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Abstract We study the pure equilibrium set for a specific symmetric finite game
in strategic form, referred to as the Hotelling bi-matrix game. General results that
guarantee non-emptiness of this set (for all parametric values) do not seem to exist.
We prove non-emptiness by determining the pure equilibrium set. In this proof so-
called demi-modality properties of the conditional payoff functions play an important
role.

Keywords Bi-matrix game · Demi-modality · Hotelling · Location theory · Nash
equilibrium · Tarski fixed point theorem

1 Introduction

We consider a specific symmetric finite game in strategic form with two players that
may enrich discrete location theory. As this game can be classified as a discrete variant
of the continuous Hotelling game of pure location [2–4], we refer to it as theHotelling
bi-matrix game.

It is appropriate to introduce the Hotelling bi-matrix game with parameters n (a
positive integer) and w (∈ ]0, 1]) with a little real-world interpretation as follows.
Consider the n + 1 points {0, 1, . . . , n} on the real line, to be referred to as locations.
There are two players, denoted by 1 and 2, who simultaneously and independently
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choose a location. If player 1 chooses location x1 and player 2 location x2, then the
payoff f1(x1, x2) to player 1 is determined by the locations nearer to x1 than to x2 and
the locations at an equal distance from x1 and x2 as follows: a location x contributes
w|x1−x | if |x1 − x | < |x2 − x | and it contributes w|x1−x |/2 if |x1 − x | = |x2 − x |. The
definition of f2 is similar. This may for example correspond to real-world situations
where each location contains a consumer that buys from the closets sellers. If w = 1,
then each consumer buying from a seller contributes the same to this seller; if w < 1,
then such a consumer contributes less the further away from the seller he is and the
smaller w is.

Here is a visualization in the case n = 5 and w = 1/4 of the situation for the
strategy profile (1, 3):

The payoffs are f1(1, 3) = w +1+ 1
2w = 13

8 and f2(1, 3) = 1
2w +1+w +w2 =

1 7
16 .
As the Hotelling bi-matrix game is finite, it can be represented in a natural way

(indeed) as a bi-matrix with rows and columns indexed by 0, . . . , n. For w = 1, the
game is a special case of a class of games considered in for example [7] and called
there ‘Voronoi games’. There is little literature available on such games

It is well known that a finite game in strategic form has a Nash equilibrium in
mixed strategies, but not necessarily a pure strategy equilibrium. A natural question is
whether the Hotelling bi-matrix game has a pure Nash equilibrium andmore generally
what the set of such equilibria looks like and depends on w (and n); we write Ew for
the (Nash) equilibrium set. For w = 1 the problem turns out to be simple, but for
w �= 1 it is not. Computer simulations in [1] suggest that the Hotelling bi-matrix game
has (for all parametric values) an equilibrium. In the present article we prove that this
is indeed the case.

As far as we know, equilibrium existence for the Hotelling bi-matrix game cannot
be derived from general equilibrium existence results. We prove equilibrium exis-
tence by determining the equilibrium set Ew and observing that it is not empty. In
this proof, two symmetries play an important role. In terms of the best response cor-
respondences R1 and R2, the first is that R1 = R2 =: R (as the game is symmetric)
and the second that R(n − x) = {n} − R(x). These symmetries make that we can
define a natural subset of strategy profiles H� such that E�

w := H� ∩ Ew determines
Ew for w �= 1 (see Theorem 1). The proof then further concentrates on determining
E�

w. The set E
�
w is determined by showing, among other things (in Theorem 4), that

for various strategy profiles belonging to H� first-order conditions are already suf-
ficient. This result is related to ‘demi-modality properties’ of the conditional payoff
functions.

It seems that a better understanding of the Hotelling bi-matrix game also may lead
to a new class of finite (symmetric) games in strategic form that have a pure Nash-
equilibrium (see Sect. 6).

The organisation of the article is as follows. Section 2 provides the formulas for the
payoff functions of the Hotelling bi-matrix game. Section 3 provides the definition of
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E�
w and its relation to Ew. The main result, Theorem 2, is presented in Sect. 4 in terms

of E�
w. Section 5 is devoted to the proof of this theorem and in doing so provides some

additional results: in particular Theorem 3, which guarantees that for each equilibrium
e it holds that n − 2 ≤ e1 + e2 ≤ n + 2. Section 6 contains some concluding remarks
and a conjecture. There is an appendix which contains some useful formulas and
inequalities that easily follow from the explicit expressions of the payoff functions.

2 The game

The Hotelling bi-matrix game is a game in strategic form with players 1 and 2 with the
same strategy set H := {0, 1, . . . , n} and with payoff functions f1, f2 : H ×H → R.
Formulas for the payoff functions will be given below. For the moment we do not need
them as various results already follow from the real-world description.

Example 1 For n = 1 the bi-matrix is

(
1
2 (1 + w); 1

2 (1 + w) 1; 1
1; 1 1

2 (1 + w); 1
2 (1 + w)

)
.

For w < 1: Ew = {(0, 1), (1, 0)}.
For w = 1: Ew = {(0, 0), (0, 1), (1, 0), (1, 1)}.
For n = 2 the bi-matrix is⎛

⎜⎜⎝
1+w+w2

2 ; 1+w+w2

2 1; 1 + w 1 + w
2 ; 1 + w

2

1 + w; 1 1+2w
2 ; 1+2w

2 1 + w; 1
1 + w

2 ; 1 + w
2 ; 1; 1 + w 1+w+w2

2 ; 1+w+w2

2

⎞
⎟⎟⎠ .

For w < 1
2 : Ew = {(0, 1), (1, 0), (1, 2), (2, 1)}.

For w = 1
2 : Ew = {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}.

For w > 1
2 : Ew = {(1, 1)}.

A first fundamental observation is that for all (x1, x2) ∈ H × H

f2(x2, x1) = f1(x1, x2), (1)

fi (x1, x2) = fi (n − x1, n − x2) (i = 1, 2). (2)

With {i, j} = {1, 2} we define for x j ∈ H the (conditional payoff ) function f
(x j )
i :

H → R of player i by

f
(x j )
i (xi ) := f1(x1, x2).

Wedenote by Ri : H � H the best response correspondence of player i , i.e. Ri (x) :=
argmax f (x)

i . As H is finite, Ri is proper, i.e. Ri (x) �= ∅ (x ∈ H). As, by (1), the
game is symmetric, we have
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R1 = R2 =: R

and with (2) it follows that also (in terms of Minkowski sums)

R(n − x) = {n} − R(x) (x ∈ H). (3)

Given n, let

p := n/2 if n even, p := (n − 1)/2 if n odd.

It is clear that the following proposition holds.

Proposition 1 (1) If n is even and w = 1, then R(x) =

⎧⎪⎨
⎪⎩

{x + 1} if x < p,

x if x = p,

{x − 1} if x > p.

(2) If n is odd and w = 1, then R(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{x + 1} if x < p,

{x, x + 1} if x = p,

{x − 1, x} if x = p + 1,

{x − 1} if x > p + 1.
(3) If n is even, then E1 = {(p, p)}.
(4) If n is odd, then E1 = {(p, p), (p, p + 1), (p + 1, p), (p + 1, p + 1)}.

Determining the equilibrium set Ew for w �= 1 is much more difficult. Before
proceeding, we will first provide the formulas for the payoff functions and derive an
important formula in Proposition 2. (1) and (2) make the game in fact predetermined
by providing n,w and f1(x1, x2) for x1 ≤ x2. It is a straightforward exercise to provide
explicit formulas for the payoff functions. We provide just the result here.

For an integer x let

δx :=
{
1 if x is even,
1
2 if x is odd.

In the case w = 1

f1(x1, x2) :=

⎧⎪⎨
⎪⎩

x1+x2+1
2 if x1 < x2,

n+1
2 if x1 = x2,

n + 1 − x1+x2+1
2 if x1 > x2

and in the case w ∈ ]0, 1 [

f1(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1−wx1+1

1−w
+ 1−w

� x2−x1
2 	

1−w
+ δx1+x2+1w

� x2−x1
2 	 − 1 if x1 < x2,

1+w−wx1+1−wn−x1+1

2(1−w)
if x1 = x2,

δx1+x2+1w
� x1−x2

2 	 + 1−w
� x1−x2

2 	
1−w

+ 1−wn−x1+1

1−w
− 1 if x1 > x2.
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Notation: for a function g : H → R, define �g : H \ {0} → R by

�g(x) := g(x) − g(x − 1).

It is important to have a formula for � f (x2)
1 (x1). For this it is useful to define for

i,m ∈ H with 0 < i < m the function qi;m : ]0, 1] → R by

qi;m(w) := wi − 1

2
w�m−i+1

2 	. (4)

Proposition 2 If 0 < x1 < x2, then � f (x2)
1 (x1) = qx1;x2(w).

Proof If w = 1, then, by the formula for the payoff functions, f (x2)
1 (x1) −

f (x2)
1 (x1 − 1) = 1

2 = qx1;x2(1). Now suppose w �= 1. We have f (x2)
1 (x1 −

1) = 1−wx1

1−w
+ 1−w

� x2−x1+1
2 	

1−w
+ δx1+x2w

� x2−x1+1
2 	 − 1 and f (x2)

1 (x1) = 1−wx1+1

1−w
+

1−w
� x2−x1

2 	
1−w

+ δx1+1+x2w
� x2−x1

2 	 − 1. Therefore f (x2)
1 (x1) − f (x2)

1 (x1 − 1) =
wx1+w

� x2−x1+1
2 	−wx1+1−w

� x2−x1
2 	

1−w
− δx1+x2w

� x2−x1+1
2 	+ δx1+1+x2w

� x2−x1
2 	. Finally, dis-

tinguish between even and odd x2 − x1. 
�

3 Symmetries

As the game is symmetric, we have

(e1, e2) ∈ Ew ⇒ (e2, e1) ∈ Ew. (5)

And with (2) we obtain

(e1, e2) ∈ Ew ⇒ (n − e1, n − e2) ∈ Ew. (6)

For the analysis and presentation it is convenient to define

H� :=
{
(x1, x2) ∈ H × H | x1 ≤ �n + 1

2
	 ≤ x2 ∧ x1 + x2 ≤ n

}
,

E�
w := H� ∩ Ew. (7)

Proposition 3 Suppose w �= 1 or n is even. Let x ∈ H.

(1) x > n
2 ⇒ R(x) ⊆ {0, . . . , x − 1}.

(2) x < n
2 ⇒ R(x) ⊆ {x + 1, . . . , n}.

(3) x �= n
2 ⇒ x /∈ R(x).

(4) If (e1, e2) ∈ Ew, then e2 > n
2 ⇒ e1 ≤ n

2 , and e2 < n
2 ⇒ e1 ≥ n

2 .
(5) If (e1, e2) ∈ Ew with e1 = e2, then e1 = n

2 and so n is even.
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192 P. von Mouche, W. Pijnappel

Proof 1. Fix x1 ∈ R(x). Lemma 6(2a, 2b) implies x1 �= x . We now prove by
contradiction that x1 ≤ x − 1 and then the proof is complete. So suppose x1 ≥ x .
As x1 �= x , we have n

2 < x < x1 ≤ n and 1 ≤ x1 − x ≤ n − x . By Lemma 6(3),

f (x)
1 (x − (x1 − x)) > f (x)

1 (x + (x1 − x)) = f (x)
1 (x1). Thus x1 /∈ R(x), a

contradiction.
2. Suppose x < n

2 . As n − x > n
2 , part 1 implies R(n − x) ⊆ {0, . . . , n − x − 1}.

So, by (3), {n} − R(x) ⊆ {0, . . . , n − x − 1}. This implies the desired
result.

3. By parts 1 and 2.
4. First statement: by contradiction suppose e2 > n

2 and e1 > n
2 . As e2 ∈ R(e1) and

e1 ∈ R(e2), part 1 implies e2 < e1 and e1 < e2. This is absurd. Second statement:
by contradiction suppose e2 < n

2 and e1 < n
2 . As e2 ∈ R(e1) and e1 ∈ R(e2), part

2 implies e2 > e1 and e1 > e2. This is absurd.
5. Now e1 ∈ R(e2) = R(e1). Apply part 3. 
�

Notation: for A ⊆ H × H , let Ã := {(x2, x1) | (x1, x2) ∈ A}.
Theorem 1 For each positive integer n and w ∈ ]0, 1]: if w �= 1 or n is even, then
Ew = E�

w ∪ Ẽ�
w ∪ ((n, n) − E�

w) ∪ ((n, n) − Ẽ�
w).

Proof (5) and (6) imply ’⊇’. For example, suppose (x1, x2) ∈ (n, n) − Ẽ�
w. Let

(y1, y2) ∈ Ẽ�
w be such that (x1, x2) = (n−y1, n−y2). By (5) and (6), (n−y1, n−y2) ∈

Ew. Now we prove ’⊆’.
If w = 1, then n is even and Proposition 1 implies the desired result. Now suppose

w �= 1, (e1, e2) ∈ Ew and (e1, e2) /∈ E�
w. We will prove that (e1, e2) ∈ Ẽ�

w or
(e1, e2) ∈ (n, n) − E�

w or (e1, e2) ∈ (n, n) − Ẽ�
w.

Well, as (e1, e2) /∈ E�
w, we have¬(e1 ≤ � n+1

2 	 ≤ e2) or e1+e2 > n.Wedistinguish
between three cases.

– Case ¬(e1 ≤ � n+1
2 	 ≤ e2) and e1 + e2 ≤ n:

Subcase e1 > � n+1
2 	: e2 ≤ n − e1 < n − � n+1

2 	 ≤ � n+1
2 	.

Subcase e2 < � n+1
2 	 ∧ e1 ≤ � n+1

2 	: Proposition 3(3, 4) implies in the case n is
even that e2 ≤ n

2 − 1∧ e1 = n
2 and in the case n is odd that e2 ≤ n−1

2 ∧ e1 = n+1
2 .

Thus e2 ≤ � n+1
2 	 ≤ e1. It follows that (e2, e1) ∈ E�

w and thus (e1, e2) ∈ Ẽ�
w.

– Case e1 ≤ � n+1
2 	 ≤ e2 and e1 + e2 > n:

Subcase n is even: e1 ≤ n
2 ≤ e2, so n − e2 ≤ n − n

2 = � n+1
2 	 ≤ n − e1.

Subcase n is odd: e1 ≤ n+1
2 ≤ e2 and therefore n − e2 ≤ n − n+1

2 = n−1
2 . As

e2 ≥ n+1
2 , Proposition 3(4) implies e1 ≤ n

2 , and as n is odd, e1 ≤ n−1
2 .

Thus n − e2 ≤ � n+1
2 	 ≤ n − e1. It follows that (n − e2, n − e1) ∈ E�

w. So
(n−e1, n−e2) ∈ Ẽ�

w and thus (e1, e2) = (n, n)− (n−e1, n−e2) ∈ (n, n)− Ẽ�
w.

– Case ¬(e1 ≤ � n+1
2 	 ≤ e2) and e1 + e2 > n:

Subcase e1 > � n+1
2 	: now n − e1 < n − � n+1

2 	 = � n
2 	. By Proposition 3(4),

e2 ≤ n
2 and so n − e2 ≥ n

2 . As n − e2 is an integer, we have n − e2 ≥ � n+1
2 	.

Subcase e2 < � n+1
2 	: n − e2 > n − � n+1

2 	 = � n
2 	. So n − e2 ≥ � n+2

2 	. Also
n − e1 < e2 < � n+1

2 	.
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Thus n − e1 ≤ � n+1
2 	 ≤ n − e2. It follows that (n − e1, n − e2) ∈ E�

w. Thus
(e1, e2) = (n, n) − (n − e1, n − e2) ∈ (n, n) − E�

w. 
�

As Proposition 1(4) shows, Theorem 1 does not hold if w = 1 and n is odd.

4 Main result

Having Theorem 1, we can state the main theorem; for its proof see the next section.
In order to state the theorem it is convenient to introduce some objects: the function
w : R+ ∪ {+∞} → R is defined by

wx := 2−1/x (x ∈ R+ \ {0}), w0 := 0, w∞ := 1.

Note that w is strictly increasing. Given n, for an integer k ≥ 0, put

ak := (p − k, p + k), b−
k := (p − k − 1, p + k), b+

k := (p − k, p + k + 1).

The next theorem presents the contents of the sets E�
w. Together with Theorem 1

this provides all Nash equilibrium sets in the case w �= 1 or n is even; for the case
where w = 1 and n is odd see Proposition 1(4).

Theorem 2 For each positive integer n and for every w ∈ ]0, 1] the Hotelling bi-
matrix game has a Nash equilibrium. Even:

I. Suppose n is even.
(a) w ∈ ]wp−2k, wp−2k+1 [ with k ≥ 1 s.t. p − 2k ≥ 0: E�

w = {ak}.
(b) w ∈ ]wp−2k−1, wp−2k [ with k ≥ 0 s.t. p − 2k − 1 ≥ 0: E�

w = {b−
k }.

(c) w = wp−2k−1 with k ≥ 0 s.t. p − 2k − 1 > 0: E�
w = {b−

k , ak+1}.
(d) w = wp−2k with k ≥ 0 s.t. p − 2k > 0: E�

w = {b−
k , ak}.

(e) w ∈ ]wp, w∞]: E�
w = {a0}.

II. Suppose n is odd.
(a) w ∈ ]wp−2k−1, wp−2k+1 [ \ {wp−2k} with k ≥ 1 s.t. p − 2k + 1 > 0: E�

w =
{b+

k }.
(b) w = wp−2k with k ≥ 1 s.t. p − 2k > 0: E�

w = {b−
k , b+

k }.
(c) w = wp−2k+1 with k ≥ 1 s.t. p − 2k + 1 > 0: E�

w = {ak, b+
k−1, b+

k }.
(d) w ∈ ]wp−1, w∞ [ with p − 1 > 0: E�

w = {b+
0 }.

(e) w = w∞: E�
w = {b+

0 }.

Remark: always w > 0. In particular this holds in Theorem 2(IIa) (in case p = 2k)
and in for example Lemma 4(1) below (in case p = 1).
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5 Proof of Theorem 2

5.1 First-order conditions and their consequences

For x1, x2 ∈ H with 0 < x1 < n, we have the following first-order condition:

x1 ∈ R(x2) ⇒ � f (x2)
1 (x1 + 1) ≤ 0 ≤ � f (x2)

1 (x1). (8)

Indeed: as x1 ∈ R(x2) = R1(x2), we have� f (x2)
1 (x1) = f (x2)

1 (x1)− f (x2)
1 (x1−1) ≥ 0

and � f (x2)
1 (x1 + 1) = f (x2)

1 (x1 + 1) − f (x2)
1 (x1) ≤ 0.

Proposition 4 Suppose x2 ∈ H. If n ≥ 3, then R(x2) ⊆ {1, . . . , n − 1}.
Proof For w = 1, apply Proposition 1. Suppose w �= 1. Suppose 0 ∈ R(x2). Propo-
sition 3(2) applies and implies x2 ≥ n

2 . As n ≥ 3, we obtain 0 < 1 < x2 ≤ n. As

x2 ≥ 2 we have q1;x2(w) = w1 − 1
2w

� x2
2 	 > w − w� x2

2 	 ≥ 0. So, by Proposition 2,

0 < q1;x2(w) = � f (x2)
1 (1) = f (x2)

1 (1) − f (x2)
1 (0), which is a contradiction with

0 ∈ R(x2). Thus 0 /∈ R(x2). (3) implies n /∈ R(x2). 
�
So if n ≥ 3, then we see with (8) and Proposition 4 that for (x1, x2) ∈ Ew we have

� f (x2)
1 (x1) ≥ 0 ≥ � f (x2)

1 (x1 + 1) and � f (x1)
1 (x2) ≥ 0 ≥ � f (x1)

1 (x2 + 1).

Theorem 3 For each positive integer n, w ∈ ]0, 1] and (e1, e2) ∈ Ew we have
e1 + e2 ∈ {n − 2, n − 1, n, n + 1, n + 2}. Even:
(1) if n is even and e2 − e1 is even, then e1 + e2 = n;
(2) if n is even and e2 − e1 is odd, then e1 + e2 ∈ {n − 1, n + 1};
(3) if n is odd and e2 − e1 is even, then e1 + e2 ∈ {n − 1, n + 1};
(4) if n is odd and e2 − e1 is odd, then e1 + e2 ∈ {n − 2, n, n + 2}.
Proof Forn = 1, the statements are almost trivial. Example 1 shows that the statements
also hold for n = 2. For w = 1 the statements hold by Proposition 1. Further suppose
n ≥ 3 and w �= 1. It is sufficient to prove the statements for (e1, e2) ∈ E�

w. So fix
(e1, e2) ∈ E�

w.
If e2 = e1, then, by Proposition 3(5), n is even and e1 = e2 = n

2 ; so then the
statements hold. Now further suppose e1 �= e2. This implies e1 < e2. By Proposition 4,
e1 > 0 and e2 < n. We distinguish between two cases.

– Case e2−e1 = 1: if e1 = � n+1
2 	, then e1+e2 = 2� n+1

2 	+1 and so the statements
hold. Now suppose e1 < � n+1

2 	. This implies e1 < n
2 . Proposition 3(4) implies

e2 ≥ n
2 and it follows that (e1, e2) = ( n2 − 1, n

2 ) if n is even and (e1, e2) =
( n−1

2 , n+1
2 ) if n is odd. So again the statements hold.

– Case e2 − e1 ≥ 2: (8) implies

� f (e2)
1 (e1 + 1) ≤ 0 ≤ � f (e2)

1 (e1) ∧ � f (e1)
1 (e2 + 1) ≤ 0 ≤ � f (e1)

1 (e2).

Subcase e2 − e1 is even: Lemma 8(1) gives

w
2n−3e2+e1

2 ≥ 1

2
≥ w

3e1−e2+2
2 and w

3e1−e2
2 ≥ 1

2
≥ w

2n−3e2+e1+2
2 .
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The Hotelling bi-matrix game 195

Asw �= 1, this implies 2n−3e2+e1 ≤ 3e1−e2+2 and 3e1−e2 ≤ 2n−3e2+e1+2.
From this, n − 1 ≤ e1 + e2 ≤ n + 1. Thus e1 + e2 ∈ {n − 1, n, n + 1}.
Subcase e2 − e1 is odd: Lemma 8(2) gives

w
2n−3x2+x1−1

2 ≥ 1

2
≥ w

3x1−x2+3
2 and w

3x1−x2−1
2 ≥ 1

2
≥ w

2n−3x2+x1+3
2 .

This finally implies e1 + e2 ∈ {n − 2, n − 1, n, n + 1, n + 2}. Having the above
results, the other desired results also follow. 
�

5.2 Demi-modality

In this subsection we identify situations where the first-order conditions (8) also are
sufficient.

Lemma 1 Suppose i,m ∈ H with 0 < i < m.

(1) If qi;m(w) ≤ 0, then qk;m(w) < 0 for i < k < m.
(2) If qi;m(w) ≥ 0, then ql;m(w) > 0 for 0 < l < i .

Proof 1. As i < k, we have i ≤ k−1 and therefore−(3i−2k)−(−k) = −3(i−k) ≥
3. This implies �m−(3i−2k)+1

2 	 > �m−k+1
2 	. Note thatw �= 1 andwi ≤ 1

2w
�m−i+1

2 	.
Now wk = wiwk−i ≤ 1

2w
�m−i+1

2 	+k−i = 1
2w

�m−(3i−2k)+1
2 	 < 1

2w
�m−k+1

2 	. Thus
qk;m(w) > 0.

2. This follows from part 1.

�

Proposition 5 Suppose x1, x2 ∈ H with 0 < x1 < x2.

(1) If � f (x2)
1 (x1) ≥ 0, then � f (x2)

1 ( j) > 0 (1 ≤ j ≤ x1 − 1).

(2) If � f (x2)
1 (x1) ≤ 0, then � f (x2)

1 ( j) < 0 (x1 + 1 ≤ j ≤ x2 − 1).

Proof Apply Proposition 2 and Lemma 1. 
�
Now we are ready to prove the next theorem which gives necessary and sufficient

conditions for various (x1, x2) ∈ H� to be an equilibrium. For its proof, we first study
demi-modality properties of the conditional payoff functions; this will be done by
using Propositions 3 and 5.

We call a function g : H → R demi-modal if there exists r ∈ H such that
g � {0, . . . , r} is increasing and g(x) < g(r) (r < x ≤ n).

Lemma 2 1. Fix x2 ∈ H with x2 > n
2 . If there exists x1 ∈ H with 0 < x1 < x2

such that � f (x2)
1 (x1 + 1) ≤ 0 ≤ � f (x2)

1 (x1), then f (x2)
1 is demi-modal and x1 is

a maximizer of f (x2)
1 .

2. Fix x1 ∈ H with x1 < n
2 . If there exists x2 ∈ H with x1 < x2 < n such that

� f (x1)
1 (x2+1) ≤ 0 ≤ � f (x1)

1 (x2), then f (x1)
1 is demi-modal and x2 is amaximizer

of f (x1)
1 .
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Proof 1. By Proposition 5(1), � f (x2)
1 ( j) > 0 (1 ≤ j ≤ x1 − 1). Together with

� f (x2)
1 (x1) ≥ 0 this implies that f (x2)

1 � {0, . . . , x1} is increasing. So x1 is a

maximiser of f (x2)
1 � {0, . . . , x1}. We distinguish between two cases.

– Case where x1 = x2 − 1:
Subcase w = 1 and n is odd: as x2 ≥ p + 1, Proposition 1(2) implies that
each maximizer of f (x2)

1 is in {x1, x1 + 1}. If f (x2)
1 (x1 + 1) < f (x2)

1 (x1), then

f (x2)
1 (x) < f (x2)

1 (x1) (x1 < x ≤ n) and thus x1 is a maximiser of f (x2)
1 and

f (x2)
1 is demi-modal. If f (x2)

1 (x1+1) = f (x2)
1 (x1), then f (x2)

1 � {0, . . . , x1+1}
is increasing and f (x2)

1 (x) < f (x2)
1 (x1 + 1) (x2 < x ≤ n); also now x1 is a

maximiser of f (x2)
1 and f (x2)

1 is demi-modal.
Subcase w �= 1 or n is even: as x2 > n

2 , we know by Proposition 3(1) that

each maximizer of f (x2)
1 is in {0, . . . , x1}. This implies that x1 is a maximiser

of f (x2)
1 and that f (x2)

1 is demi-modal.

– Case where x1 ≤ x2 − 2: by Proposition 5(2), � f (x2)
1 ( j) < 0 (x1 + 2 ≤

j ≤ x2 − 1). Together with � f (x2)
1 (x1 + 1) ≤ 0 this implies that f (x2)

1 �
{x1, . . . , x2 − 1} is decreasing and that f (x2)

1 � {x1 + 1, . . . , x2 − 1} is strictly
decreasing. Thus x1 is even a maximizer of f (x2)

1 � {0, 1, . . . , x2 − 1}.
Subcase w = 1 and n is odd: as x2 ≥ p + 1, Proposition 1(2) implies that
each maximizer of f (x2)

1 is in {x2 − 1, x2}. As f (x2)
1 has a maximizer and

f (x2)
1 (x2 −1) = x2 ≥ p+1 = f (x2)

1 (x2), it follows that x2 −1 is a maximizer

of f (x2)
1 . As f (x2)

1 (x1) ≥ f (x2)
1 (x2 − 1), also x1 is a maximizer of f (x2)

1 . It
follows that x1 = x2 − 1 or x1 = x2 − 2. As x1 ∈ {x2 − 1, x2}, x1 = x2 − 1
holds. As this is a contradiction, this subcase cannot occur.
Subcase w �= 1 or n is even: as x2 > n

2 , we know by Proposition 3(1) that

each maximizer of f (x2)
1 is in {0, . . . , x2 − 1}. As f (x2)

1 has a maximizer and

we already know that x1 is a maximiser of f (x2)
1 � {0, . . . , x2 − 1}, it follows

that x1 is a maximizer of f (x2)
1 . If f (x2)

1 (x1 + 1) < f (x2)
1 (x1), then f (x2)

1 (x) <

f (x2)
1 (x1) (x1 < x ≤ n) and thus f (x2)

1 is demi-modal. If f (x2)
1 (x1 + 1) =

f (x2)
1 (x1), then x1 + 1 also is a maximizer of f (x2)

1 , f (x2)
1 � {0, . . . , x1 + 1} is

increasing and f (x2)
1 (x) < f (x2)

1 (x1 + 1) (x1 + 1 < x ≤ n); also now f (x2)
1 is

demi-modal.
2. Note that 0 < n − x2 < n − x1 and n − x1 > n

2 . By Lemma 7(1), � f (n−x1)
1 (n −

x2 + 1) = −� f (x1)
1 (x2) ≤ 0 ≤ −� f (x1)

1 (x2 + 1) = � f (n−x1)
1 (n − x2). By part 1,

n − x2 ∈ R(n − x1). Thus, by (3), x2 ∈ R(x1). 
�
Theorem 4 For each positive integer n, w ∈ ]0, 1] and (x1, x2) ∈ H × H with
0 < x1 < n

2 < x2 < n the following two statements are equivalent:

(a) (x1, x2) ∈ Ew;
(b) � f (x2)

1 (x1) ≥ 0 ≥ � f (x2)
1 (x1 + 1) and � f (x1)

1 (x2) ≥ 0 ≥ � f (x1)
1 (x2 + 1).

Proof Note (x1, x2) ∈ Ew ⇔ x1 ∈ R(x2) ∧ x2 ∈ R(x1). By (8), a implies b. And b
implies a by Lemma 2. 
�
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5.3 Analysing the inequalities in Theorem 4(b)

Lemma 3 Suppose x1, x2 ∈ H with 0 < x1 < n
2 < x2 < n and x2 − x1 ≥ 2.

1. Suppose n is even.
(a) If x1 + x2 = n − 1, then (x1, x2) ∈ Ew ⇔ w2+2x1−p ≤ 1

2 ≤ w1+2x1−p.
(b) If x1 + x2 = n, then (x1, x2) ∈ Ew ⇔ w1+2x1−p ≤ 1

2 ≤ w2x1−p.
2. Suppose n is odd.

(a) If x1 + x2 = n − 2, then (x1, x2) ∈ Ew ⇔ w2x1+2−p = 1
2 .

(b) If x1 + x2 = n − 1, then (x1, x2) ∈ Ew ⇔ w2x1+1−p = 1
2 .

(c) If x1 + x2 = n, then (x1, x2) ∈ Ew ⇔ w2x1+1−p ≤ 1
2 ≤ w2x1−1−p.

Proof 1a. Now x2 − x1 is odd. By Theorem 4 and Lemma 8(2), (x1, x2) ∈ Ew if and
only if

w
3x1−x2+3

2 ≤ 1

2
∧ w

3x1−x2−1
2 ≥ 1

2
∧ w

2n−3x2+x1−1
2 ≥ 1

2
∧ w

2n−3x2+x1+3
2 ≤ 1

2
.

As x1 + x2 = n − 1, this is equivalent to

w
4+4x1−n

2 ≤ 1

2
∧ w

4x1−n
2 ≥ 1

2
∧ w

2+4x1−n
2 ≥ 1

2
∧ w

6+4x1−n
2 ≤ 1

2
,

so to, as desired, w
4+4x1−n

2 ≤ 1
2 ≤ w

2+4x1−n
2 .

1b, 2a–2c. Analogous to 1a. 
�

Lemma 4 Suppose n is even.

1. w ∈ ]wp−2, wp [ ⇒ R(p) = {p − 1, p + 1}.
2. w = wp ⇒ R(p) = {p − 1, p, p + 1}.

Proof Example 1 shows that the statements hold if p = 1. Now further suppose
p ≥ 2 and w ∈ ]wp−2, wp]. By Lemma 9(1a), � f (p)

1 (p) = −� f (p)
1 (p+1) ≤ 0, and

� f (p)
1 (p) = 0 ⇔ w = wp. By Lemma 9(1b), � f (p)

1 (p − 1) = w(w p−2 − 1
2 ) > 0.

Proposition 5(1) implies � f (p)
1 ( j) > 0 (1 ≤ j ≤ p − 1). As, by Lemma 7(1),

� f (p)
1 (p + k) = −� f (p)

1 (p − k + 1) (1 − p ≤ k ≤ p), we have � f (p)
1 (p + 1) ≥ 0

and � f (p)
1 ( j) < 0 (p + 2 ≤ j ≤ n). So the desired results follow. 
�

Remark Theorem 3 directly implies that in part 1 of the next lemma for (x1, x2) ∈ E�
w

precisely one of the 4 cases ai, bi, ci, di holds. It is easy to see that the same also holds
for part 2; here for example x1 + x2 = n∧ x2 − x1 = n−2 is impossible as this would
imply that (x1, x2) /∈ E�

w.
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Lemma 5 In each of the 8 cases below, the statements i and ii are equivalent.

1. Suppose n is even and (x1, x2) ∈ H × H.
(a) i. (x1, x2) ∈ E�

w ∧ x2 − x1 ≥ 2 ∧ x1 + x2 = n − 1.
ii. There exists an integer k ≥ 1 with p − 2k − 1 ≥ 0 such that (x1, x2) =

(p − k − 1, p + k) and w ∈ [wp−2k−1, wp−2k].
(b) i. (x1, x2) ∈ E�

w ∧ x2 − x1 ≥ 2 ∧ x1 + x2 = n.
ii. There exists an integer k ≥ 1 with p − 2k ≥ 0 such that (x1, x2) =

(p − k, p + k) and w ∈ [wp−2k, wp−2k+1].
(c) i. (x1, x2) ∈ E�

w ∧ x2 − x1 = 1.
ii. (x1, x2) = (p − 1, p) and w ∈ [wp−1, wp].

(d) i. (x1, x2) ∈ E�
w ∧ x2 − x1 = 0.

ii. (x1, x2) = (p, p) and w ∈ [wp, 1].
2. Suppose n is odd and (x1, x2) ∈ H × H.

(a) i. (x1, x2) ∈ E�
w ∧ x2 − x1 ≥ 2 ∧ x1 + x2 = n − 2.

ii. There exists an integer k ≥ 1 with p − 2k > 0 such that (x1, x2) =
(p − k − 1, p + k) and w = wp−2k .

(b) i. (x1, x2) ∈ E�
w ∧ x2 − x1 ≥ 2 ∧ x1 + x2 = n − 1.

ii. There exists an integer k ≥ 1 with p − 2k + 1 > 0 such that (x1, x2) =
(p − k, p + k) and w = wp−2k+1.

(c) i. (x1, x2) ∈ E�
w ∧ x2 − x1 ≥ 2 ∧ x1 + x2 = n.

ii. There exists an integer k ≥ 1 with p − 2k + 1 > 0 such that (x1, x2) =
(p − k, p + k + 1) and w ∈ [wp−2k−1, wp−2k+1].

(d) i. (x1, x2) ∈ E�
w ∧ x2 − x1 = 1 ∧ x1 + x2 = n.

ii. (x1, x2) = (p, p + 1) and w ∈ [wp−1, 1].
Proof 1a. ‘i ⇒ i i’: as also x1 ≤ p ≤ x2, it follows that x1 < p − 1 and p < x2

and n ≥ 4. Proposition 4 implies 0 < x1 and x2 < n. Let k ≥ 1 be the unique
integer such that (x1, x2) = (p − k − 1, p + k). By Lemma 3(1a), w p−2k ≤ 1

2 ≤
w p−2k−1. This implies p − 2k > 0; so p − 2k − 1 ≥ 0. This in turn implies
w ∈ [wp−2k−1, wp−2k].
‘i i ⇒ i’: the proof is complete if we can show that (x1, x2) ∈ Ew. Well, as
w p−2k ≤ 1

2 ≤ w p−2k−1, this follows from Lemma 3(1a).
1b. Analogous to 1a.
1c. ‘i ⇒ i i’: Theorem 3(2) implies x1 + x2 = n − 1. With this it is clear that

(x1, x2) = (p − 1, p). If p = 1, then Example 1 shows that w ∈ [w0, w1]. Now
further suppose p ≥ 2. As p − 1 ∈ R(p) and p ∈ R(p − 1), (8) implies

� f (p)
1 (p − 1) ≥ 0 ≥ � f (p)

1 (p) ∧ � f (p−1)
1 (p) ≥ 0 ≥ � f (p−1)

1 (p + 1).

which by Lemma 9(1a–1d) is equivalent to

w p−1 − w

2
≥ 0 ≥ w p − 1

2
∧ −w p+1 + 1

2
≥ 0 ≥ −w p + 1

2
w.

Finally, this is equivalent to w ∈ [wp−1, wp].
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‘i i ⇒ i’: the proof is complete if we can show that p−1 ∈ R(p) and p ∈ R(p−1).
Well, Lemma 4(1,2) implies p−1 ∈ R(p). As (see the above) � f (p−1)

1 (p+1) ≤
0 ≤ � f (p−1)

1 (p), Lemma 2(2) implies p ∈ R(p − 1).
1d. ‘i ⇒ i i’: Theorem 3(1) implies x1 + x2 = n. With this it is clear that (x1, x2) =

(p, p). If p = 1, then Example 1 shows that w ∈ [wp, 1]. Now further suppose

p ≥ 2. As p ∈ R(p), (8) implies � f (p)
1 (p) ≥ 0 ≥ � f (p)

1 (p + 1) which by
Lemma 9(1a) is equivalent to w p − 1

2 ≥ 0 ≥ 1
2 − w p, so to w ∈ [wp, 1].

‘i i ⇒ i’: the proof is complete if we can show that (p, p) ∈ Ew. As � f (p)
1 (p) ≥

0 and � f (p)
1 (p + 1) = 1

2 − w p ≤ 0, Lemma 2(2) implies p ∈ R(p).
2a. ‘i ⇒ i i’: so p ≥ 1 and therefore n ≥ 3. As x1 ≤ p + 1 ≤ x2, it follows that

x1 ≤ p − 2. Proposition 4 implies 0 < x1 and x2 < n. Let k ≥ 1 be the unique
integer such that (x1, x2) = (p − k − 1, p + k). By Lemma 3(2a), w p−2k = 1

2 .
This implies p − 2k > 0; so p − 2k ≥ 1 and w = wp−2k .
‘i i ⇒ i’: the proof is complete if we can show that (x1, x2) ∈ Ew. Well, as
w = wp−2k , this follows from Lemma 3(2a).

2b, 2c. Analogous to 2a.
2d. ‘i ⇒ i i’: (x1, x2) = (p, p + 1). So if n = 1, then the proof is complete. Now

suppose n ≥ 3, so p ≥ 1. As p ∈ R(p + 1) and p + 1 ∈ R(p), (8) implies

� f (p+1)
1 (p) ≥ 0 ≥ � f (p+1)

1 (p+1) ∧ � f (p)
1 (p+1) ≥ 0 ≥ � f (p)

1 (p+2). (9)

With Lemma 9(2a,2b) these inequalities are equivalent to

w(w p−1 − 1

2
) ≥ 0 ≥ 1

2
(w p+1 − 1) ∧ − 1

2
(w p+1 − 1) ≥ 0 ≥ −w

(
w p−1 − 1

2

)
.

So to w p−1 ≥ 1
2 and thus to w ∈ [wp−1, 1].

‘i i ⇒ i’: this statement holds if w = 1 or n = 1. Now further suppose w < 1 and
n ≥ 3. The proof is complete if we can show that p ∈ R(p+1) and p+1 ∈ R(p).
Well, this follows by Lemma 2(1, 2) as by the above, (9) holds. 
�
Finally, we are ready for the proof of Theorem 2:
I. ‘⊇:’ this is as follows implied by Lemma 5(1).
Ia by part b.
Ib for k ≥ 1 by part a; Ib for k = 0 by part c.
Ic for k ≥ 1 by parts a and b; Ic for k = 0 by parts b and c.
Id for k ≥ 1 by parts a and b; Id for k = 0 by parts c and d.
Ie by part d.
‘⊆’: suppose (e1, e2) ∈ E�

w. The remark before Lemma 5(1) states that exactly one
of the four cases a,b,c,d in Lemma 5(1) holds. The desired results follow. Indeed:

Ia by part b.
Ib for k ≥ 1 by part a; Ib for k = 0 by part c.
Ic for k ≥ 1 by parts a and b; Ic for k = 0 by parts b and c.
Id for k ≥ 1 by parts a and b; Id for k = 0 by parts c and d.
Ie by part d.
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II. ‘⊇:’ this is as follows implied by Lemma 5(2).
IIa by part c.
IIb by part a.
IIc with k ≥ 2: by part b for ak , by part c for b

+
k and b+

k−1. IIc with k = 1: by part
b for ak , by part c for b

+
k and by part d for b+

k−1.
IId by part d.
IIe. By Proposition 1
II. ‘⊆:’ suppose (e1, e2) ∈ E�

w. The remark before Lemma 5(1) states that exactly
one of the four cases a,b,c,d in Lemma 5(2) holds. The desired results follow. Indeed:

IIa by part c.
IIb by parts a and c.
IIc with k ≥ 2: by part b for ak , by part c for b

+
k and b+

k−1. IIc with k = 1: by part
b for ak , by part c for b

+
k and by part d for b+

k−1.
IId by part d.
IIe by Proposition 1. 
�

6 Concluding remarks

We determined in a somewhat lengthy analysis (since we had to distinguish between
many cases) for all values of the parameters n and w the pure Nash equilibrium set of
the Hotelling bi-matrix game. This set is non-empty.

In the case n = 2p + 1 is odd, there exists a symmetric equilibrium only in the
case w = 1; in this case the symmetric equilibria are (p, p) and (p + 1, p + 1). In
the case n = 2p is even, a symmetric equilibrium exists if and only if w ≥ 2−1/p; in
this case (p, p) is the unique symmetric equilibrium.

It remains to be seen whether a much simpler proof exists of the non-emptiness
of the equilibrium set. We know there are three classes of finite games in strategic
form that have a pure Nash equilibrium: potential games, supermodular games, and
the recently discovered symmetric games with integrally concave payoffs ([6]). Our
results show that the equilibrium set in general has neither a greatest element nor a
smallest element. This property suggests that the theory of supermodular games does
not apply to our game. Also our results show that there exist equilibria (e1, e2) with
|e2 − e2| ≥ 2. (For example for n = 7 and w = 1/2, Theorems 1(IIb) and 2 give
Ew = {(1, 4), (2, 5), (3, 6), (4, 1), (5, 2), (6, 3)}.) This means that we cannot rely on
the results in [6] for games with integrally concave payoff functions. We do not know
whether the Hotelling bi-matrix game is a potential game.

As there are two players and the game is symmetric, equilibrium existence is equiv-
alent to the statement that the correspondence R2, i.e. the composition R ◦ R, has a
fixed point. After analyzing many cases (with MAPLE) we conjecture that the deeper
reason for R2 to have a fixed point is: R2 has an increasing singleton-valued selection.
Indeed, if this conjecture is true, then Tarski’s fixed point theorem implies that R2 has
a fixed point.

The corresponding continuous version of the game is not so difficult to handle. Yet,
as [5] shows (where the mixed Nash equilibria of the Hotelling tri-matrix game with
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w = 1 are studied), results for the continuous and discrete Hotelling games may be
quite incompatible.

The Hotelling bi-matrix game is also well-defined for w > 1. We assumed w ≤ 1
merely because this was also done in [1]. We think that our analysis can be adapted
such that it holds for any value of w > 0.

Acknowledgements The article benefited from the comments of two anonymous referees and from a
discussion Pierre von Mouche had with Takahiro Watanabe and Takuya Iimura.

7 Calculations

Lemma 6 1. Suppose w �= 1.
(a) If x ≥ 1, then f (x)

1 (x − 1) = 1−wx

1−w
and f (x−1)

1 (x) = 1−wn−x+1

1−w
.

If x ≥ 0, then f (x)
1 (x) = 1+w−wx+1−wn−x+1

2(1−w)
.

(b) If x ≥ 1, then � f (x)
1 (x) = −1+w+2wx−wx+1−wn−x+1

2(1−w)
.

2. (a) If w �= 1 and n
2 < x ≤ n, then � f (x)

1 (x) < 0.

(b) If w = 1, then � f (x)
1 (x) = n+1

2 − x.

(c) If w �= 1 and x ≥ 1, then � f (x−1)
1 (x) = 1−w+wx+wn−x+2−2wn−x+1

2(1−w)
.

3. If n
2 < x < n, then f (x)

1 (x + s) − f (x)
1 (x − s) < 0 (1 ≤ s ≤ n − x).

Proof 1a. Apply the formula for f1 in Sect. 2.
1b. By part 1a.
2a. Use part 1b and, using w ∈ ]0, 1 [ and x > n

2 , note that 1− w − 2wx + wx+1 +
wn−x+1 > 1−w−2wx +wx+1 +w

n
2+1 = (w

n
2+1 −wx )+ (1−wx )(1−w) >

0 + 0 = 0.
2b. As by the formula for f1 we have� f (x)

1 (x) = f1(x, x)− f1(x−1, x) = n+1
2 −x .

2c. A direct consequence of part 1a.
3. The locations that contribute to f (x)

1 (x + s) are those in V+ := {x +
� s+1

2 	, . . . , x + s − 1, x + s, x + s + 1, . . . , n}. The locations that contribute to
f (x)
2 (x − s) are those in V− := V−+ ∪ V−− where V−+ = {x − � s+1

2 	, . . . , x −
s+1, x − s, x − s−1, . . . , n−2� s+1

2 	} and V−− = {n−2� s+1
2 	−1, . . . , 1, 0}.

The contribution of V+ to f (x)
1 (x + s) is the same as that of V−+ to f (x)

1 (x − s).
As V−− �= ∅ the desired result follows. 
�

Lemma 7 1. If x1, x2 ∈ H with x2 ≥ 1, then� f (x1)
1 (x2) = −� f (n−x1)

1 (n− x2+1).

2. If x1, x2 ∈ H with x2 − x1 ≥ 2, then � f (x1)
1 (x2) = −qn−x2+1;n−x1(w).

Proof 1. � f (x1)
1 (x2) = f1(x2, x1) − f1(x2 − 1, x1) = f1(n − x2, n − x1) − f1(n −

x2 + 1, n − x1) = −� f (n−x1)
1 (n − x2 + 1).

2. By part 1, � f (x1)
1 (x2) = −� f (n−x1)

1 (n − x2 + 1). As n − x2 + 1 < n − x1, we

obtain � f (x1)
1 (x2) = −qn−x2+1;n−x1(w). 
�

Lemma 8 Consider (x1, x2) ∈ H × H with 0 < x1 < x2 < n and x2 − x1 ≥ 2.
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1. Suppose x2 − x1 is even.

(a) 0 ≥ � f (x2)
1 (x1 + 1) ⇔ w

3x1−x2+2
2 ≤ 1

2 ;

(b) � f (x2)
1 (x1) ≥ 0 ⇔ w

3x1−x2
2 ≥ 1

2 ;

(c) 0 ≥ � f (x1)
1 (x2 + 1) ⇔ w

2n−3x2+x1
2 ≥ 1

2 ;

(d) � f (x1)
1 (x2) ≥ 0 ⇔ w

2n−3x2+x1+2
2 ≤ 1

2 .
2. Suppose x2 − x1 is odd.

(a) 0 ≥ � f (x2)
1 (x1 + 1) ⇔ w

3x1−x2+3
2 ≤ 1

2 ;

(b) � f (x2)
1 (x1) ≥ 0 ⇔ w

3x1−x2−1
2 ≥ 1

2 ;

(c) 0 ≥ � f (x1)
1 (x2 + 1) ⇔ w

2n−3x2+x1−1
2 ≥ 1

2 ;

(d) � f (x1)
1 (x2) ≥ 0 ⇔ w

2n−3x2+x1+3
2 ≤ 1

2 .

Proof Proposition 2, (4) and Lemma 7(2) imply � f (x2)
1 (x1 + 1) ≤ 0 ⇔ wx1+1 ≤

1
2w

� x2−x1
2 	; 0 ≤ � f (x2)

1 (x1) ⇔ wx1 ≥ 1
2w

� x2−x1+1
2 	;� f (x1)

1 (x2 + 1) ≤ 0 ⇔
wn−x2 ≥ 1

2w
� x2−x1+1

2 	; 0 ≤ � f (x1)
1 (x2) ⇔ wn−x2+1 ≤ 1

2w
� x2−x1

2 	. This leads to the
desired results. 
�
Lemma 9 1. Suppose n is even.

(a) � f (p)
1 (p) = −� f (p)

1 (p + 1) = w p − 1
2 .

(b) If p ≥ 2, then � f (p)
1 (p − 1) = −� f (p)

1 (p + 2) = w(w p−2 − 1
2 ).

(c) � f (p+1)
1 (p) = −� f (p−1)

1 (p + 1) = w p − w
2 .

(d) � f (p−1)
1 (p) = −� f (p+1)

1 (p + 1) = −w p+1 + 1
2 .

2. Suppose n is odd.
(a) If p ≥ 1, then � f (p+1)

1 (p) = −� f (p)
1 (p + 2) = w(w p−1 − 1

2 ).

(b) � f (p+1)
1 (p + 1) = −� f (p)

1 (p + 1) = w p+1−1
2 .

Proof It is sufficient to prove the statements for w �= 1. Well, use Proposition 2 and
Lemmas 6(1b) and 7. 
�
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