
Optim Lett (2016) 10:1493–1504
DOI 10.1007/s11590-015-0952-x

ORIGINAL PAPER

Searching for a cycle with maximum coverage
in undirected graphs

Andrea Grosso1 · Fabio Salassa2 ·
Wim Vancroonenburg3

Received: 16 February 2015 / Accepted: 15 September 2015 / Published online: 3 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract The present contribution considers the problem of identifying a simple
cycle in an undirected graph such that the number of nodes in the cycle or adjacent
to it, is maximum. This problem is denoted as theMaximum Covering Cycle Problem
and it is shown to be NP-complete. We present an iterative procedure that, although it
cannot be shown to be polynomial, yields (in practice) high-quality solutions within
reasonable time on graphs of moderate density.

Keywords Maximum covering cycle · Constraint generation · Integer programming ·
Heuristics

1 Introduction

Consider an undirected graph G = (V, E); a covering cycle is a simple cycle C in
G that covers all the nodes of the graph—a node i ∈ V is said to be covered if it
either lies on C or is adjacent to a node on C . This paper deals with the problem of
finding a simple cycle C∗ that covers the largest number of nodes f (C∗) in the graph

B Andrea Grosso
grosso@di.unito.it

Fabio Salassa
fabio.salassa@polito.it

Wim Vancroonenburg
wim.vancroonenburg@cs.kuleuven.be

1 Dip. di Informatica, Università di Torino, Turin, Italy

2 DAI, Politecnico di Torino, Turin, Italy

3 Department of Computer Science, CODeS & iMinds-ITEC, KU Leuven, Louvain, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-015-0952-x&domain=pdf

1494 A. Grosso et al.

(Maximum Covering Cycle Problem, MCCP). The problem arises in the design of
communication networks when a closed backbone is needed and client nodes must
connect directly to hubs. More generally, applications of such a problem can be found
in situations where a closed line (for gas, water, power) is needed to serve different
utilities that cannot be linked to a tree-based backbone.

To the authors’ knowledge there is no work in the literature dealing with the MCCP
precisely as it is defined here. Nevertheless, the problem of detecting a connected
subset of nodes satisfying some dominance or covering property is not at all new.

In [1] the problem of finding a minimum-size cycle covering all nodes is tackled for
the special case of permutation graphs; the authors denote such a cycle a dominating
cycle. In this work this term is deliberately avoided since it can be confused with a
different graph-theoretic problem. From a computational point of view, one of the
earliest formulations of a problem involving covering by cycles is due to Current
and Schilling [2]. Their paper studies a so-called Covering Salesman Problem (CSP),
where a cycle is required to pass within a certain distance from all nodes in the
graph, and proposes a heuristic solution procedure. The authors of [2] motivated the
problem definition in the context of health-care delivery or transportation systems. The
same authors later investigated a (bicriteria) maximal covering tour problem, where a
minimum-cost tour is drawn among at most p < |V | nodes in order to cover as much
of a demand specified at the nodes as possible. Gendreau et al. [5] considered a similar
Covering Tour Problem where a tour must go through a given subset of nodes, and
another set of nodes (not allowed to be on the tour) must be covered. They developed
a branch-and-cut approach, possibly the first exact method for this kind of problems.
More recently, Golden et al. [6] introduced a Generalized CSP, where each node can
be required to be covered several times (for example for taking into account vehicle
capacities) and a cost has to be payed for including a node in the cycle. They proposed
and tested local search heuristics.

It should be noted that this paper’s approach to the MCCP is essentially computa-
tional; in contrast, a fair number of papers concerned with similar problems deliver
mostly graph-theoretical studies. Related problems that aim to identify dominating
or covering node sets exhibiting connectivity properties have already been studied
by Lesniak-Foster and Williamson [10], and Veldman [13,14], both giving sufficient
conditions for the existence of spanning and dominating circuits. For the problem of
determining a (minimum-size) connected dominating set, a naive enumeration scheme
can solve it in time O(2n). Approximation algorithms—although with non constant
ratio—are studied by Guha and Khuller [7]. The first exact algorithm with running
time smaller than O(2n) is given by Fomin et al. [4].

The complexity of the problem is easily established (we refer the reader to Fig. 1
for a rough idea of the proof).

Proposition 1 The decision version of MCCP is NP-complete.

In this paper, an ILP based solution procedure is developed that, although exact
in nature can be used to produce high-quality heuristic solutions together with upper
bounds that assess the solution quality (along the trends established by [3]). Compu-
tational experiments with this procedure are presented, showing that for graphs with
small-to-medium density (from 1 up to 50 %) the problem can be solved efficiently.

123

Searching for a cycle with maximum coverage in undirected graphs 1495

1

2

3

4

5

6

1

2

3

4

5

61

2

3

4

5

6

(b)(a)

Fig. 1 Reduction from Hamiltonian Cycle to Maximum Covering Cycle (sketch). In graph b all nodes can
be covered iff graph a admits a Hamiltonian Cycle

The paper is organized as follows. In Sect. 2, an ILP model of the problem is
described that naturally leads to a relaxed formulation. Although still involving inte-
ger variables, the relaxed formulation turns out (experimentally verified) to be easy
to solve to optimality with the optimization software package CPLEX. In Sect. 3, a
so-called Constraint Generation procedure is described in which constraints are iter-
atively added to the relaxed formulation until an optimal solution is found or a given
time limit is exceeded. In order to speed up the procedure, a number of intensification
and diversification techniques are added to this basic approach, which are discussed
in Sect. 4. Finally, to assess the overall performance of the proposed approach, Sect. 5
reports on computational experiments performed on graphs of different sizes and den-
sities.

2 ILP formulation and relaxation

In the following, an ILP formulation of the problemwith binary variables is presented.
Given an undirected graph G = (V, E), let ui be the binary variables indicating if
a node i is covered (ui = 1) or not (otherwise), and let wi be the binary variables
indicating whether the node i is on the cycle or not. Let xi j = 1 if both nodes i and
j are on the cycle, xi j = 0 otherwise. We specify variables xi j for each ordered pair
(i, j) even if the problem is given for undirected graphs. This dummy orientation of
arcs will be useful later on. The model is then as follows:

maximize
∑

i∈V
ui (1)

subject to xi j + x ji ≤ 1 ∀ {i, j} ∈ E (2)
∑

j : {i, j}∈E
x ji =

∑

j : {i, j}∈E
xi j = wi ∀ i ∈ V (3)

wi +
∑

j : {i, j}∈E
w j ≥ ui ∀ i ∈ V (4)

∑

i∈S

∑

j∈V \S
xi j +

∑

j∈S

∑

i∈V \S
xi j ≥ 2(wk + wl − 1)

123

1496 A. Grosso et al.

∀k, l, S : S ⊂ V, 2 ≤ |S| ≤ |V | − 2, k ∈ S, l ∈ V \S (5)

xi j , x ji ∈ {0, 1} ∀ {i, j} ∈ E (6)

wi , ui ∈ {0, 1} ∀ i ∈ V . (7)

Constraints (2) provide an orientation for each edge belonging to the cycle. Con-
straints (3) ensure that exactly two edges are incident to each node of the cycle.
Note that constraints (2) and (3) together force the solution to be a directed cycle.
Constraints (4) enforce the covering property of the nodes belonging the cycle. Con-
straints (5) are subtour elimination constraints (SEC), as formulated in [6].

Given model (1)–(7), a straightforward relaxation of the problem is to exclude all
the subtour elimination constraints (5). Although the remaining model still contains
integer variables, the relaxed problem becomes much easier to solve in practice. The
solution of this relaxation will be a collection of disjoint cycles maximally covering
the graph, for which the coverage also serves as an upper bound on the optimal value
of the original model.

Preliminary tests performed on random instances of various sizes show that CPLEX
12.5 is able to solve the relaxedmodel within 5 s, on average, for 1000 nodes instances.
Increasing the number of nodes makes the relaxation harder to solve but still tractable.
We were unable to solve instances larger than 5000 nodes due to memory limits.

3 Constraint generation approach

We present computational experience with an effective algorithm based on constraint
generation for solving theMCCP.Theoptimal solution of the (integer) relaxed program
(1)–(4), (6) and (7) generally consists of a finite set of disjoint cycles. The main idea
is to iteratively introduce into the model constraints that exclude all disjoint cycles
generated by the relaxation at the previous iteration, and solve again the relaxed model
in order to refine the search. Meanwhile, we keep track of the best found cycle for
future reference. Similar ideas can be found in [9] for example, or more recently in
[12], although on different problems. Such constraints are not valid cuts in the sense
of cutting planes theory, since they can exclude integer feasible solutions from the
feasible set. Nevertheless, the resulting algorithm is provably optimal.

Algorithm 1 presents pseudocode for this approach. Without loss of generality, it is
assumed that the instance is feasible; i.e. the graph contains at least a cycle (the forests
being easily recognizable a priori). Also, from now on we denote by V (C) and E(C)

the set of edges of cycle C .
It should be noted that the algorithm terminates in a finite (although possibly very

large) number of iterations since the statement on line 17 can only be executed a
finite number of times before the problem becomes infeasible, i.e. all cycles have been
excluded. Three exit points are possible for the procedure:

(i) Line 5: the problemhas become infeasible, all possible cycles have been generated
thus the optimal one is C∗.

(ii) Line 7: the calculated bound is worse than the current best known solution thus
certifying optimality of C∗.

123

Searching for a cycle with maximum coverage in undirected graphs 1497

Algorithm 1 Constraint Generation
1: C∗ := null; � C∗ =Best-known cycle
2: while TRUE do
3: Solve the relaxation, get a set of cycles S = {C1,C2, . . . ,Ck };
4: if S = ∅ then
5: STOP; � C∗ is optimal
6: end if
7: if f (S) ≤ f (C∗) then
8: STOP; � C∗ is optimal
9: end if
10: if |S| = 1 then
11: Set C∗ := argmax{ f (C∗), f (C1)};
12: STOP; � C∗ is optimal
13: end if
14: if f (C∗) < max{ f (C) : C ∈ S} then
15: C∗ = argmax{ f (C) : C ∈ S}
16: end if
17: Add to the relaxation the constraints:

∑

i j∈E(Ck)

xi j ≤ |Ck | − 1 for allCk ∈ S.

18: end while

(iii) Line 12: the current problem is optimally solved by C1 so the optimum is either
C1 or the best cycle known at the previous iteration.

The above discussion justifies the following proposition:

Proposition 2 Algorithm1 returns the optimal solution in afinite number of iterations.

The performance of this basic constraint generation algorithm can be further
improved. Two directions of improvement can be followed. On the one hand, it is
worthwhile to increase the size of the set of generated cycles that will be forbidden in
the following iterations; on the other hand it is important to increase the total coverage
of each generated cycle. The latter will speed up recognition of high-quality solutions
to be compared with generated bounds. In order to deal with those two directions,
the heuristic methods described in the following section can be introduced within the
basic framework of Algorithm 1.

4 Improving the pool of cycles

The pool of cycles S used by Algorithm 1 should be as rich and diverse as possible.
Several heuristics can be devised in order to generate additional cycles apart from
those provided by the solution of the relaxed problem. In this section we present four
methods for improving the pool of cycles. Note that these methods can be combined in
various ways; we will discuss in Sect. 5 the effectiveness of the possible combinations.

(a) Local improvement By this we mean, given a cycle C ∈ S, generating a new cycle
with better coverage (or a shorter cycle with an equivalent coverage) by applying small
perturbations, similarly to what would be done in a neighborhood search. We consider
three such operators.

123

1498 A. Grosso et al.

• Greedy Insert Increase (GII) This operator loops over all edges {i, j} ∈ E(C)

such that ∃ k ∈ V \V (C) with {i, k}, { j, k} ∈ E , and inserts node k between i and
j . Considers the insertion giving the highest increase in coverage and returns the
corresponding cycle C ′.

• Greedy Swap Increase (GSI) This operator loops over all consecutive edge pairs
{i, k}, {k, j} ∈ E(C) such that {i, v}, { j, v} ∈ E for some v ∈ V \V (C), and
replaces node k with v in cycle C—i.e. swaps k and v. Determines the swap
giving the highest increase in coverage and returns the corresponding cycle, or C
itself if no swap increases the coverage.

• Decrease Cycle Length (DCL) This operator sequentially loops over all consec-
utive edge pairs {i, j}, { j, k} ∈ E(C) such that {i, k} ∈ E . If {i, j}, { j, k} can
be replaced by {i, k} (“bypassing” node j in the cycle) without decreasing the
coverage, the substitution is performed.

These three operators are applied sequentially to the best cycleC∗ ∈ S i.e. we compute
C ′ = GII(C∗), then C ′′ = GSI(C ′), C ′′′ = DCL(C ′′).

(b) Diversification 1: merging cycles Given a collection of cycles S, consider two
disjoint cycles C ′,C ′′ ∈ S such that C ′ = (A′, i, B ′, j), C ′′ = (A′′, k, B ′′, l) with
{i, k}, { j, l} ∈ E .

i

j

k

l

A B AB

We consider the four cycles obtained from combining C ′ and C ′′ as follows.

C1 = (A′, i, k, A′′, l, j) C3 = (B ′, i, k, B ′′, l, j)
C2 = (A′, i, k, B ′′, l, j) C4 = (B ′, i, k, A′′, l, j)

WecomputeC1,C2,C3,C4 for all pairsC ′,C ′′ ∈ S; the cycle Ĉ with highest coverage
f (Ĉ) will replace in S the two cycles it was generated from. Given the ordered lists
of nodes that make up the two cycles, the resulting C1,C2,C3,C4 can be computed
quickly in O(|V (C ′)| + |V (C ′′)|).

Using the sketched procedure, we have the chance to improve a set of cycles S by
replacing cycles by cycles with better coverage. We call this procedure MergePool.
MergePool is repeated as long as cycles with higher coverage are found.

(c) Diversification by ILP: generating more cycles In addition to merging cycles, we
can use the ILP model to generate more cycles, slightly modifying the relaxed formu-
lation. Consider C∗ = argmax{ f (C) : C ∈ S}. We consider two kinds of modified
relaxations.

123

Searching for a cycle with maximum coverage in undirected graphs 1499

(I) Solve the relaxed model where C∗ is forced to be part of the solution, i.e. solve
the relaxed model with the additional constraint

∑

(i, j)∈C
xi j = |C∗|. (8)

The solution of the relaxed model will in general contain other cycles, different
from C∗, that will be added to S.

(II) Force the relaxed model to find a new set of cycles not containing C∗, by adding
the constraint:

∑

(i, j)∈C∗
(1 − xi j) = K (9)

where K is a constant indicating how many edges of C should not be present in
the new set of cycles.

4.1 Final algorithm

We embed the operators described above in Algorithm 1. They are used to refine the
pool of cycles S delivered by the solution of the relaxed model. The refinement takes
place in two stages.

1. We first repeatedly apply the merge operator to the cycles in S; the new cycles
are added to S and the merge procedure is iterated until no cycles with higher
coverage can be generated. Then we apply the local improvement operator to the
best cycle of the pool C∗ = argmax{ f (C) : C ∈ S}. Finally, we generate more
cycles applying the diversification by ILP, method (I).
This whole stage is repeated until no more cycles with higher coverage emerge.

2. In the second stage, we use diversification by ILP, method (II). We start by the
required distance K = 1 and add the new cycles into S. We repeat the procedure
increasing K by 1 as long as cycles with higher coverage emerge.

The above methods for improving the set of cycles are organized in the pro-
cedure ImprovePool reported in Algorithm 2. In the final algorithm, a call
to ImprovePool(S) is inserted between lines 16 and 17 of Algorithm 1.

5 Computational results and discussion

Firstly, preliminary testing was performed in order to assess the validity of the con-
straint generation approach.

5.1 Multistart algorithm

In order to benchmark the presented approach against a baseline, a multistart heuris-
tic method was also developed, in which the Local Improvement and MergePool
operators can be naturally embedded. The multistart approach works as follows.

123

1500 A. Grosso et al.

Algorithm 2 ImprovePool
Require: a set of cycles S = {C1,C2, . . . ,Ck };
while improved cycles are added to S do

repeat
Apply MergePool to S;

until No more improving cycles are found
C∗ := argmaxC∈S{ f (C)} � Save the best-known
C ′ = GI I (C∗)
C ′′ = GSI (C ′)
C ′′′ = DCL(C ′′)
if f (C ′′′) > f (C∗) then

C∗ := C ′′′;
end if
Add to S more cycles by method (I);

end while
K := 1;
while K ≤ |C∗| − 1 do

Compute S′ the set of cycles generated by method (II);
if maxC∈S′ { f (C)} > f (C∗) then

Set S := S ∪ S′, C∗ := argmaxC∈S′ { f (C)};
break;

else
Set K := K + 1;

end if
end while
return S

We randomly generate cycles from the graphG while building a partial spanning
forest F . Starting from a randomly shuffled list L of the edges of G, set F to an
empty forest and iterate as follows.
1. Extract an edge e from L;
2. Insert e in F ;
3. If F contains a cycle C , delete all edges incident to C from L and F ;

Four different configurations leading to multistart (MS) algorithms, combining the
proposed operators in various ways, are considered.

(MS0) Pure random search. Among the cycles generated by the above steps,
the maximum covering cycle is selected. The search is performed over
100 trials.

(MS1) Multistart plus MergePool. The complete set of cycles generated in a trial
of the above steps is given as input to MergePool. The procedure is run
to update the set of cycles until no further improving merge operations are
possible. The cycle in the pool exhibiting the maximum coverage is returned
as the final heuristic solution. Again, 100 trials of such a search are performed.

(MS2) Multistart Local Improvement. After each trial of random search, the operators
(GII, GSI, DCL) are applied, up to a local optimum.

(MS3) Multistart MergePool + Local Improvement. A combination of (MS1) and
(MS2): the best cycle in the pool is used as a starting solution for the Local
Improvement operators.

123

Searching for a cycle with maximum coverage in undirected graphs 1501

5.2 Constraint generation algorithm

The ILP based constraint generation approach was tested in 6 different configurations:

(ILP0) The basic constraint generation of Algorithm 1.
(ILP1) Algorithm 1 equipped with MergePool for improving the set of generated

cycles.
(ILP2) Algorithm 1 equipped with the Local Improvement operators for improving

the set of generated cycles.
(ILP3) Algorithm 1 equipped with MergePool and diversification operators.
(ILP4) Algorithm 1 equipped with the Local Improvement and diversification meth-

ods.
(ILP5) Algorithm 1 equipped with the full set of operators.

5.3 Numerical results

For this test phase, we used both randomly generated graphs and graphs available
from the literature on the Hamiltonian Cycle problem—such instances are interesting
because they are guaranteed to have at least one optimal solution of value |V | due to the
existence of a Hamiltonian Cycle. For the randomly generated graphs, we generated
graphs with a number of nodes |V | equal to 50, 100, 200, 300 and 500, and density
d (= 2|E |

|V |×(|V |−1)) equal to 1, 2, 5, 10 %. For larger densities, we observed that such
instances quickly become ‘easy’, because even small cycles can cover most of the
nodes. These instances were produced by generating complete graphs of |V | nodes,
and subsequently removing randomly (uniformly) selected edges from the graphs to
meet the required density. For the instances from the literature we used the ‘DLV’
instances for the Hamiltonian Cycle problem from NP-Datalog [8]. Ultimately, this
first dataset is made up of 120 instances.

Table 1 reports aggregated results of all different configurations of both methods.
In column 2 the number of optimal solutions found is reported. Column 3 reports the
average optimality gap ((UB − LB)/UB), which is either calculated as the relative
gap from the optimal solution value (if found) or the best found upper bound (over
all configurations). Column 4 reports the average CPU time; the time limit was set to
600 s for all instances. For all configurations, the different features enabled are also
reported (as ON/OFF entries in columns 5–7).

In general, the overall percentage gap generated by every configuration of the
algorithms is small; the worst case being configuration MS0 with a gap of 2.13 %. A
more significant variability is observed on the average CPU time that never exceeds
(roughly) 100 s for all configurations.

Concerning themultistart configurations, in terms of number of detected optima and
average optimality gap, MS0 has the worst performance. Adding the Local Improve-
ment operators (see configuration MS2) results in a slight improvement in the average
optimality gap and number of optima, at the expense of amodest increase in the average
CPU time. The MergePool operator enabled inMS1 turns out to be computationally
intensive, but delivers a significant improvement in solution quality.

123

1502 A. Grosso et al.

Table 1 Global results, first dataset

Config #Opt Gap% CPU Merge (GII + GSI + DCL) Diversif.

MS0 81/120 2.1374 0.77 OFF OFF –

MS1 83/120 1.5398 104.85 ON OFF –

MS2 82/120 2.0211 1.82 OFF ON –

MS3 83/120 1.5145 100.26 ON ON –

ILP0 111/120 0.3349 55.11 OFF OFF OFF

ILP1 120/120 0.0000 19.41 ON OFF OFF

ILP2 111/120 0.0738 57.53 OFF ON OFF

ILP3 115/120 0.0117 38.99 ON OFF ON

ILP4 101/120 0.6814 102.79 OFF ON ON

ILP5 117/120 0.0067 31.56 ON ON ON

Configuration MS3 has the best performance amongMS configurations in terms of
solutions quality, at a computational cost comparable to that of MS1.

The constraint generation approach, in every configuration, outperforms the MS
algorithms. The simple constraint generation approach based on the sole relaxation and
cut generation is already quite effective (ILP0) compared to theMS configurations. On
average, the optimality gap is 0.33 % and the configuration is able to find 111 optimal
solutions over 120 instances. Adding the MergePool operator (ILP1) improves the
obtained results, lowering the gap to 0.0 %. Again, the MergePool operator boosts
solution quality, mixing well with the constraint generation approach, but allowing in
this case also to save more than 50 % of CPU time. This confirms the effectiveness of
the MergePool operator that allows to build large high quality cycles by combining
the smaller ones extracted from the relaxed solutions. With configuration ILP2, the
proposed Local Improvement operators achieve an improvement with respect to ILP0
in solution quality (in terms of optimality gap) but at the expense of a slight worsening
of the CPU time.

Configurations ILP3, ILP4 and ILP5 also apply the diversification operators, but
only ILP5 really delivers competitive performances, being only slightly worse than
ILP1 in terms of solution quality. Thus we selected ILP1 and ILP5 (second best) as
the most promising configurations and performed additional tests on a larger instance
set.

For constructing the second, larger, dataset we added to the first set:

• 912 randomly generated instances with similar sizes and density up to 50 %;
• 336 randomly generated scale-free graphs (where the node degree distribution
follows a power law), with up to 1000 nodes in size;

• 57 graphs from the graph coloring section in the ORLIB [11];
• a large instance (900 nodes) from [8], in the “structured 3-col” collection.

For this second experiment, a time limit of 600 s has also been set for solving each
instance. According to Table 2, ILP5 offers an average optimality gap and a CPU time
that are slightly better than those of ILP1. On the other hand the number of optima
slightly favors ILP1. ILP5 outperforms ILP1 on the random instances while ILP1

123

Searching for a cycle with maximum coverage in undirected graphs 1503

Table 2 Global results, second dataset

Dataset # ILP1 ILP5

CPU #Opt Gap% CPU #Opt Gap%

Benchmark-HC-DLV 32 0.067 32 0.0000 0.066 32 0.0000

Random-HC-DLV 11 0.061 11 0.0000 0.063 11 0.0000

Structured-3col-DLV 3 271.882 2 21.0000 326.011 2 0.7407

Graph-coloring-orlib 57 80.779 53 1.0537 58.148 53 0.9541

Randomly generated 987 40.545 978 0.0034 18.106 981 0.0014

Scale-free 336 155.079 294 0.2199 183.395 273 0.2607

Overall 1426 68.406 1370 0.1405 58.756 1352 0.1021

performs best on the scale-free instances. The overall results confirm the observations
reported in the preliminary testing on the first dataset. The hardest instances appear
to be the scale free graphs, while the large figures for the “structured-3col” instances
are entirely dependent upon the 900 nodes instance. On such an instance, ILP1 gets
an objective value of 333 within the time limit, whereas ILP5 reaches a value of 880.
Would this particular instance not be taken into account, the overall average gaps of
ILP1 and ILP5 would be practically the same.

In view of the presented results we note that the design choice of embedding a ILP
solver into the proposed constraint generation based approach wins over more naive
combinations of the heuristic operators considered in the paper, offering the best trade-
off betweenCPU time and solution quality. The two best performing configurations are
the simpler ILP1 and the somehowmore complex ILP5where the full set of enhancing
operators are enabled. Furthermore, from the presented result, ILP1 and ILP5 show a
different behaviour on different classes of instances. While both configurations work
extremely well on the HC-DLV instances, interestingly on the remaining classes the
performances appear to be complementary.

Acknowledgments This research was partially funded by a Ph.D. grant of the agency for Innovation by
Science and Technology (IWT).

References

1. Colbourn, C.J., Keil, J.M., Stewart, L.K.: Finding minimum dominating cycles in permutation graphs.
Oper. Res. Lett. 4, 13–17 (1985)

2. Current, J.R., Schilling, D.A.: The Covering Salesman Problem. Transp. Sci. 23, 208–213 (1989)
3. Fischetti, M., Lodi, A.: Local branching. Math. Prog. 98, 23–47 (2003)
4. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n . Algorithmica

52, 153–166 (2008)
5. Gendreau, M., Laporte, G., Semet, F.: The covering tour problem. Oper. Res. 45, 568–576 (1997)
6. Golden, B., Zahra, N.-A., Raghavan, S., Salari, M., Toth, P.: The generalized Covering Salesman

Problem. INFORMS J. Comput. 24(4), 534–553 (2012)
7. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20,

374–387 (1998)

123

1504 A. Grosso et al.

8. Hamiltonian Cycle problem. NP Datalog. http://wwwinfo.deis.unical.it/npdatalog/experiments/
hamiltoniancycle.htm. Accessed 8 April 2013

9. Hanafi, S., Wilbaut, C.: Improved convergent heuristics for the 0–1 multidimensional knapsack prob-
lem. Ann. OR 183(1), 125–142 (2011)

10. Lesniak-Foster, L., Williamson, J.E.: On spanning and dominating circuits in graphs. Can. Bull. Math.
20, 215–220 (1977)

11. OR Library. http://people.brunel.ac.uk/~mastjjb/jeb/info.html
12. Pferschy, U., Stanĕk, R.: Generating subtour constraints for the TSP from pure integer solutions.

Optimization Online. http://www.optimization-online.org/DB_HTML/2014/02/4258.html
13. Veldman, H.J.: Existence of dominating cycles and paths. Discret. Math. 43, 281–296 (1983)
14. Veldman, H.J.: On dominating and spanning circuits in graphs. Discret. Math. 124, 229–239 (1994)

123

http://wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm
http://wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://www.optimization-online.org/DB_HTML/2014/02/4258.html

	Searching for a cycle with maximum coverage in undirected graphs
	Abstract
	1 Introduction
	2 ILP formulation and relaxation
	3 Constraint generation approach
	4 Improving the pool of cycles
	4.1 Final algorithm

	5 Computational results and discussion
	5.1 Multistart algorithm
	5.2 Constraint generation algorithm
	5.3 Numerical results

	Acknowledgments
	References

