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Abstract Two preprocessing techniques for mixed integer quadratic programs with
non-convex objective functions are presented. The first is a convexification scheme
and can be applied to problems were the continuous part of the Hessian is positive
semidefinite. The second technique aims to reduce the size of the underestimating
problems solved by branch-and-bound algorithms and can be applied to problems
were the continuous part of the Hessian is singular. Numerical results are presented
showing the effect of the preprocessing techniques.

Keywords Mixed integer programming · Quadratic programming ·
Linear transformation · Non-convex optimization

1 Introduction

In this paperwe present two preprocessing techniques, based on carefully chosen linear
transformations, for linearly constrained mixed integer quadratic programs (MIQPs)
with nonconvex objective functions. The preprocessing techniques were developed to
decrease the solution time of MIQP subproblems arising in the derivative free algo-
rithm developed in [1,2]. The derivative free algorithm uses MIQPs to approximate
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the objective. A number of these MIQPs need to be solved by the derivative free
algorithm and preprocessing techniques which can reduce the solution times of the
individual MIQPs result in a large reduction in the solution time of the derivative
free algorithm. The development of improved solution techniques for MIQPs is also
important in its own right since they have a number of applications; a list of examples
is given in Billionnet et al. [3]. A number of papers consider the case with binary rather
than general integer variables, for a good overview see Burer, Misener and Floudas
[4,5] and the references contained therein. Fewer papers consider the general integer
case. A good review of the convex relaxations and valid inequalities that have been
developed for this problem can be found in Burer and Saxena [6]. In addition the
gap inequalities for the max-cut problem [7] have been generalised to MIQPs with
non-convex objective functions [8]. In Buchheim andWiegele [9] a branch-and-bound
method using semidefinite programming relaxations is developed for unconstrained
MIQPs. In Billionnet et al. [3] a convex reformulation scheme is developed using
semidefinite programming; the reformulation scheme can be applied to problems
which become convex if all of the integer variables are fixed. The solution approaches
listed above cannot solve MIQPs with general non-convex objective functions.
MIQPs with non-convex objective functions can be solved using general noncon-
vex mixed integer non-linear programming solvers such as BARON [10], Couenne
[11], SCIP [12] and LINDO [13,14]. Finally, nonconvex MIQPs can be solved
using the mixed integer quadratically constrained quadratic programming solver
GloMIQO [5,15]. These approaches all make use of some form of branch-and-bound
algorithm.

The first preprocessing technique is a convexification scheme which can be applied
to problems which become convex if all of the integer variables are fixed. The convex
reformulation scheme for bilinear integer terms developed in Pörn et al. [16] is used
to perform the convexification of the transformed problem. To the best of the author’s
knowledge the approach in Pörn et al. [16] is the only existing approach that can be
used in conjunction with the transformation. A different approach to solving the same
problem has been presented in [17]. The results in this paper are less positive than those
in [17] and are communicated with the aim of preventing duplication of the work by
other researchers. The second preprocessing technique presented here aims to reduce
solution times when solving MIQPs using branch-and-bound algorithms and can be
applied to problems with non-convex objective functions where the continuous part of
the Hessian is singular. In both the preprocessing techniques additional theories have
been developed within the framework of the basic linear transformation suggested in
[17]. A related, transformation based, approach for solving a different class of MIQP
has been presented in [18]

The rest of the paper is organised as follows. In Sect. 2 the basic form of the
linear transformation used in the preprocessing techniques is developed. In Sect. 3 the
convexification scheme is developed. In Sect. 4 the preprocessing technique branch-
and-bound algorithms is developed. Computational results are presented in Sect. 5.
Concluding remarks are made in Sect. 6.
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2 The linear transformation

We consider the following mixed integer quadratic program (MIQP):

min
x

f (x) = 1

2
xT Hx + gT x

s.t. Ax ≤ b, Dx = e, l ≤ x ≤ u,

x =
[
xTc , xTd

]T ∈ R
nc × Z

nd , (1)

where H ∈ Sn (space of symmetricmatrices of order n), g ∈ R
n , A ∈ R

m×n , b ∈ R
m ,

D ∈ R
p×n and e ∈ R

p. The numbers of discrete and continuous variables are denoted
by nd and nc respectively. In this paper we consider the case when H is indefinite.

In this section we describe the general form of a linear transformation which can be
applied to problem (1). This transformation was developed in Newby [1]. In deriving
the transformation we make use of the fact that H can be expressed in the following
form

H =
[
Hcc Hcd

HT
cd Hdd

]
, (2)

where Hcc ∈ Snc , Hdd ∈ Snd and Hcd ∈ R
nc×nd . Now, consider a matrix V with the

following form

V =
⎡
⎣
Ucc Ucd

0 Udd

⎤
⎦ , (3)

where Ucc ∈ R
nc×nc and Udd ∈ R

nd×nd are arbitrary invertible matrices and Ucd ∈
R

nc×nd is an arbitrary matrix. Any matrix with this form is invertible [19]. Problem
(1) is equivalent to the following problem:

min
y

h(V y) = 1

2
yT V T HV y + gT V y

s.t. AV y ≤ b, DV y = e, l ≤ V y ≤ u,

y =
[
yTc , yTd

]T
,

Udd yd ∈ Z
nd , Uccyc +Ucd yd ∈ R

nc . (4)

Weneed to simplify the integral constraintUdd yd ∈ Z
nd ;we therefore restrictUdd to be

some unimodular matrix. A matrix is unimodular if it is integral and has a determinant
of ±1. Now since |Udd | = ±1 both Udd and U−1

dd are integral and it is obvious
that Udd yd ∈ Z

nd ⇔ yd ∈ Z
nd . It is also obvious that the following expression

holds Uccyc + Ucd yd ∈ R
nc ⇔ yc ∈ R

nc . Problem (4) now takes the following
form:
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min
x

h(V y) = 1

2
yT V T HV y + gT V y

s.t. AV y ≤ b, DV y = e, l ≤ V y ≤ u,

y =
[
yTc , yTd

]T ∈ R
nc × Z

nd . (5)

We now consider the quadratic term, yT V T HV y, in problem (5). Substituting (2)
and (3) into the quadratic term we obtain the following expression

yT V T HV y = yTc U
T
ccHccUcc yc + 2yTd

(
UT
cd HccUcc +UT

dd H
T
cdUcc

)
yc

+ yTd

(
UT
cd HccUcd +UT

cd HcdUdd +UT
dd H

T
cdUcd +UT

dd HddUdd

)
yd .

(6)

In the following sections we shall use the remaining freedom in the elements of V
to simplify (6). The choice of elements will depend on the structure of Hcc.

3 Approach used when Hcc is positive definite

When Hcc is positive semidefinite problem (1) can be reformulated as a convex pro-
gram. This allows us to apply convex mixed integer approaches to the solution of a
non-convex problem. Three reformulations are possible. The first reformulation was
developed in [3] and is known as Mixed Integer Quadratic Convex Reformulation
(MIQCR). MIQCR results in an equivalent convex MIQP and can be applied to any
problem where Hcc is positive semidefinite. The second reformulation was developed
in [17] and combines a linear transformationwith the ideas used in [3]. This reformula-
tion is known as Mixed Integer Quadratic Transformation and Convex Reformulation
(MIQTCR). MIQTCR also results in an equivalent convex MIQP and can be applied
to any problem where Hcc positive definite. The third reformulation is the focus of
this section of our paper. We call this reformulation Mixed Integer Quadratic Trans-
formation and Bilinear Convexification (MIQTBC). MIQTBC results in an equivalent
convexMINLP.MIQTBC can be applied to any problemwhere Hcc is positive definite
and another fairly unrestrictive condition on the form of the Hessian holds.

MIQCR and MIQTCR follow similar approaches based on semidefinte program-
ming to achieve the convexification. MIQTBC follows a different approach and uses
the linear transformation in Sect. 2 with a convexification scheme developed for bilin-
ear integer programming [16] to convexify problem (1). To use the scheme reported
in [16] we require that the only non-convex terms in the objective function of the
transformed problem are bilinear terms involving only the integer variables. In the
remainder of this section it is shown that a transformation resulting in an objective func-
tion with the required form exists and an algorithm is given to find the transformation.

It is shown in [1] that when Hcc is positive definite Ucd can be chosen such that
problem (5) takes the following form form:

min
y

h(V y) = 1

2

(
yTc �cc yc + yTd �dd yd

)
+ gT V y

s.t. AV y ≤ b, DV y = e, l ≤ V y ≤ u,
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yL ≤ y ≤ yU ,

y =
[
yTc , yTd

]T ∈ R
nc × Z

nd , (7)

where �cc = UT
ccHccUcc, �dd = UT

dd

(
Hdd − HT

cd H
−1
cc Hcd

)
Udd and yL and yU are,

respectively, lower and upper bounds on variables. The method used to calculate yL

and yU is given in [1].
In the following theorem we show that under a fairly unrestrictive condition we can

choose V such that the only non-convex terms in the objective function are bilinear
integer terms. When we discuss variable reordering in relation to the following theo-
rem we mean interchanging two discrete variables or two continuous variables, we do
not allow the interchanging of a continuous variable and a discrete variable.

Theorem 3.1 If the elements of x can be reordered such that Hdd−HT
cd H

−1
cc Hcd has at

least two principal leading submatrices which are not negative semidefinite then there
exists a unimodular matrixUdd such that the diagonal elements of�dd are all positive.

Proof Let � = Hdd − HT
cd H

−1
cc Hcd . Consider a transformation matrix V of the form

V =
[
Ucc Ucd

0nd ,nc ŨddUdd

]
.

Now the product of two unimodular matrices is unimodular so if both Udd and
Ũdd are unimodular then so is ŨddUdd . Using this form of V we have �dd =
UT
ddŨ

T
dd�ŨddUdd . Now let �̃ = Ũ T

dd�Ũdd . We first show that there exists a uni-
modular matrix Ũdd such that �̃ has at least one positive diagonal element. Now let
A(k) denote a k× k submatrix of A; the position of A(k) will be clear from the context.
We can now write Ũdd and � as follows

Ũdd =
[±1 01,nd−1

μ̃ Ũ (nd−1)
dd

]
, � =

[
α λT

λ �(nd−1)

]
, (8)

where Ũ (nd−1)
dd is a lower triangular matrix with ±1 on its diagonal, μ̃ ∈ Z

nd−1,
λ ∈ R

nd−1 and α ∈ R. We can now express �̃ as follows

�̃ =
[

μ̃T�(nd−1)μ̃ ± 2λT μ̃ + α μ̃T�(nd−1)Ũ (nd−1)
dd ± λT Ũ (nd−1)

dd

Ũ (nd−1) T
dd �(nd−1)μ̃ ± Ũ (nd−1) T

dd λ Ũ (nd−1) T
dd �(nd−1)Ũ (nd−1)

dd

]
.

Now since � must have at least two leading submatrices which are not negative semi-
definite the variables in x can be reordered to make �(nd−1) indefinite or positive
semidefinite. Suppose that the variables have been ordered such that this is true. If this
is the case, μ̃T�(nd−1)μ̃ ± 2λT μ̃ + α is unbounded above, regardless of the values of
λ and α. Therefore ∃ μ̃ ∈ Z

nd−1 such that (�̃)1,1 is greater than zero.
Suppose that we choose the elements of Ũdd such that (�̃)1,1 > 0. Now �dd

can be written as �dd = UT
dd�̃Udd . We now prove by induction that each leading

submatrix of �dd can be constructed to have only positive diagonal elements. We
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972 E. Newby, M. M. Ali

have �
(1)
dd = U (1) T

dd �̃(1)U (1)
dd = (±1)2�̃(1) = �̃(1), therefore �

(1)
dd > 0. Now assume

the diagonal elements of �
(k)
dd are positive. We need to show that there exists a uni-

modular matrix with U (k+1)
dd such that �

(k+1)
dd has positive diagonal elements. Now

�
(k+1)
dd = U (k+1) T

dd �̃(k+1)U (k+1)
dd where

U (k+1)
dd =

[
U (k)
dd μ

01,k ±1

]
, �̃(k+1) =

[
�̃(k) λ̃

λ̃T a

]
,

where U (k)
dd is an upper triangular matrix with ±1 on its diagonal, μ ∈ Z

k , λ̃ ∈ R
k

and a ∈ R. Therefore

�
(k+1)
dd =

[
U (k) T
dd �̃(k)U (k)

dd U (k) T
dd �̃(k)μ ±U (k) T

dd λ̃

μT �̃(k)U (k)
dd ± λ̃TU (k)

dd μT �̃(k)μ ± 2̃λTμ + a

]
.

We need to show that ∃ μ ∈ Z
k s.t.μT �̃(k)μ± 2̃λTμ+a > 0. Since this is a quadratic

function ofμ it is sufficient to show that one of the diagonal elements of �̃(k) is greater
than zero. Now �̃(k) has at least one positive element, (�̃(k))1,1. Therefore ∃ μ ∈ Z

k

such that (�
(k+1)
dd )k+1,k+1 > 0 and by the assumption (�

(k)
dd )i,i > 0 ∀i = 1, . . . , k.

Therefore there exists a unimodular matrix Udd such that the diagonal elements of
�dd are all positive. ��

The assumption that the elements of x can be reordered such that Hdd−HT
cd H

−1
cc Hcd

has at least two principal leading submatrices which are not negative semidefinite will
not be satisfied for every H . However numerical experience suggests that the condition
will be satisfied for a large number of Hessians, especially as the value of n increases.
This is mainly due to the fact that we can rearrange the elements of � by relabelling
the elements of x . For example if any of the diagonal elements of � are greater than
zero the elements of x can be relabelled such that the assumption holds.

Whilewehaveproven the existenceof a transformationmatrixUdd with the required
properties we still need to provide a concrete method for finding matrices with this
form. The required method is described by Algorithm1. The algorithm finds a matrix
with the required form using two basic stages. The first stage ensures that we have a
�̃ matrix with (�̃)1,1 > 0; steps ii to v are involved in this process. If � does not
have a positive diagonal element in step ii then a matrix Ũdd , which will allow us to
define �̃ such that it has at least one positive diagonal element, is found in steps iii
and iv. The second stage of the algorithm finds a matrix Udd which ensures that the
diagonal elements ofUT

dd�̃Udd are all positive where �̃ was found using the first part
of the algorithm. Steps vi to ix are involved in the second stage of the algorithm. We
restrict Udd to be an upper triangular matrix with 1 or −1 on its diagonal. We set the
upper triangular elements one column at a time. To ensure that the diagonal elements
ofUT

dd�̃Udd are positive we need to ensure thatμT �̃(k)μ± 2̃λTμ+a > 0 is satisfied.
To do this we first check, in step vi, whether this equation is satisfied by μ = 0. If this
is the case we set the upper triangular elements of the column to zero. Otherwise we
use steps vii and viii to set the element of the column in the first row to the smallest
number which allows this equation to be satisfied if all the other elements of μ are set
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to zero. We then set the diagonal element ofUdd to 1 or −1 if our choice of μ satisfies
μT �̃(k)μ + 2̃λTμ + a > 0 or μT �̃(k)μ − 2̃λTμ + a > 0 respectively.

Algorithm 1 The Udd selection algorithm for MIQTBC
i. Set rhs = 1, ind = 2 and Udd = 0nd×nd .
ii. If � has at least one positive diagonal element reorder the variables such that (�)1,1 > 0, set Ũdd =

Ind , set �̃ = � and go to step vi. If all of the diagonal elements of � are negative go to step iii.

iii. Solve the following equation numerically for ξ ∈ R
nd−1; ξT �(nd−1)ξ + 2λT ξ + α = rhs. The

equation was solved using the MATLAB function fsolve.
iv. Let μ̃ = round(ξ). If μ̃T �(nd−1)μ̃ + 2λT μ̃ + α > 0 then let

Ũdd =
[
1 01,nd−1
μ̃ Ind−1

]

and go to step v. Otherwise set rhs = rhs + 1 and go to step iii.
v. Let �̃ = Ũ T

dd�Ũdd and reorder the variables such that (�̃)1,1 > 0.
vi. If (�̃)ind,ind > 0 set (Udd )1,ind = 0, (Udd )ind,ind = 1 and go to step ix. Otherwise go to step vii.
vii. Set μ1 and μ2 as the solutions to the following problems

min
μ1

μ1

s.t
(
�̃

)
1,1 μ2

1 + 2
(
�̃

)
ind,1 μ1 + (

�̃
)
ind,ind > 0, μ1 ≥ 0, μ1 ∈ Z.

min
μ2

μ2

s.t
(
�̃

)
1,1 μ2

2 − 2
(
�̃

)
ind,1 μ2 + (

�̃
)
ind,ind > 0, μ2 ≥ 0, μ2 ∈ Z.

viii. If μ1 < μ2 set (Udd )1,ind = μ1 and (Udd )ind,ind = 1 otherwise set (Udd )1,ind = μ2 and
(Udd )ind,ind = −1.

ix. If ind = n go to step x otherwise set ind = ind + 1 and go to step vi.
x. Return Ũdd , Udd and the variable reorderings used during the algorithm.

We now consider problem (7). SetUcc to be the matrix whose columns are the nor-
malised eigenvectors of Hcc and use Algorithm1 to chooseUdd such that Theorem3.1
is satisfied. We now have the following MIQP which is equivalent to problem (1):

min
y

h(V y) = 1

2

(
yTc �cc yc + yTd �dd yd

)
+ gT V y

s.t. AV y ≤ b, DV y = b, l ≤ V y ≤ u, yL < y < yU ,

y =
[
yTc , yTd

]T ∈ R
nc × Z

nd , (9)

where�cc = UT
ccHccUcc is diagonal and all the diagonal elements of�dd are positive.

We note that since we have used Algorithm1 to chooseUdd the only non-convex terms
in objective function of problem (9) are integer bilinear terms and that the y variables
may have been reordered by the algorithm. In Pörn et al. [16] a convexification scheme
for bilinear integer programs is developed. This scheme allows each bilinear integer
term in an optimization problem to be replaced by an equivalent convex term by adding
additional variables and constraints to the problem. Each of the bilinear terms in the
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974 E. Newby, M. M. Ali

objective function of problem (9) was replaced by the substitutions developed in [16].
The resulting problem is a convex MINLP which is equivalent to problem (1) [16].
MIQTBC can be applied to any problem where the ncth principal leading submatrix is
positive definite and the elements of x can be reordered such that Hdd − HT

cd H
−1
cc Hcd

has at least two principal leading submatrices which are not negative semidefinite.

4 Approach used when Hcc is singular

When Hcc is singular the aim of the preprocessing technique is to reduce the num-
ber of bilinear terms in the objective function that need to be underestimated. This
aim is chosen since the available solution approaches for problems of this type, such
as SCIP, BARON, LINDO and Couenne, make use of branch-and-bound algorithms.
When constructing the lower bounding problems in the branch-and-bound tree each
bilinear term in the objective function is underestimated using the convex envelopes
in [20]. Each bilinear term which needs to be underestimated adds one additional
variable and two constraints to the lower bounding problem [20]. Reducing the num-
ber of bilinear terms will decrease the size of the lower bounding problems which
could improve the efficiency of the branch-and-bound algorithm. Towards this end we
choose the elements of V such that the Hessian � of the transformed problem, which
is given in (6), can be written in the following form

� = �(1) + �(2) =
[

�
(1)
cc 0

0 �
(1)
dd

]
+

[
�

(2)
cc �

(2)
cd

�
(2)T
cd �

(2)
dd

]
, (10)

where �
(1)
cc , �

(2)
cc and �

(2)
dd are diagonal and �(2) is positive definite. Since �(2) is

positive definite none of the terms in �(2) need to be underestimated when obtaining
the lower bounds. We now show that there exists a matrix V which gives � the form
specified by (10). As before we require Ucc to be a matrix which diagonalises Hcc.
We now prove the existence of the required transformation.

Theorem 4.1 ∃ Ucc such that Ucc diagonalises Hcc and � can be written in the
following form

� =
[

�
(1)
cc 0

0 �
(1)
dd

]
+ �(2), (11)

where �(2) is positive definite.

Proof We define A = UT
ccHccUcc, B = UT

cc (HccUcd + HcdUdd) and finally define
C = UT

cd HccUcd + UT
cd HcdUdd + UT

dd H
T
cdUcd + UT

dd HddUdd . The Hessian in (6)
now takes the following form

� =
[
A B
BT C

]
=

[
A f 0
0 C f

]
+

[
Ad B
BT Cd

]
, (12)

where Ad andCd are defined as diagonal matrices with positive values on the diagonal
and A f and C f are defined such that A = Ad + A f and C = Cd + C f . Denote the
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second matrix in (12) as �(2). Now the elements of Ucd and Udd can be taken to be
fixed, the methods used to fix these matrices will be discussed after the proof of the
theorem. Using the definition of B and the fact thatUcd andUdd are fixed we see that
the elements of B can be written in the following form

(B) j,k =
nc∑

m=1

ρ(k)
m (Ucc)m, j , (13)

where ρ
(k)
m ∈ R. Now we know that Ucc must be a matrix which diagonalises Hcc but

this does not specify Ucc uniquely. If F is some matrix which diagonalises Hcc then
the matrix Ucc obtained by multiplying each column of F by some real number will
also diagonlise Hcc [21]. Therefore the magnitude of the elements ofUcc can be made
arbitrarily small. It is then clear from (13) that the elements of Ucc can be chosen to
make the magnitude of the elements of B arbitrarily small.

A matrix F ∈ R
(n,n) is said to be strictly diagonally dominant if

∣∣(F)i,i
∣∣ >∑n

j=1, j 
=i

∣∣(F)i, j
∣∣ , ∀i [19]. A strictly diagonally dominantmatrixwhich isHermitian

and has positive diagonal elements is positive definite [19]. Now from the definitions
of Ad and Cd we know that the �(2) has positive diagonal elements and it is obvious
that �(2) is Hermitian. We need to show that we can choose the elements of Ucc such
that �(2) is strictly diagonally dominant. We have shown above that the magnitude
of the elements of B can be made arbitrarily small and we know that Ad and Cd are
diagonal matrices. Therefore the magnitude of the off diagonal elements of �(2) can
be made arbitrarily small. It is then obvious that we can choose Ucc such that �(2) is
strictly diagonally dominant. Therefore ∃ Ucc such that Ucc diagonalises Hcc and �

can be written in the required form. ��
We now discuss the methods used to fix the values ofUcd andUdd .Udd is set to Ind

using a method described in [1]. In fixingUcd we note that although there will always
exist some Ucc such that Theorem4.1 is satisfied the elements of Ucc might be very
small. This tends to increase the feasible ranges of the variables, (yU − yL), in problem
(5), see [1]. We attempted to use our freedom in the choice of Ucd to minimise this
effect. A number of methods were developed to try and achieve this, the most promis-
ing of which sets as many of the elements of HccUcd + HcdUdd to zero as possible.
This was done because we need to useUcc to make the elements of B small enough to
make �(2) positive definite. It was reasoned that since B = UT

cc (HccUcd + HcdUdd),
if HccUcd + HcdUdd had a large number of zero elements then the elements of Ucc

could be made larger while still satisfying the requirements in (11). The efficiency
of this choice of Ucd was tested. However, it was found through numerical experi-
ment that the most efficient value for Ucd was the zero matrix. There may be more
efficient choice of Ucd than that found in this paper and the choice of this matrix
warrants further investigation. Algorithm2 was used to find Ucc satisfying (11). In
Algorithm2 μ, ν and ω are parameters set by the user which determine the size of
the elements of Ucc, Ad and Cd respectively. The effectiveness of the transformation
is dependent on the choice of μ, ν and ω. The values used in this work are given in
Sect. 5.
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976 E. Newby, M. M. Ali

Algorithm 2 The Ucc selection algorithm for singular Hcc

i. Set μ, ν and ω. Set r = 0. Let Ũcc be the matrix with the normalised eigenvectors of Hcc as its
columns. Let Ucc = μŨcc .

ii. Let χ = ν max(abs(UT
ccHccUcc)) and ζ = ωmax(abs(C)) where C is defined prior to (12). Here

max(F) denotes the largest element of the matrix F and abs(F) denotes the matrix obtained by taking
the absolute values of the elements of F .

iii. Set �̃(2) to the following matrix

�̃(2) =
[

χ Inc B
BT ζ Ind

]
,

where B is defined prior to (12). If �̃(2) � 0 go to step v, otherwise go to step iv.
iv. Set r = r + 1 and u(r) = 0.9u(r) where u(r) is the r th column of Ucc . If r = nc set r = 0. Go to step

ii.
v. Let �(2) = �̃(2). Return �(2) and Ucc and stop.

Using the specified values ofUcd ,Udd andUcc the following transformed problem
is obtained:

min
y

h(V y) = 1

2

(
yTc �(1)

cc yc + yTd �
(1)
dd yd

)
+ 1

2
yT�(2)y + gT V y

s.t. AV y ≤ b, DV y = e, l ≤ V y ≤ u, yL ≤ y ≤ yU ,

y =
[
yTc , yTd

]T ∈ R
nc × Z

nd , (14)

where �
(1)
cc is diagonal and �(2) is positive definite. We have transformed problem (1)

into an equivalent problem which has at most (n2d − nd) bilinear terms which need to
be underestimated. The objective function of problem (14) is not convex, the problem
must be solved using a method capable of handling this non-convexity.

5 Computational results

The effectiveness of the transformations developed in Sects. 3 and 4 was tested on ran-
domly generated MIQPs. The method used to generate the randomMIQPs is given in
Newby [1]. When comparing approaches the superior approach is taken to be the one
with the shortest computation time.Unless noted otherwise, all testswere performedon
a PCwith an Intel Core i5 CPU at 3.2GHzwith 4GB of RAM running 64-bitWindows
7. Whenever two different algorithms were used to solve the same problem the second
algorithm was begun as soon as the first algorithm was terminated. This was done to
ensure a similar computational load. All solutions were checked for feasibility. If an
algorithm ran for more than 10,000s on a problem it was stopped and declared unsuc-
cessful for that problem. Two types of constraints were considered in the test problems;

1. Sparse linear inequality constraints.
2. Dense linear inequality constraints.

The constraints were generated using the method described in Newby and Ali [17].
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5.1 Results obtained with Hcc invertible

Wenowexamine the results obtainedwhen solving the problemsgenerated byMIQCR,
MIQTCR and MIQTBC using the MINLP solver Couenne 0.3.2 on the NEOS server
[22,23]. The reason that the NEOS server was used for these problems rather than
making use of the Couenne binaries is the following. The Couenne binaries require .nl
files as input, these files are generated byAMPL. However, the authors only had access
to the student version of AMPL which only accepts problems with fewer than 300
variables and constraints. MIQCR and MIQTCR generate transformed problems with
a large number of constraints, the number of constraints is generally >300 for n ≥ 6.
We solved problems with constraints of types 1 and 2. We solved randomly generated
MIQPswith nc = nd , nwas varied between 4 and 14 for type 1 constraints and between
4 and 10 for type 2 constraints. The time taken to solve a problem with a certain n was
taken as the average time t̄ taken to solve 10 randomly generated problems with that n.
The average time and the standard deviation s for constraints of types 1 and 2 are given
in Tables1 and 2 respectively. It is clear from Tables1 and 2 that MIQTBC is the supe-
rior convexification scheme for constraints of type 1 when n < 10 and for constraints
of type 2 for all n examined. The superior performance of MIQTBC is due to the fact
that the reformulated problems produced byMIQTBCcontain less variables than those
produced by MIQCR and MIQTCR. This effect is larger for type 2 constraints as the
structure of the constraints gives the variables larger ranges which increases the vari-
ables used byMIQCR andMIQTCR.However, the additional variable used inMIQCR
andMIQTCRresult in reformulated problemswhich have tight continuous relaxations.
For large n the small relaxation gap produced byMIQCR andMIQTCRbecomesmore

Table 1 The time taken to solve
problems with constraints of
type 1 with Hcc positive definite
using Couenne

n MIQCR MIQTCR MIQTBC

t̄ s t̄ s t̄ s

4 4.5 2.9 4.7 2.0 1.5 0.8

6 45.1 20.7 21.0 8.4 5.9 3.5

8 48.3 16.8 51.0 15.8 22.6 8.4

10 129.0 35.0 199.5 50.1 148.7 36.0

12 299.2 66.7 443.6 110.4 457.5 86.5

14 975.8 200.8 1524.9 367.9 1993.9 339.2

Table 2 The time taken to solve
problems with constraints of
type 2 with Hcc positive definite
using Couenne

n MIQCR MIQTCR MIQTBC

t̄ s t̄ s t̄ s

4 2.8 1.6 1.8 0.9 0.8 0.3

6 12.9 6.7 10.8 4.6 11.5 5.9

8 100.7 27.7 251.4 50.2 67.9 17.6

10 5642.4 887.8 3777.7 517.0 1968.2 380.2
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important than the additional variables which are added to the problem. This is why
MIQCR and MIQTCR become more efficient than MIQTBC when n > 10. However,
while MIQTBC generates a convex MINLP, MIQCR and MIQTCR generate convex
MIQPs. If the problems generated byMIQCR andMIQTCR are solved using a convex
MIQP solver, such as CPLEX, MIQCR and MIQTCR outperform MIQTBC [17].

5.2 Results obtained with Hcc singular

We now consider the results obtained when Hcc is singular. The values of μ, ν and ω

in Algorithm2 were set by numerical experiment. In order to simplify the selection of
these parameters it was decided that each of the three parameters would be given the
same value and this value would be denoted by σ . For problems with n < 10 we used
σ = 2 and for n ≥ 10 we used σ = 2.5.

The results in this section are presented in the form of performance profiles
[24]. Performance profiles are constructed as follows. Let tp,s be the time taken
by algorithm s to solve problem p. The performance ratio ρp,s is then given by
ρp,s = tp,s/min

{
tp,s : s ∈ S}

where S is the set of algorithms. Denote the fraction of
performance ratios that are less than a factor τ ≥ 1, P(ρp,s ≤ τ : s ∈ S). The perfor-
mance profile is a plot, for each algorithm, of P(ρp,s ≤ τ : s ∈ S), the performance
factor, vs τ , the time factor.

Makinguse of the special structure of the objective functionof problem (14) requires
a change in the underestimating procedure used by the branch-and-bound algorithm.
The algorithm needs to be told to split the Hessian into the two terms �(1) and �(2)

and that none of the bilinear terms in the �(2) need to be underestimated. Since this
requires a change in the algorithm rather than the simple preprocessing applied in
Sect. 5.1 a basic branch-and-bound algorithm with the required underestimating rules
was written in Matlab 7.11. The algorithm, named Algorithm BB, is based on the
algorithms in Sahinidis [10] and Zamora and Grossman [25]. A high level description
of the key features of the algorithm is given below. As it is not a novel contribution,
the full description of Algorithm BB is not given here, the interested reader is referred
to [1]. Convex underestimators were constructed using the convex envelopes in [20].
The branching node chosen at each iteration is the node with the smallest lower bound.
The branching variable was chosen by finding the non-convex term with the greatest
difference between the non-convex term and its convex underestimator at the solution
of the convex underestimation of the problem.

We recall that the transformed problem has at most (n2d − nd) bilinear terms that
need to be underestimated. Clearly as nc increases the reduction in the number of
bilinear terms increases so we expect the transformation to become more effective
as nc increases. We therefore consider two different sets of test problems; the first
containing problems with nc > nd and the second with nc < nd . Random MIQP test
problems were generated for both types of constraints and a range of values of n and
nc. The parameters used to generate the test problems are detailed in [1]. The number
of problems in the test sets for nc > nd and nc < nd are 140 and 112 respectively. The
results for nc > nd and nc < nd are presented in the form of performance profiles in
Figs. 1 and 2 respectively. In the figures Original shows the results when solving prob-
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Fig. 1 Performance profile
obtained when solving problems
with nc > nd and Hcc singular
using Algorithm BB
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Fig. 2 Performance profile
obtained when solving problems
with nc < nd and Hcc singular
using Algorithm BB
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lem (1) and Transformed shows the results when solving problem (14). The results
include the time taken to perform the preprocessing. The time taken to perform the
preprocessing is negligible compared to the time taken to solve problems (1) and (14).

Considering Figs. 1 and 2 we see that, as expected, the efficiency of the transfor-
mation increases as nc increases. When nc > nd it is clearly more efficient to solve
problem (14) and when nc < nd is it more efficient to solve problem (1). Results
presented here are positive. The value of σ used was obtained by numerical testing.
During the testing it was found that some values of σ result in poor performance. No
general method for setting σ has been developed.

6 Conclusions

We have presented two preprocessing techniques that can be applied when solving
mixed integer quadratic programs with non-convex objective functions. The first tech-
nique is a convexification scheme and can be applied to problemswhere the continuous
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part of the Hessian is positive definite. The convex problem produced by the scheme
is a MINLP. There are two convexification schemes in the literature which produce
convex MIQPs. Due to the superiority of existing convex MIQP solvers over convex
MINLP solvers the technique developed in this paper is outperformed by the existing
techniques.

The second preprocessing technique can be applied to problems where the continu-
ous part of the Hessian is singular. The technique reduces the number of bilinear terms
in the objective function that need to be underestimated when solving the transformed
problems using a branch-and-bound algorithm. This reduction is useful because each
bilinear term requires additional variables and constraints to be added to the lower
bounding problem used in the branch-and-bound algorithm. Promising numerical
results are presented for the second preprocessing technique. However, the results are
sensitive to a parameter in the algorithmused to generate the transformationmatrix and
no method has been determined to set the value of this parameter beyond numerical
experiment. Methods to set the value of this parameter are an area of future research.
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