B« BU{z[i]};
11+ 1

end

while G is not connected graph do
B+ BU{x[i]} ;
i1+ 1

end

T MST(GB);

The objective function value The objective function value f (x) for a feasible solution
x € X is calculated as the sum of all edge weights of the corresponding dominating
tree T', obtained by procedure DominatingTree.

The neighborhood structures For k > 2 we define neighborhood Ny (x) of x € X as
a set of all permutations which differ from x in no more than k positions. During the
search, the VNS uses neighborhood structures Ny, k = kmin, - - . , Kmax, Where kmin
and kny,x are given parameters.

Shaking step The shaking procedure chooses randomly a solution x” in neighborhood
N (x) as follows. First, we choose k random numbers from {1, ..., |V}, representing
the positions in permutation x. Next, we permute at random the elements of x from
these positions. The resulting vector is denoted by x’.

The local search The local search is defined by procedure LocalSearch, given in
Fig. 3. Starting from solution x’, obtained by shaking, the procedure explores a small
neighborhood of x’, searching for a solution with smaller objective function value.
The neighborhood which is explored consists of all solutions obtained from x’ by
swapping two of its elements, one from the corresponding dominating set B and the
other from V'\ B. The first improvement strategy is used, i.e. as soon as the local search
finds a solution with smaller objective function value, the search is continued from
this solution. Scanning of the neighborhood is performed as follows: First, |V | — | B|
neighbors are examined by swapping the first element of x’ with elements of V\B,
with indices |V|, |V|—1, ..., |B|+ 1, respectively. If better solution is not found, we
perform the same swapping procedure with elements of x” having indices 2, 3, ..., | B|.
The local search stops when the whole neighborhood of the current solution is searched
and no further improvement can be made. The best found solution is denoted as x”.
After obtaining the solution x” by the local search, we have to compare it with the
incumbent solution x in order to make a decision wether to accept it or not. In the
basic VNS, a move to the new solution x” is made only if f(x”) < f(x), i.e. the
objective function value of solution x” is smaller than the objective function value of
solution x. Considering the permutation-based representation described above, there
are different feasible permutations yielding the same objective function value. Moving
from one to another such solution, we may diversify the search and explore different
regions, increasing in this way the chance of finding a better solution. However, if we
do this move every time, we could get trapped in a cycle. To avoid this problem, we use

@ Springer

A metaheuristic approach to the dominating. .. 1159

Input: Permutation z’’ of vertices
Output: z”, f”
T" + DominatingTree(z");
f" = ZeEE(T”) We;
impr <— true;
2: repeat the following steps until not impr
impr < false;
for i 0 to 1" — 1 do
for j + |V| — 1 downto |T”| do
ztmp < z'';
wtmpli] < 2" [j];
atmplj] =il
Ttmp < DominatingTree(ztmp);
ftmp < ZeGE(Ttmp) We;
if ftmp < f” then
f" «— ftmp,x" + xtmp, T" < Ttmp, impr + true and goto 2;
endif T
end
end
end

Fig. 3 Procedure LocalSearch

parameter p which represents the probability of moving from one to another solution
with the same objective function value. Considering this, after the local search, we
have three possibilities:

— If f(x") < f(x), we move to x” and continue the search with the same neighbor-
hood Ny from x”.

- If f(x”) > f(x), we continue the search with the same x and the next neighbor-
hood Ng41(x).

— If f(x”) = f(x), we move to x” with probability p and continue the search from
x"" with the same neighborhood and with probability 1 — p we continue the search
with the same x and the next neighborhood Ny41(x).

The stopping criterion Whenever k. is attained, the search continues with the first
neighborhood Ny,... This is repeated until some stopping criterion is met. Possible
stopping conditions can be the maximum CPU time allowed, the maximum number of
iterations, the maximum number of iterations between two improvements, etc. In this
VNS implementation, we use the following combination: the algorithm stops when
either the maximum number of iterations ifermax or the maximum CPU time fy,x iS
exceeded.

The initial solution The initial permutation can be generated randomly or by using
special heuristics. In our implementation, we use the following heuristic approach.
First, we construct a minimal spanning tree of G (MST(G)) and then remove all its
leaves in order to obtain a tree 7. Since all vertices of G are either in T or adjacent to
some vertex in 7', T is a dominating tree for G. Now, the initial permutation x is taken
to be a permutation containing the indices of vertices from 7 followed by indices of
the remaining vertices of G. The objective function value is equal to the sum of all
edge weights in 7. The described heuristic is implemented in the first three lines of
the pseudo-code in Fig. 1.

@ Springer

1160 Z. Drazi¢ et al.

During the whole VNS procedure, the minimal spanning tree problem is solved by
the well known Prim’s algorithm [12].

Input parameters for the VNS are the minimum and the maximum number of neigh-
borhoods that should be searched, ki, and kpax, the maximum number of iterations
itermax, the maximum CPU time allowed fy,,x, and the probability p of moving from
one solution to another with the same objective function value.

3 Experimental results

In this section, we present experimental results obtained by the proposed VNS algo-
rithm for solving the DTP. The algorithm was implemented in C programming
language. All computational experiments were performed on Intel Core 17-4702MQ
2.2 GHz with 4 GB RAM under Windows XP operating system.

The first group of experiments was performed in order to adjust the key VNS para-
meters and to analyze their influence on the VNS algorithm for the DTP. As it is
well known, the most important parameters in VNS implementations are the values
of kmin and kmax, which determine the number of different neighborhood structures
used during the search process. In our VNS implementation, value kpyj, = 2 is a
natural lower bound for k because neighborhood Ny (x) of x € X is defined as the
set of all permutations of vertex indices that differ from x in no more than k posi-
tions, which implies k > 2. In order to find the most suitable values of kmax and
probability p for the VNS approach to the dominating tree problem, we have per-
formed experiments with different values of km,x and p on the set of benchmark
instances from literature [14]. For each value of |V| € {50, 100, 200, 300, 400, 500}
there are three different test instances. The VNS has been run 20 times for each instance
with the following stopping criterion: the algorithm stops when either the maximum
number of iterations ifermax = 1000 or the maximum CPU time fy,x = 600s is
exceeded.

The results of experiments are summarized in Table 1, organized as follows: In
the first column /nst the instance name is given, containing the information about
the number of nodes. For each p € {0, 0.1, 0.2, 0.5} and kmax € {10, 20, 30}, col-
umn named sol contains the best objective function value obtained by the VNS in
20 runs, while column sol,,g represents the average objective function value in 20
runs. For each instance the best values of sol and sol,y, are bolded. The analy-
sis of the obtained results shows that values of kmax and p influence the solution
quality. For example, for instances 50_2 and 50_3, the best values of sol,,g are
obtained for kpax = 10 and p = 0.1, while for instance 300_3, the best sol,yq
is for kmax = 20 and p = 0.5. On the other hand, the best values of sol for
instances 300_1, 400_2, 400_3 and 500_2 are obtained for combinations kp,x = 30
and p = 0.5, kmax = 30 and p = 0.1, kpax = 20 and p = 0.5, kmax = 30
and p = 0.5, respectively. However, from Table 1 it follows that for combination
kmax = 30 and p = 0, the number of instances where the VNS achieved the best
value for sol and sol,,g is 14 and 9, respectively. For all other combinations these
numbers are smaller. This indicates that the best combination of parameters for this

@ Springer

1161

A metaheuristic approach to the dominating. ..

¥6°'19C1 Y6 €VCl 0CT'69¢C1 6C YTl 6¥'CLCl S9'16CI 06°LSTI I8 1€t 9T v9Cl 9T eetl 16'89¢C1 9'1sCl € 00S
£€e°6SCl 96CECI VL'8STI €0'8¢cl 8C'19¢C1 06°'T1€CIT I IVl ¥8'9¢Cl 6¢°€SCl ¥89¢Cl YL'ESTI LI"LTCl T 00S
€eevcl 1692¢l1 9" EsTl Lgeecl 9¢"esTl Lceecl w8°LETT 78°S0T1 0S6¢CI €6°8I1¢CI 99°9%CI 6691CI 17008
€CILTI 90°0S<I 18°0LCT 8S°LSTI IL°LLTT SY'LSTI 8Y°T9CI L8TSTI 9L'L9TI ccesel Y0 CLCT LY ySTl € 00v
¢S 8ICl 99°L611 18°0¢cl 91°10CI celeet 106611 66°01ICI S6'6611 SeelcI ccioct 991¢1 91°'10CI T 00v
80°6€Cl 6¢'11C1 ¥8°SECI 6¢°11CI 1reyel v CIcl 8T'STTI €ETITI 0€9¢Cl €ETITI 18°1¢Cl LS'TICI 1 00¥
9¢EVLTI 12X944! 06'SLCI ysevel cCeLel IS°LyTl 18°€9¢C1 IS°LYTT 0C99¢C1 Is°LyTT 80'89C1 |5wA741 € 00€
LSO8T1 S8OLIT 606811 S8OLIT 8C'I8I1 S8OLIT 99°9LI1 S8OLIT SI'8LII S8OLIT 99°6L11 S8OLIT T 00€
6L°9¢C1 11°9¢C1 creecl eLYCTl 09°LETI 11°9¢¢1 celecl £€8°0CCl 6L'8TCI S6'SITI 6L eeCl 6°CCCl 1700€
veevel STLYTI 98°'65C1 STLYTL 6%°09¢C1 STLYTI V8Ll STLYTI 8E8PTI STLYTI £€9°8vCI STLYTL €002
80°LITI YTeITl 79¢eCl I8°€ICI 0¥9ccl YTeEITl 9I'LICl YTeITl 859171 YTeITl YT LITI VYTeITl T 00T
6L°90C1 6L9071 £9°0ccl 6L90C1 0ocIct 6L9071 6L°9071 6L90T1 6L7907I 6L°90C1 6L9071 6L°9071 1700C
9T ESTI 66°CSTI 86°8SCI 66°CSTI 0¥'v9Cl 66°CSTI 9T ESTI 66°CSTI Peestl 66°CSTI 0T ¥ysCl 66°CSTI € 001
9¥"8CI1 0p"8TII 8¢ eVl 0¥"8TIT Ly’ SETT 0p"8TII 9¥"8CI1 0p"8TIL 0p"8TII 0p"8TIL 0S'8CI1 0p°8TII T 001
IsLict LY LITI 86°coV1 LYLITI STocel LY LITI IsLict LV LITI YSLITI LY'LITI LY LITI LYLITT 1001
00°8¢el 6£°91€1 96°¢cel 6€°9I€T ST'6I€1 6£°91€1 8Y'orel 6£°91€1 18°6¢¢1 6€°91€T 8 ICel 6£91€1 € 0S
18°LSEl P ovel I¥°6S¢el P oveElL SL'SPEL P ovel £6°LSE] P ovel 8°0s¢El P ovelL 60'8v¢El Provel T 0S
¥9°61CI1 ' v0T1 £Cecel ' v0TI 61'81CI Iv'v0CI [8°61C1 I¥'v0T1 €€ L0TI1 Iv'v0TI 19021 I v0TI 170
savjog 105 savjog 1058 savjog 105 savjog 105 savjog 108 savjog 105
0g = X*y 0T = Xy 01 = XPy 0€ = Xy 0T = Xy 01 = XFWy
ro=d oo=d suy

d pue XeWy sigowered yym sjuowadxyg | d[qel,

pringer

as

t al.

7i¢ e

Z. Dra

1162

€069l 60'vvCl 99791 L8'TETT 6¥9LCI L6°0SCI 66°€9C1 I8°1€TT ¥9°0LC1 £0°0S<I 98°€LTI 9'18Cl € 00S
0t'65C1 6°STCI LO19C1 oy evCl 01coci Sy'6ccl 9T’ 18Tl ¥89¢C1 0r"'ssTl IL°LTel 00°SSCI LT"LTTI T 00§
scovcl LO'81CI 81yl 6€£91CI Y0'LSTI 8¢°€CCI 8T LYCI 8L°CICI So'LYCl £e'9¢Cl ! 6691CI 100§
8¢€°GLTI LL*SSTI 16°0LCI 79°6¥C1 Yy oLCl LLSSTI 89Tl L8'CSTI 19°1LC1 L1°9SCI wPyLTl LY'¥SCl € 00%
cs8Icl 6520l ¥6'SCCl ¥'60C1 £8°6CCl 9¢"10C1 96°CICI 65°C0C1 9¢vICl (At 6S'81¢CI 6520C1 T 00¥
y1ICcect Leelel €Leecl €ETITL 0sovcl €0'91¢I 0L'8¢CC1 €ETITI 61°6ECl 0C8I¢l 65°GECl LE6ICI 1 00%
Sy I8¢l IS°LYTL £€9°€971 IS'LyCT €0vLCl IS°LYTL LL89C1 LTESTI 05°69¢C1 IS'LyCT 86°69¢C1 Is°LyCl € 00¢
€CI8I1 S8OLIT 098811 S8OLTT 91"88I1 S8OLIT P8LLIT S8OLIT 9T I8I1 SSOLIT 0c€8T1 S8OLTT T 00€
65°0€C1 8P SITI 0v'LETT ISsITI LTovel sl 81°GECl 1rocel LTTETT ¥9°6CCl S6°SECl 119zel 100€
or'6vcl STLYCL 09°¥SCl STLYCL G8'L9C1 STLYCI ce0sTl STLYCL 19°6¥C1 STLYCL ¥1°0SC1 STLYCL € 00T
cLieel YTEITI 18°61C1 YTEITI £6'¢CCl YTEITI 0s'Licl YTEITI YT LITI YTEITI 8L°LITI YTEITl T 00¢
99 vICl 6L90T1 1€°6¢Cl 6L°90T1 c0'eccl 6L90C1 6L90CI 6L90C1 6L90C1 6L'90C1 6L90CT 6L90C1 1700
CLYSTI 66°CSTI oSl 66'CSTI 16°19¢1 66°CSTI 6C€SCl 66°CSTI 6y'eSCl 66'CSTI €Sl 66°CSTI €001
l2a%48! 01811 SEovIl 01811 ¥8°9¢I1 0p"8TII LY'8CI1 01811 7'8¢CI1 01811 [x:141! 0r"8TII T 001
ILv6C1 LY'LITI 10°s¢eTl LY'LITI oIl LY'LITI IS°LITI LY'LITI 09°LICI LY'LITI LY'LITI Ly'LITI 17001
69°CeEl 6£91€1 €0'6cel 6€91I€1 ceocel 6£91€1 8Y'OvEl 6€91€1 18'6¢cl 6€91€1 P8 1CEl 6£9I¢€1 € 0S
9L ISET P oveElL ccorel ProvelL 61°9v¢l Provel €6'LSEl P ovelL 805l ProvelL 60°87¢1 Provel T 0$
S98ICI voct geeccl ot PeOICl voct 18°61¢C1 wvoct €€°L0CI ot IL90CT 'voct 10
3o 1058 davog 108 davjog 108 3o 108 savog 108 davyog 108
0€ = X"y 0T = Xy 01 = X"y 0€ = X"y 0T = Xy 01 = Py
so=d co=d gsuf

panunuod | JqeL,

pringer

as

A metaheuristic approach to the dominating. .. 1163

set of instances is kmax = 30 and p = 0. Therefore, we used these values in all other
experiments.

In order to examine the average behavior of the VNS with parameters kpin, =
2, kmax = 30, p = 0, itermax = 1000, tnax = 600s, we constructed a set of randomly
generated instances, which include graphs with different number of vertices and edges.
The number of vertices vary from 10 to 300 and the number of edges from 15 to
1000. In the generation process, for each edge a randomly generated real number is
selected from interval [1, 10] representing its weight. The adjacency matrix of a graph
israndomly generated avoiding self-loops and more than one edge connecting the same
two vertices. If a graph created in this way is not connected, the instance is ignored
and a new instance is constructed. In order to achieve the diversity, for each graph
size, a set of three different instances was generated with a different random seed. The
generated instances can be found on http://poincare.matf.bg.ac.rs/~zdrazic/dtp.

Table 2 contains the VNS results on small size randomly generated instances.
In order to verify the results we applied CPLEX to the integer linear programming
formulation of the DTP, introduced in [13]. In the first column, Inst, the instance
name is given, containing the information about its dimensions. For example, instance
dtp_10_15_2 contains 10 vertices and 15 edges. The last number in the instance name
represents the ordinal number of the instance of that size. The next two columns con-
tain the information obtained with CPLEX: opt column contains the optimal objective
function value and time column represents the running time used by CPLEX to finish
its work. If CPLEX could not provide the result, the symbol “~” is written. In the fol-
lowing six columns, the information about the proposed VNS algorithm is given. The
column named sol contains the best objective function value found by the VNS in 20

Table 2 Experimental results on small size random instances

Inst. CPLEX VNS
opt Time sol solqyg o (%) ANDV t(s) tror (8)

dtp_10_15_0 5.89 0.06 opt 5.89 0.00 4.00 <0.01 0.04
dtp_10_15_1 14.42 0.10 opt 14.42 0.00 5.00 <0.01 0.04
dtp_10_15_2 14.35 0.14 opt 14.35 0.00 4.00 <0.01 0.04
dtp_15_20_0 18.87 0.40 opt 18.87 0.00 6.00 <0.01 0.10
dtp_15_20_1 23.03 0.44 opt 23.03 0.00 6.00 <0.01 0.09
dtp_15_20_2 24.95 0.56 opt 24.95 0.00 6.00 <0.01 0.10
dtp_15_30_0 18.20 4.10 opt 18.20 0.00 5.00 <0.01 0.11
dtp_15_30_1 8.32 6.41 opt 8.32 0.00 4.00 <0.01 0.08
dtp_15_30_2 18.07 12.62 opt 18.07 0.00 6.00 0.02 0.09
dtp_20_30_0 33.81 342.31 opt 33.81 0.00 9.00 0.01 0.22
dtp_20_30_1 36.03 281.74 opt 36.03 0.00 8.00 0.03 0.20
dtp_20_30_2 43.50 268.80 opt 43.50 0.00 10.00 0.02 0.23
dtp_20_50_0 9.81 169.58 opt 9.81 0.00 5.00 0.01 0.17
dtp_20_50_1 - - 12.19 12.19 0.00 6.00 0.01 0.16
dtp_20_50_2 17.42 4179.54 opt 17.42 0.00 6.00 0.02 0.20

@ Springer

http://poincare.matf.bg.ac.rs/~zdrazic/dtp

1164 Z. Drazi¢ et al.

runs. If this value is equal to the optimal solution (from opt column), we mark it as opt.
The next two columns sol,y, and o, contain the information on the average solution
quality. Value sol,,, represents the average objective function value in 20 independent

runs, while o2 is the corresponding mean squared error, i.e. 02 = % Z?gl (err; —

err)?, where err = % S erri, erri = 100 x W, and VNS; is the VNS
solution obtained in i-th run. Column ANDYV contains the average number of vertices
in the VNS solution for 20 runs. The last two columns contain the average execution
time ¢, used to reach the best VNS solution and the average total execution time ;.

As it can be seen in Table 2, the VNS quickly reaches optimal solutions obtained
by CPLEX in all cases. In case of larger instances, dtp_20_30 and dtp_20_50, the
VNS execution time values are from 1500 to 20,000 times smaller than CPLEX time
values. Note that for instance dfp_20_50_1 CPLEX failed to find any solution with
“Out of memory” error message.

Table 3 contains results of the proposed VNS for large size randomly generated
instances, which could be used as a base for future comparisons with other metaheuris-
tic approaches. It is organized in a similar way as Table 2. Here we do not have columns
regarding CPLEX because it was not able to solve these instances. The column #,;
is also omitted because, in all cases, the algorithm stops when time fox = 600s is
exceeded.

Table 3 Experimental results on large size random instances

Inst. VNS
sol solqug o (%) ANDV t(s)

dtp_100_150_0 152.57 154.61 0.74 45.00 294.95
dtp_100_150_1 192.21 194.22 1.32 46.25 286.39
dtp_100_150_2 146.34 148.35 1.06 43.75 245.61
dtp_100_200_0 135.04 136.41 1.12 37.40 33391
dtp_100_200_1 91.88 92.03 0.36 36.70 133.19
dtp_100_200_2 115.93 117.11 1.38 41.10 372.14
dtp_200_400_0 306.06 343.95 5.04 112.60 565.14
dtp_200_400_1 303.53 331.10 4.21 104.65 559.42
dtp_200_400_2 274.37 289.51 3.34 105.35 550.36
dtp_200_600_0 132.49 150.39 6.61 73.75 553.69
dtp_200_600_1 162.92 198.21 10.45 92.50 556.62
dtp_200_600_2 139.08 154.36 9.57 67.50 520.87
dtp_300_600_0 471.69 494.62 2.57 161.70 538.95
dtp_300_600_1 49491 542.46 2.80 176.75 544.27
dtp_300_600_2 500.72 535.30 3.16 177.45 533.80
dtp_300_1000_0 257.72 264.33 1.01 134.40 575.10
dtp_300_1000_1 242.79 325.16 9.27 162.15 530.51
dtp_300_1000_2 223.18 251.41 7.92 109.35 482.59

@ Springer

A metaheuristic approach to the dominating. .. 1165

Table 4 presents a comparison of the proposed VNS approach with the results from
[14], obtained by the artificial bee colony algorithm (ABC_DT) and the ant colony
optimization algorithm (ACO_DT) on the set of instances from Table 1.

In order to provide a fair comparison between these algorithms, we performed
additional numerical experiments with the following stopping criterion: The algo-
rithm stops when the maximum CPU time #,ax is exceeded, where fi,x is determined
as follows. For each instance, fmax is equal to the average execution time ¢ of either
ABC_DT or ACO_DT. We chose average execution time ¢ of the algorithm which has
obtained smaller value of sol. If both algorithms had the same value of sol, we chose
the smaller 7. Note that with such stopping criterion fmax = t0;-

In Table 4, for each algorithm, the results are organized in the same way as in
the previous tables. The additional last column, BSV, for each instance contains the
overall best known objective function value arising from Tables 1 and 4.

From Table 4 it follows that the average objective function value so0l,y, obtained
by the VNS, is better than values sol,,e for both ABC_DT and ACO_DT in 7 out
of 18 instances, including 5 out of 6 largest instances with 400 and 500 vertices. The
VNS produced strictly better values of the best objective function value sol in 8 out of
18 cases, compared to ABC_DT and ACO_DT. The ABC_DT was strictly better than
both the ACO_DT and the VNS in one case, and ACO_DT was never better than both
ABC_DT and the VNS. In 4 cases all three algorithms obtained the same values of sol.

In order to verify the significance of the obtained computational results, we pro-
vide the statistical analysis with the best objective function values sol of ABC_DT,
ACO_DT and VNS. Demsar [2] showed that when comparing the classifiers over mul-
tiple data sets, the non-parametric Friedman test should be preferred over ANOVA. It
is easy to see that this statement can be extended to general metaheuristic approaches
and not only to classifiers. The Friedman test showed that there was a statistically
significant difference in the obtained computational results among three considered
algorithms: p = 0.034 (<0.05). Post hoc Wilcoxon signed-rank test with Bonfer-
roni adjustment showed that there is no statistical difference between ACO_DT and
ABC_DT (p = 0.345). Yet, there is a statistical difference between algorithm pairs:
VNS and ABC_DT (p = 0.016), VNS and ACO_DT (p = 0.026). Based on this
results, one can conclude that the VNS outperforms both compared algorithms, and
that there is no significant difference between ABC_DT and ACO_DT.

Computational results in Tables 3 and 4 indicate that the VNS algorithm could be
successfully applied to real-world large-scale networks. Namely, the average execution
time ¢, used to reach high-quality VNS solutions does not increase rapidly with the size
of the problem. For example, for instances 400_1 to 400_3 in Table 4, the average value
of ¢ is 397.89 s, while for instances 500_1 to 500_3 the average value of ¢ is 556.24 s.

4 Conclusion
This paper is devoted to the recently introduced dominating tree problem. The problem
is solved by the VNS algorithm that uses the set of vertex permutations in order to gen-

erate feasible solutions. The corresponding neighborhood structures allow an effective
shaking procedure, which successfully diversifies the search process. For small dimen-

@ Springer

t al.

7i¢ e

Z. Dra

1166

I8 1€Cl €L°LI6 S6'SLS OI'tTc 001 987¢Cscl I81€Cl €L°LI6 SEYT €0°0CT 80°6SCI ILTETI STYEE 09'1T 9611 L9'8LTI LI'6YCI € 00S
¢6'SCCl ¥O'¥9e LS8ST Sy'oc TVl 1€09¢l 8I'Lccl 18'1¢01 98¢ o6Lcl 16°66Cl 98°¢LCl PO¥9¢E SETT OF'S €€'8STI 6S°SHTI T 00S
90°00CI 0T'E9IT o61¥E8 0€0c ¢I'l ¢8¥Ccl 90°00Cl 0TE9I1 0S9T LI'6 SOOVTI 99'61TI TL6LE OVIT 9S¥ 091vCl ¥I'€ECT 1 00§
o6Vl 86°0ES SEYLE 0¢'ICc 89°0 CTL'LOTI L8CSTI 8S0LS S8°ST Tr6 vEOLTI O1'vSTl $691C 0€TC 6S+ 08'9LTI 14991 € 00
99°L6ll v¥'I6S 6¥°98¢ SI'oc 990 SccIcl 6Scocl vv'16S or've 1v'IC vI'Ovcl 69°60CI 6£6vC YT L69 6TSETI ¥S0TTI T 00
€CTICL vL009 €8°CEy Sy'0c 960 TTscel €€ 11Tl vL009 S09C 0S6 SYLETI TY0TCI €1°€9C 06'1T 88'L SLIYTI 19°¢cTl 1 00¥
ISLYCL SL'Syl €8¢ll SI'ICc L8O 106LCI LSTICI 16'1SC 09vC LT6 SL9LTT 8119 SL'SvI 0S0T ¥L'9 OTILZL 1TLSTI € 00€
G8'0LIT 0€09C ¢€8'LLI OL'8T S6'0 €¥I8IT S8OLIT 0£09¢C 01'1C 1601 S6'€6ll SYIOLIT 6591 09'61 T8L 6L00CI TSTSIT T 00€
8Y'SITI 68°CSE TL'6CC 0'0C S90 609¢Cl 11'9¢Cl 687CSE G8'CC IL'6 0LevCl vT8CCl LI'SPI SLIT 68T LYLETT L6'6TCTI 1 00€
STLYTL €6'L6 €CYL 0S'IC S6'0 €9°6SCI STLYCI €6'L6 06'0C 66C vO8YCI STLYCI V06 SI'CC TWE 90°8STI TO'ESTI € 00T
YCEITl CTL'8L €L 0y 0’6l ¥C'0 TCOCCl €C9ICl CTL8L SO'LL 19°C €LLITI €TOICI 8L'L8 0681 SI'C ¥L61CTI 1¥91C1 T 00T
6L90CI €I'I8 YSve 0€'8l S¥'0 ¥C'60CI 6L90CI ¢€I'I8 G081 8¢ 19°L0CI 6L90CI OI'¥8 ST8I 69T TS60TI 6L90CI 1 00T
66°CSCI 6£°8C 7091 SE6l €90 8SLSTI 667CSCI 96'8 0061 000 6vescl 6vescl 6£8¢ 0L61 €0 PI'ESTl 66TSTI € 001
0r'8CI1 8S'LT 1TL1 G091 860 6I'LEIT O¥8CIT 9801 00°LT 000 S8TSIT S8TSIT 8S'LC 06'LT 600 CT¥8TII 0¥'8TII T 001
LY’ LITT ILCI 8L'L 06'cc €81 68LYCl S9Tel 1LTI 0061 000 LVLICL LVLITI +978C SP'81 690 SI'SITI LYLITL 1 001
6£91¢€1 0S¢ 10C 001 STT 1I8PEEl 6€91El 05T 0061 000 6£9I€l 6£9I€l 66CC 0061 000 6£9IE€T 6£91€T € 0S
Provel 81y 98°C STEC 9S1 €L8SEl vy ovel 8I'V 00'1C 000 tvvover vvovel 9v'I¢ 00'TC 000 vVovEl vPorel T 0S
Iv'v0Cl 1¥'C €o'l G68°0C LST OI'L¥Cl 1¥Vv0Cl 19T 00’61 000 I¥vOCl I¥+0OCl LS'ST 0061 000 I¥v0CI 1¥+0Cl T 0S
oy ()1 ANV (%) o FwWjos 108 ()1 ANV (%) o FWjos 108 ()1 ANV () o Fwjos 108
ASd (0g = X"y 00 = d) SNA 1d odv 1ao4gv cssuf

spoyjouw SunsIXa Ay} PIm uostredwo) § Iqe],

pringer

As

A metaheuristic approach to the dominating. .. 1167

sions, the VNS reaches optimal values obtained by CPLEX in all cases, while for large
instances, it gives better results than the existing ant colony and bee colony approaches.

One possible extension of this research can be directed toward modifying this
approach in order to solve similar dominating problems on graphs. The second exten-
sion could be a parallelization of the presented approach and its testing on powerful
multiprocessor computers.

Acknowledgements This research was partially supported by Serbian Ministry of Science under the Grants
174010 and 174033. The authors are grateful to the referees and the editor for the constructive comments
and suggestions that improved the presentation of the paper.

References

1. Arkin, E.M., Halldorsson, M.M., Hassin, R.: Approximating the tree and tour covers of a graph. Inf.
Process. Lett. 47(6), 275-282 (1993)

2. Demgar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1-30
(2006)

3. Fujito, T.: On approximability of the independent/connected edge dominating set problems. Inf.
Process. Lett. 79(6), 261-266 (2001)

4. Fujito, T.: How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost Tree Cover,
Automata, Languages and Programming, pp. 431-442. Springer, Berlin, Heidelberg (2006)

5. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4),
374-387 (1998)

6. Hansen, P., Mladenovi¢, N., Moreno-Perez, J.: Variable neighborhood search methods and applications,
(invited survey). 40R: Q. J. Oper. Res. 6, 319-360 (2008)

7. Hansen, P., Mladenovié¢, N., Moreno-Perez, J.: Variable neighborhood search algorithms and

applications. Ann. Oper. Res. 175, 367-407 (2010)
. Mladenovi¢, N., Hansen, P.: Variable neighbourhood search. Comput. Oper. Res. 24, 1097-1100 (1997)
9. Mladenovi¢, N., Kratica, J., Kovacevi¢-Vujcié, V., Cangalovié, M.: Variable neighborhood search for
metric dimension and minimal doubly set problems. EJOR 220, 328-337 (2012)

10. Mladenovi¢, N., Kratica, J., Kovacevi¢-Vuj¢ié, V., Cv?angalovic', M.: Variable neighborhood search for
the strong metric dimension problem. Electron. Notes Discrete Math. 39, 51-57 (2012)

11. Park M., Wang C., Willson J., Thai M.T., Wu W., Farago A.: A dominating and absorbent set in
a wireless ad-hoc network with different transmission ranges. In: Proceedings of the 8th ACM
International Symposium on Mobile Ad hoc Networking and Computing, pp. 22-31 (2007)

12. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6),
1389-1401 (1957)

13. Shin, L., Shen, V., Thai, M.: On approximation of dominating tree in wireless sensor networks. Optim.
Lett. 4, 393-403 (2010)

14. Sundar, S., Singh, A.: New heuristic approaches for the dominating tree problem. Appl. Soft Comput.
13(12), 4695-4703 (2013)

15. Thai, M.T., Wang, F.,, Liu, D., Zhu, S., Du, D.Z.: Connected dominating sets in wireless networks
with different transmission ranges. IEEE Trans. Mobile Comput. 6(7), 721-730 (2007)

16. Wan, P-J., Alzoubi, K.M., Frieder, O.: Distributed construction on connected dominating set in
wireless ad hoc networks. In: Proceedings of the Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 3, pp. 1597-1604 (2002)

oo

@ Springer

	A metaheuristic approach to the dominating tree problem
	Abstract
	1 Introduction
	2 Variable neighborhood search for DTP
	3 Experimental results
	4 Conclusion
	Acknowledgements
	References

