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Abstract In this paper, a continuous timemean-variance portfolio optimization prob-
lem is considered within a game theoretic framework, where the risk aversion function
is assumed to depend on the current wealth level and the discounted (preset) invest-
ment target. We derive the explicit time consistent investment policy, and find that
if the current wealth level is less (larger) than the discounted investment target, the
future wealth level along the time consistent investment policy is always less (larger)
than the discounted investment target.

Keywords Piecewise linear risk aversion · Continuous time mean-variance model ·
Time consistent policy

1 Introduction

Markowitz’s mean-variance model (see [10]) initiated the famous return-risk assets
allocation framework. An investor who considers a mean-variance criterion seeks the
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best investment policy such that the expected value of the terminal wealth (i.e., return)
is maximized and the variance of the terminal wealth (i.e., risk) is minimized, which
can be formulated as follows,

(MV (γ )) : min Var(X1|X0) − γE[X1|X0],
(MV (ω)) : max E[X1|X0] − ωVar(X1|X0),

where X0 is the initial wealth level, X1 is the terminal wealth level, γ ≥ 0 and ω ≥ 0
are the trade-off parameters between two conflict objectives. We call γ and ω risk
aversion parameters, which represent the risk aversion attitude of the investor. When
γ = 0 or ω = +∞, the investor is totally risk averse.

Besides constant risk aversion parameter, there are several state-dependent risk
aversion parameters. Björk et al. [4] andWu [14] proposed, respectively, in continuous
time setting and multi-period setting, that risk aversion parameter ω takes a fractional
form of current wealth level Xt ,

ω(Xt ) = ω

Xt
, (ω ≥ 0).

Hu et al. [7] proposed the risk aversion parameter γ takes a linear function of current
wealth level Xt ,

γ (Xt ) = μ1Xt + μ2, (μ1 ≥ 0),

in continuous time. Cui et al. [6] proposed an extended piecewise linear risk aversion
parameter in a multi-period setting as follows,

γ (Xt ) =
{

γ +(Xt − ρ−1
t W ), if Xt ≥ ρ−1

t W,

−γ −(Xt − ρ−1
t W ), if Xt < ρ−1

t W,
(γ + ≥ 0, γ − ≥ 0),

where ρ−1
t is the riskless discount factor and W is the preset investment target. For

Björk et al.’s setting, due to the positiveness of controlledwealth level Xt in continuous
time, the investor is always risk averse and the higher the wealth level, the lower the
risk aversion. In Wu’s setting, when the wealth level is negative, ω(Xt ) is negative,
i.e., the investor is risk seeking and tries to maximize both the expected value and the
variance of the terminal wealth. In Hu et al.’s setting, when the wealth level is less than
−μ2/μ1, γ (Xt ) becomes negative, i.e., the investor tries to minimize the variance as
well as the expected value of the terminal wealth. In Cui et al.’s setting, the investor is
always risk averse andmay have different views with respect to the difference between
current wealth level and discounted preset investment target. In this paper, we solve
the continuous timemean-variance portfolio optimization problemwith Cui et al. [6]’s
piecewise linear risk aversion parameter.

Consider the dynamic mean-variance portfolio optimization problem at time 0,

(MV0(γ (X0))) : min{ut }t∈[0,T ]
Var(XT |X0) − γ (X0)E[XT |X0],
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where ut is the investment policy at time t and XT is the terminal wealth level. At time
0, although γ (X0) is a known constant, the problem is hard to solve, due to the non
smoothing property of the variance term, i.e., Var(XT |X0) �= Var(Var(XT |Xt )|X0).
Li and Ng [9] and Zhou and Li [15] adopted the embedding scheme to derive the
optimal mean-variance policy under a multi-period setting and a continuous time
setting, respectively. We call the optimal mean-variance policy determined at time 0
pre-committed optimal mean-variance policy. However, for t > 0, the investor faces
a truncated mean-variance portfolio optimization problem,

(MVt (γ (Xt ))) : min{us }s∈[t,T ]
Var(XT |Xt ) − γ (Xt )E[XT |Xt ],

whose short term optimal mean-variance policy is different from the pre-committed
optimal mean-variance policy derived at time 0 in general (see Basak and Chabakauri
[2], Cui et al. [5], Wang and Forsyth [13]). This phenomenon is called time inconsis-
tency. In the language of dynamic programming, Bellman’s principle of optimality is
not applicable in this dynamical return-risk portfolio selection model, as the global
and local objectives are not consistent (see Artzner et al. [1], Cui et al. [5]). In the
fields of dynamic risk measures and dynamic risk management, time consistency is a
basic requirement of dynamic risk measures (see Rosazza Gianin [11], Artzner et al.
[1] and Jobert and Rogers [8]).

How to resolve this inconsistency? Basak and Chabakauri [2] extended Strotz
[12]’s proposal of strategy of consistent planning and reformulated the dynamicmean-
variance model as an interpersonal game model where the investor optimally chooses
the policy at any time t , on the premise that he or she has already decided his or her
time-consistent policies in the future. For example, inmulti-period setting, the investor
at time t faces the following nested portfolio selection problem

(N MVt (γ (Xt ))) : min
ut

Var(XT |Xt ) − γ (Xt )E[XT |Xt ],
s.t. u j solves (N MVj (γ (X j ))), t < j ≤ T,

with terminal period problem given as

(N MVT −1(γ (XT ))) : min
uT −1

Var(XT |XT −1) − γ (XT )E[XT |XT −1].

The subgame Nash equilibrium solution of the nested problem is called time consis-
tent mean-variance policy, which can be derived by backward induction. Basak and
Chabakauri [2] assumed that the investor has a constant risk aversion during the invest-
ment procedure. Björk et al. [4], Hu et al. [7], Wu [14] and Cui et al. [6] extended
Basak and Chabakauri’s results by studying different state-dependent risk aversion
parameters. For general time inconsistent control problems, Björk and Murgoci [3]
proposed the time inconsistent stochastic control framework to derive the time con-
sistent control.

In this paper, we aim to adopt a time inconsistent stochastic control framework to
derive a time consistent mean-variance policy (subgame Nash equilibrium policy) for
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continuous time mean-variance portfolio selection problems with the defined piece-
wise linear risk aversion parameter. Totally different frommulti-period setting, we are
exposed to a Hamilton–Jacobi–Bellman (HJB) system of equations with nonsmooth
coefficients, which may not admit classical solution. To overcome the difficulty, we
first study some important properties of the time consistent mean-variance policy and
then solve the HJB system of equations in two separate domains. By combining the
solutions in two domains, we derive the time consistent mean-variance policy. In Sect.
2, we formulate the continuous time mean-variance model with piecewise linear risk
aversion. In Sect. 3, we obtain the explicit time consistent mean-variance policy by
solving the extended HJB system.

2 Portfolio optimization formulation

Our market setting is a standard Black–Scholes model, which includes a risky asset
(such as a stock) and a riskless asset (such as a bank account). Denoting the stock
price by St and the bank account by Bt , the dynamics of St and Bt are as follows,

{
d St = μSt dt + σ St dWt ,

S0 = s0,{
d Bt = r Bt dt,
B0 = b0,

where r > 0 is the interest rate of bank account, μ is the appreciation rate of the
stock, σ > 0 is the volatility or dispersion rate of the stock and Wt is a standard
Brownian motion defined on a filtered probability space (Ω,FT , {Ft }t∈[0,T ], P). We
assume that r , μ, σ are constants. In the analysis below, we will study self-financing
portfolios (without consumption) consisting of the risky stock and the bank account.
Denoting the dollar value invested in the risky asset at time t by ut , the value of the
portfolio at time t , Xu

t , is given by

{
d Xu

t = [r Xu
t + (μ − r)ut ]dt + σut dWt ,

Xu
0 = x0,

(1)

where x0 is the initial wealth level.
At time t , the investor faces a mean-variance portfolio selection problem,

(MVt (γ (x))) : min{us }s∈[t,T ]
Vart,x (Xu

T ) − γ (x)Et,x [Xu
T ]

s.t.

{
d Xu

s = [r Xu
s + (μ − r)us]dt + σusdWs,

Xu
t = x,

where Vart,x (Xu
T ) = Var(Xu

T |Xu
t = x), Et,x [Xu

T ] = E[Xu
T |Xu

t = x]. The risk aver-
sion parameter of the investor is assumed to be
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γ (x) =
{

γ +(x − ρ−1
t W ), if x ≥ ρ−1

t W,

−γ −(x − ρ−1
t W ), if x < ρ−1

t W,

where W is the investment target set by the investor, ρ−1
t = e−r(T −t) is the riskless

discount factor from current time t to terminal time T , γ + �= 0 and γ − �= 0 are the
constant risk aversion coefficients. The different signs of γ + and γ − respond different
risk attitudes of the investor. In the case of γ + > 0 and γ − > 0, if current wealth
level is larger than the discounted investment target, the investor becomes less risk
averse along with the increase of current wealth level; if current wealth level is less
than the discounted investment target, the investor becomes less risk averse along with
the decrease of current wealth level.

Setting Y u
t = Xu

t − ρ−1
t W , we have

dY u
t = d Xu

t − rρ−1
t W dt

= [r(Xu
t − ρ−1

t W ) + (μ − r)ut ]dt + σut dWt

= [rY u
t + (μ − r)ut ]dt + σut dWt .

Furthermore,

Vart,x (Xu
T ) = Vart,y(Y

u
T ),

Et,x [Xu
T ] = Et,y[Y u

T ] + ρ−1
t W,

with y = x − ρ−1
t W . Thus, problem (MVt (γ (x))) is equivalent to

(MVt (γ (y))) : min{us }s∈[t,T ]
Vart,y(Y

u
T ) − γ (y)Et,y[Y u

T ]

s.t.

{
dY u

s = [rY u
s + (μ − r)us]dt + σusdWs,

Y u
t = y,

(2)

where

γ (y) =
{

γ +y, if y ≥ 0,

−γ −y, if y < 0.

3 Time consistent mean-variance policy

We define the objective function as

J (t, y, u) = Vart,y(Y
u
T ) − γ (y)Et,y[Y u

T ] = Et,y[F(y, Y u
T )] + G(y,Et,y[Y u

T ]), (3)

where the two new functions F(y, z) = z2 − γ (y)z and G(y, z) = −z2. We try
to derive the time consistent investment policy (i.e., the subgame Nash equilibrium
policy) of J (t, y, u), û, which is rigorously defined in [4] and restated in the following
definition.
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Definition 1 (Björk et al. [4]) Given a policy û, construct a policy uh by

uh(s, y) =
{

u, for t ≤ s < t + h,

û(s, y), for t + h ≤ s ≤ T,

where u ∈ R, h > 0 and (t, y) ∈ [0, T ] × R are arbitrarily chosen. If

lim sup
h→0

J (t, y, û) − J (t, y, uh)

h
≤ 0,

for all u ∈ R and (t, y) ∈ [0, T ] × R, we say that û is an equilibrium policy. And the
equilibrium value function V is defined by

V (t, y) = J (t, y, û).

Following the time inconsistent stochastic control approach proposed in Björk and
Murgoci [3] andBjörk et al. [4], the extendedHJB systemof equations for the subgame
Nash equilibrium problem takes the following form:

inf
u∈R

{(Au V )(t, y) − (Au f )(t, y, y) + (Au f y)(t, y)

−Au(G � g)(t, y) + (Hu g)(t, y)} = 0, 0 ≤ t ≤ T,

Aû f z(t, y) = 0, 0 ≤ t ≤ T,

Aû g(t, y) = 0, 0 ≤ t ≤ T,

V (T, y) = F(y, y) + G(y, y),

f (T, y, z) = F(z, y),

g(T, y) = y,

where the infinitesimal operator Au and notations f x , G � g, Hu g are defined by

Au = ∂

∂t
+ [r y + (μ − r)u] ∂

∂y
+ 1

2
σ 2u2 ∂2

∂y2
,

f z(t, y) = f (t, y, z),

(G � g)(t, y) = G(y, g(t, y)),

Hu g(t, y) = ∂G

∂z
(y, z) · Au g(t, y).

Given F(y, z) = z2 − γ (y)z and G(y, z) = −z2, the HJB system of equations can
be reduce into the following,

Vt (t, y) + inf
u∈R

{
[r y + (μ − r)u](Vy(t, y) − fz(t, y, y))

+1

2
σ 2u2(Vyy(t, y) − fzz(t, y, y)
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−2 fyz(t, y, y) + 2(gy(t, y))2)
}

= 0, 0 ≤ t ≤ T, (4)

ft (t, y, z) + [r y + (μ − r)û] fy(t, y, z) + 1

2
σ 2û2 fyy(t, y, z) = 0, 0 ≤ t ≤ T,

(5)

gt (t, y) + [r y + (μ − r)û]gy(t, y) + 1

2
σ 2û2gyy(t, y) = 0, 0 ≤ t ≤ T, (6)

V (T, y) = −γ (y)y, (7)

f (T, y, z) = y2 − γ (z)y, (8)

g(T, y) = y, (9)

where Vt , Vy , Vyy , fz , fzz , fyz , gy are corresponding partial derivatives of V (t, y) and
f (t, y, z).
However, as the risk version parameter γ (y) is a nonsmooth function, there does

not exist classical solution of the HJB system (4)–(9). To overcome this difficulty, we
first investigate the properties of time consistent mean-variance policy.

Proposition 1 The time consistent mean-variance policy has the following properties:

1. Whenever the state Y u
t = 0, time consistent mean-variance policy over [t, T ] is

û(s, Y û
s = 0) = 0, for t ≤ s ≤ T .

2. When Y u
0 ≤ 0 (or ≥ 0), the state at time t along time consistent mean-variance

policy is always nonpositive (or nonnegative), i.e., Y û
t ≤ 0 (or ≥ 0).

Proof When the stateY û
s = 0 at future time s (t ≤ s ≤ T ), the investor becomes totally

risk averse. The objective function of the investor at time s can attain itsminimumvalue
0 by investing all the wealth in the riskless asset for time interval [s, T ], which implies
that the optimal decisions of the investor at all future time instances are consistent. On
the other hand, along the proposed time consistent mean-variance policy û(s, Y û

s ) = 0
(i.e., investing all the wealth in the riskless asset), the state Y û

s = 0 for t ≤ s ≤ T .
Therefore, the investor at all future time instances will become totally risk averse and
would like to insist on investing all the wealth in the riskless asset, which implies that
the subgame Nash equilibrium policy is just to invest all the wealth in the riskless
asset.

For the second property, as the state process {Y u
t }t∈[0,T ] has continuous paths, Y u

t
should touch zero before changing its sign, and remain to be zero due to the first
property. 	


With the help of Proposition 1, we can solve theHJB system (4)–(9) in two domains,
{(t, y)| y ≥ 0} and {(t, y)| y ≤ 0}. In each domain, the risk aversion parameter γ (·)
becomes a smooth function now. Our main result is given in the following Theorem.

Theorem 1 Under piecewise linear state-dependent risk aversion framework, the time
consistent mean-variance policy is given by

û(t, y) =
{

−k+(t)y, if y ≥ 0,

−k−(t)y, if y ≤ 0,
(10)
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1688 X. Cui et al.

where

k+(t) = μ − r

σ 2 · 2c+(t) − γ +b+(t) − 2(b+(t))2

2c+(t)
, (11)

k−(t) = μ − r

σ 2 · 2c−(t) + γ −b−(t) − 2(b−(t))2

2c−(t)
. (12)

The parameters b+(t), c+(t), b−(t), c−(t) solve the following system of ordinary
differential equations,

ċ+(t) + 2[r − (μ − r)k+(t)]c+(t) + σ 2(k+(t))2c+(t) = 0,

c+(T ) = 1,

ḃ+(t) + [r − (μ − r)k+(t)]b+(y) = 0,

b+(T ) = 1,

ċ−(t) + 2[r − (μ − r)k−(t)]c−(t) + σ 2(k−(t))2c−(t) = 0,

c−(T ) = 1,

ḃ−(t) + [r − (μ − r)k−(t)]b−(t) = 0,

b−(T ) = 1,

where ċ+(t), ḃ+(t), ċ−(t) and ḃ−(t) are the first order derivatives with respective to
time t.

Proof We have the probabilistic interpretations of f (t, y, z), g(t, y) and V (t, y) as
follows,

f (t, y, z) = Et,y[F(y, Y û
T )] = Et,y[(Y û

T )2] − γ (z)Et,y[Y û
T ],

g(t, y) = Et,y[Y û
T ],

V (t, y) = Et,y[F(y, Y û
T )] + G(y, g(t, y)) = f (t, y, y) − g2(t, y).

Then, HJB equation (4) can be reduced into

ft (t, y, y) − 2g(t, y)gt (t, y) + inf
u∈R

{
[r y+(μ − r)u]( fy(t, y, y) − 2g(t, y)gy(t, y))

+ 1

2
σ 2u2( fyy(t, y, y) − 2g(t, y)gyy(t, y))

}
= 0,

which implies

û(t, y) = −μ − r

σ 2

fy(t, y, y) − 2g(t, y)gy(t, y)

fyy(t, y, y) − 2g(t, y)gyy(t, y)
.

For {(t, y)| y ≥ 0}, due to the second property in Proposition 1, z = Y û
T has the

same sign as y. We prove that the solution set of HJB system is

V (t, y) = [c+(t) − γ +b+(t) − (b+(t))2]y2,

123



Continuous time mean-variance portfolio optimization… 1689

f (t, y, z) = c+(t)y2 − γ +b+(t)yz,

g(t, y) = b+(t)y.

It is easy to check that setting c+(T ) = b+(T ) = 1, V (T, y), f (T, y, z) and g(T, y)

satisfies terminal conditions (7)–(9). Furthermore,

gt (t, y) = ḃ+(t)y, gy(t, y) = b+(t), gyy(t, y) = 0,

ft (t, y, z) = ċ+(t)y2 − γ +ḃ+(t)yz, fy(t, y, z) = 2c+(t)y − γ +b+(t)z,

fyy(t, y, z) = 2c+(t).

The time consistent policy is given by

û(t, y) = −μ − r

σ 2

2c+(t) − γ +b+(t) − 2(b+(t))2

2c+(t)
y = −k+(t)y.

Then, the HJB equations (4)–(6) become,

ċ+y2 − γ +ḃ+y2 − 2b+ḃ+y2 + [r y + (μ − r)û][2c+y

−γ +b+y − 2(b+)2y] + σ 2û2c+ = 0,

ċ+y2 − γ +ḃ+yz + [r y + (μ − r)û][2c+y − γ +b+z] + σ 2û2c+ = 0,

ḃ+y + [r y + (μ − r)û]b+ = 0,

which implies

ċ+ + 2[r − (μ − r)k+]c+ + σ 2(k+)2c+ = 0,

ḃ+ + [r − (μ − r)k+]b+ = 0.

Here we omit the arguments of functions c+(t), b+(t) and k+(t).
For {(t, y)| y ≤ 0}, due to the second property in Proposition 1, z = Y û

T has the
same sign as y. We prove that the solution set of HJB system is

V (t, y) = [c−(t) + γ −b−(t) − (b−(t))2]y2,

f (t, y, z) = c−(t)y2 + γ −b−(t)yz,

g(t, y) = b−(t)y.

It is easy to check that setting c−(T ) = b−(T ) = 1, V (T, y), f (T, y, z) and g(T, y)

satisfies terminal conditions (7)–(9). Furthermore,

gt (t, y) = ḃ−(t)y, gy(t, y) = b−(t), gyy(t, y) = 0,

fy(t, y, z) = 2c−(t)y + γ −b−(t)z, ft (t, y, z) = ċ−(t)y2 + γ −ḃ−(t)yz,

fyy(t, y, z) = 2c−(t).
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The time-consistent policy is given by

û(t, y) = −μ − r

σ 2

2c−(t) + γ −b−(t) − 2(b−(t))2

2c−(t)
y = −k−(t)y.

Then, the HJB equations (4) - (6) become,

ċ−y2 + γ −ḃ−y2 − 2b−ḃ−y2 + [r y + (μ − r)û][2c−y

+γ −b−y − 2(b−)2y] + σ 2û2c− = 0,

ċ−y2 + γ −ḃ−yz + [r y + (μ − r)û][2c−y + γ −b−z] + σ 2û2c− = 0,

ḃ−y + [r y + (μ − r)û]b− = 0,

which implies

ċ− + 2[r − (μ − r)k−]c− + σ 2(k−)2c− = 0,

ḃ− + [r − (μ − r)k−]b− = 0.

Here we also omit the arguments of functions c−(t), b−(t) and k−(t). 	

Remark 1 Theorem 1 has shown that in both domains {(t, y)|y ≥ 0} and {(t, y)|y ≤
0}, the time consistent mean-variance policy has the same form as the one in Björk et
al. [4]’s paper. It is an extension of [4]’s result.

Remark 2 When substituting the time consistent mean-variance policy û back to the
dynamics of state Y u

t in (2), we can see that Y û
t is a geometric Brownianmotion, which

implies Y û
s > 0 (or < 0) for s ∈ (t, T ], if and only if Y û

t = y > 0 (or < 0). It means
that if the current wealth level is less than (or larger than) the discounted investment
target, the future wealth level along the time consistent mean-variance policy is always
less than (or larger than) the discounted investment target.
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