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Abstract The current paper addresses the integrated location and inventory problem
with capacity constraints. Adopting more realistic assumptions comes at the cost of
increased complexity and inability to solve the model with existing methods, mainly
due to the non-linear terms that arise. We attempt to render the extended formulation
solvable by linearizing its non-linear terms. Certain terms are replaced by exact refor-
mulations while for the rest a piecewise linearization is implemented. The contribution
of this work is not only the development of a formulation that is more practical, but
also the reformulation that enables its solving with commercial software. We test our
proposed approach on a benchmark dataset from the literature, including both small
and large instances of the problem. Results clearly demonstrate the superiority of this
approach in terms of both solution quality and computational time.

Keywords Supply chain · Location-inventory · Integer programming ·
Piecewise linearization

1 Introduction and background

The decisions involved in supply chain management can be distinguished, based on
the time horizon of impact, into strategic level decisions, such as facility location,
tactical level decisions, such as inventory policy and operational level decisions, such
as transportation and routing [11]. The impact of strategic level decisions spans over
a greater period than tactical decisions, while the latter have a longer impact than
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1578 A. Diabat

operational decisions [21]. The integration of decisions across different levels has
been increasingly studied in recent research streams, due to the significant benefits
it can deliver for supply chains. Despite the fact that management at the strategic
and tactical level concerns long-term and short-term decisions respectively, they are
nonetheless interrelated and thusmore information is exploitedwhen integrating them.

Several authors have addressed integration in supply chains; Daskin et al. [1]
integrate location and inventory decisions at distribution centers (DCs) and develop
a mixed integer non-linear program (MINLP) which they solve with the help of
Lagrangian relaxation (LR). The same model was studied by Shen et al. [19], who
tackle it using the Branch-and-Price method. Risk pooling was accounted for, in the
sense that a retailer can act as a distribution center. More thoroughly, risk pooling
was discussed by Vidyarthi et al. [23]. The model addressed by Daskin et al. [1] and
Shen et al. [19] was expanded by Ozsen et al. [15] to include capacity constraints for
the single-sourcing case, in which there is a single plant that supplies all the retailers.
Multiple sourcing for the capacitated problem was studied in later work of Diabat et
al. [5], for which the authors develop an efficient Genetic Algorithm (GA) and report
satisfactory results.

While the aforementioned works consider inventory only at the distribution centers
(DCs), it is more practical in many cases to also consider inventory at the level of
the retailers, although this leads to a more complicated formulation. This was done by
Diabat et al. [9], where the authors simultaneously decide the location as well as inven-
tory policy at both DCs and retailers. Once again, an LR based heuristic is developed
to obtain results. In later work Diabat et al. [3], develop a set of propositions in order
to improve the solutions obtained through the sub-problems, which were obtained
through heuristics in their earlier work, while Diabat et al. [7] develop a GA to solve
a capacitated location inventory problem. The integrated location inventory problem
was also addressed by Diabat et al. [3], but this time for a closed-loop supply chain,
meaning that the authors model both the forward and the reverse logistics network, the
latter involving the collection of used products and their delivery to remanufacturing
centers. Their model is implemented as a MINLP and solved with the help of an LR
heuristic. Diabat [2] uses a hybrid genetics/simulated annealing algorithm to solve a
vendor managed inventory (VMI) problem.

Shu [20] and Teo and Shu [22] consider location, distribution and inventory replen-
ishment in a formulation solved with the help of a greedy heuristic and column
generation, respectively. The heuristic is better able to tackle large sized problems
than column generation. Another notable heuristic is developed by Jayaraman and
Ross [12], who integrate strategic with operational level decisions and further con-
sider cross-docking in the supply chain. Diabat and Richard [8] develop a nested LR
approach for an integrated location and inventory model, formulated as a Mixed Inte-
ger Linear Program (MILP). Diabat and Theodorou [10] use the idea of reformulation
and piecewise linearization in solving the uncapacitated joint location inventory prob-
lem that was developed by Diabat et al. [9]. Aside from the integration of strategic and
tactical level decisions, or strategic and operational level decisions, the integration of
tactical and operational level decisions has also been addressed and yields benefits for
the supply chain. Le et al. [14] study the integrated inventory and routing problem for
perishable products and implement a column-generation based solution approach. A
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tabu search heuristicwas also developed byDiabat et al. [4] for the integrated inventory
and routing problem with perishable products.

As mentioned, previous work of Diabat et al. [9] focuses on developing an LR
approach for the multi-echelon joint location-inventory model that simultaneously
decides the location of DCs as well as inventory policies at both DCs and retailers.
The continuous relaxation of the formulation is non-convex and thus the problem can-
not be solved to optimality using commercial software, even for small instances. This
was the motivation for developing an LR approach; however, despite its contribution,
the developed method posed certain drawbacks. These included the fact that the sub-
problemswere not solved to optimality. The authors observed that the value of the lower
bound was sometimes greater than the upper bound, producing a negative gap. Fur-
thermore, another disadvantage of themethod is that anyminor change in the objective
function or in the constraints could result in the method not functioning and requiring
further calibration. Therefore, the formulation does not provide flexibility in modify-
ing or extending it to account for realistic considerations, such as capacity constraints.
Later work of Diabat et al. [6] develops an improved LR based heuristic to solve the
problem. Yet, the problem remains of developing an extended formulation that can be
solved without the use of heuristics, but rather with the help of commercial software.

In light of the aforementioned points, the aim of the current work is to extend the
formulation studied in Diabat et al. [6,9] and Diabat and Theodorou [10] to account
for capacity constraints and to develop an appropriate method to address the extended
formulation. The LR approach developed inDiabat et al. [6,9] is not capable of solving
the extended problem with capacity constraints. Thus, the main contribution of this
work is the transformation of the problem into one that is not only solvable using com-
mercial software but also capable of finding a high quality feasible solution through
commercial software, by the linearization of the non-linear terms. While LR thus far
has contributed in producing a set of lower bounds for the problem at hand, the best of
which is then converted into a feasible upper bound with the help of heuristics, there
is no guarantee that even the optimal Lagrangian bound will be within a certain gap
of the optimal solution. This is overcome in our new approach due to the fact that the
generated solution is feasible, so there is no need for more heuristics to modify the
lower bound and make it feasible.

The current paper is structured as follows: Sect. 2 presents the problem statement as
well as the formulation of the problem, while Sect. 3 is dedicated to the computational
analysis conducted and the discussion of the results. Finally, Sect. 4 summarizes the
conclusions of the current work, while providing certain directions for future research.

2 Problem statement and formulation

The current section will begin by describing the multi-echelon joint inventory loca-
tion problem, without capacity constraints and with the adoption of the power-of-two
inventory policy. Subsequently, the capacity constraintswill bemodeled anddescribed,
before being added to create the extended formulation. Finally, the current section will
conclude with the linearization of the non-linear terms encountered in the extended
formulation.
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2.1 Multi-echelon joint inventory-location model (MJIL)

The objective of the multi-echelon joint inventory-location problem is to simultane-
ously determine the number and location of distribution centers (DCs), the retailers
assigned to each DC and the amount and delivery time of products to each facility
(retailer or DC). The retailers, with deterministic demand and with the ability to hold
inventory, are assigned to DCs from which they will be supplied with the product. On
their part, DCs order a product at regular intervals from the manufacturer and they
also hold inventory resulting from product that has been ordered without having been
shipped to the retailer. The aim of the model is to minimize the incurred costs, which
include the fixed costs of placing any order, the inventory and shipping costs, as well
as the fixed costs of setting up a DC. For a complete description of the model para-
meters the reader is referred to Diabat et al. [9]. At this point, only certain parameters
as well as the sets and decision variables of the problem are presented. These hold for
all formulations provided beyond this point, while subsequent models will introduce
certain new variables.

Sets

I : set of retailers, indexed by i = 1, . . ., |I |
J : set of possible DC locations, indexed by j = 1, . . ., |J |
Parameters

f j : fixed cost of establishing a DC at location j
k̂ j , ki , bi j , ci j , ei j : parameters calculated for convenience, see [9]
M: sufficiently large number
ε : sufficiently small number

Decision variables

Ti j : cycle-time (time between orders placed) of retailer i when served by DC j
T̂ j : cycle-time of DC j

Binary decision variables

X j =
{
1 if a DC is opened at location j
0 otherwise

Yi j =
{
1 if a retailer i is served by DC at location j
0 otherwise

The formulation of the original problem is presented as follows:

min
X,Y,T̂ ,T

∑
j∈J

(
f j + k̂ j

T̂ j

)
X j +

∑
j∈J

∑
i∈I

(
ki
Ti j

+ bi j + ci j Ti j + ei jmax
{
T̂ j , Ti j

})
Yi j

(1)
Subject to:

∑
j∈J

Yi j = 1 ∀i ∈ I (2)
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Yi j ≤ X j ∀i ∈ I, j ∈ J (3)

Yi j , X j ∈ {0, 1} ∀i ∈ I, j ∈ J (4)

T̂ j

Ti j
= 2Ni j ∀i ∈ I, j ∈ J (5)

Ni j ∈ Z ∀i ∈ I, j ∈ J (6)

T̂ j , Ti j ≥ ε ∀i ∈ I, j ∈ J (7)

The objective function aims to minimize the sum of inventory, ordering, location and
shipping costs. Constraints (2) ensure that each retailer is assigned to exactly one
DC, while constraints (3) prohibit retailers to be assigned to DCs that are not opened.
Constraints (4) ensure that the location and assignment variables are binary, while
constraints (5)–(7) represent the power-of-two inventory policy adopted. Regarding
the inventory, a power-of-two policy is adopted, according to which the ratio of the
time elapsed between orders for the DC over the time between orders at the retailer is
a power of two. It has been shown by Roundy [18] that this policy is 98% effective at
finding an optimal policy. Thus, adopting this simplifying policy can greatly reduce
the complexity, without greatly sacrificing the accuracy of the solution.

2.2 MJIL extended with capacity constraints

A reformulation of the problem is presented at this point, with the addition of a set
of capacity constraints and the elimination of the power-of-two inventory policy con-
straints. The resulting non-linear formulation will then be linearized through exact
and piecewise linearization of the various non-linear terms. The extended model will
be more practical, but at the same time more difficult to solve mainly due to the fact
that it is not possible to know in advance which retailers will be assigned to each DC.

Asmentioned, one of the contributions of the currentwork is the addition of capacity
constraints to the formulation presented inDiabat et al. [6,9] andDiabat andTheodorou
[10]. When adding capacity constraints, two types of problems can be distinguished:
the problem with single-sourcing, in which the entire demand of a retailer is satisfied
by one DC, and that with multiple-sourcing, according to which each retailer can be
served by more than one DC. In this paper we consider single sourcing. It is important
to consider whether the cycle time of the DC is greater than the cycle times of all
retailers assigned to it, or in other words, it is important to focus on the case where
T̂ j > Ti j for any retailer i that is assigned to DC j . The reason behind this considera-
tion is that if the opposite holds, Ti j ≥ T̂ j , it is implied that the DC will place an order
every time retailer i places an order. Therefore, the DC would not carry any inventory
to be shipped to retailer i . We introduce the following binary variable:

Zi j =
{
1 if Ti j ≤ T̂ j

0 otherwise

The problem that arises now is that the capacity constraint for each DC will depend
on which retailers are assigned to it. However, as we do not know the assignment in
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advance, the capacity constraint modeled in Eq. (14) requires multiplying the demand
of all retailers by Yi j . Further, let us define q j , which denotes the maximum capacity
of DC j . Then, the capacity constraints can be written as follows:

T̂ j

∑
i∈I

diYi j Zi j ≤ q j ∀ jε J (8)

MZi j ≥ T̂ j − Ti j ∀i ∈ I ; j ∈ J (9)

M(Zi j − 1) ≤ T̂ j − Ti j ∀i ∈ I ; j ∈ J (10)

Constraints (8) state that DC j is responsible for carrying inventory that is enough for
all retailers assigned to it, with cycle times that are not greater than the DC cycle time.
Constraints (9) state that if T̂ j is larger than Ti j then Zi j must be equal to 1, whereas if
T̂ j is not larger than Ti j , then Zi j can be either 0 or 1. In a similar manner, constraints
(10) ensure that if T̂ j is less than Ti j , then Zi j must be equal to 0. On the other hand,
if T̂ j is not less than Ti j , then Zi j can be either 0 or 1. At this point, it is worth noting
the case where T̂ j = Ti j . In this case, constraints (9)–(10) are redundant. However,
recall that for the case that Yi j = 1 and T̂ j = Ti j , DC j still does not need to carry any
inventory to be shipped to retailer i . Therefore, constraints (8) will still hold for this
case. Another important note is that since the problem described by Eqs. (1)–(10) is
solved without considering the power-of-two constraints, and then the optimal values
of T̂ j and Ti j are rounded to the nearest power-of-two values, the relation between T̂ j

and Ti j may change before and after the rounding. However, for any possible change in
the relationship, the capacity restrictionwill still be respected. For example, if T̂ j < Ti j
changes to T̂ j = Ti j , then in both cases DC j will not need to carry any inventory to
be shipped to retailer i . If T̂ j > Ti j changes to T̂ j = Ti j , then the left hand side of
constraints (8) would be larger than its actual value and therefore this constraint would
still be satisfied. After dropping the power-of-two constraints, adding the capacity
constraints and dropping the index j from Ti j , the model can be stated as follows:

min
∑
j∈J

(
f j + k̂ j

T̂ j

)
X j +

∑
j∈J

∑
i∈I

(
ki
Ti

+ bi j + ci j Ti + ei jmax
{
T̂ j , Ti

})
Yi j (11)

s.t. ∑
j∈J

Yi j = 1 ∀i ∈ I (12)

Yi j ≤ X j ∀i ∈ I, j ∈ J (13)

T̂ j

∑
i∈I

diYi j Zi j ≤ q j ∀ jε J (14)

MZi j ≥ T̂ j − Ti ∀i ∈ I, j ∈ J (15)

M(Zi j − 1) ≤ T̂ j − Ti ∀i ∈ I, j ∈ J (16)

Yi j , X j , Zi j ∈ {0, 1} ∀i ∈ I, j ∈ J (17)

T̂ j , Ti ≥ ε ∀i ∈ I,∀ j ∈ J (18)
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It is possible to observe by comparing the formulation presented by (11)–(18) with
the formulation by (1)–(7) that the additional constraints are (14)–(16) (capacity con-
straints), while constraints (5) and (6) (power-of-two inventory policy) have been
eliminated. Here, constraints (14) ensure that the total demand of retailers assigned to
a DC will not exceed its capacity. Constraints (15) and (16) determine the binary vari-
able Zi j based on the cycle times of retailers and DCs. This non-linearity is one of the
reasons for which this new problem cannot be solved using the Lagrangian relaxation
heuristic developed in Diabat et al. [6,9]. The objective of this paper is to reformu-
late some of the non-linear terms and use piecewise linearization to approximate the
remaining non-linear terms to convert theMINLP (11)–(18) to anMILP that is solvable
using commercial solvers, such asCPLEX.We also test the quality of the newapproach
by comparing the objective function values of the obtained solutions to the objective
function values of the solutions generated by solving the problem using a different
heuristic that is explained in the following section of the computational analysis.

2.3 Piecewise linear based approximation

In this sectionwe propose anMILP approximation for problem (11)–(18). The approx-
imation is based on finding an exact linear formulation for some of the non-linear terms
in the problem and linearizing the remaining non-linear terms using piecewise linear
approximation.

2.3.1 An equivalent linear reformulation

We define the variables Tmax
i j , Wmax

i j , Wi j and Ŵi j as follows:

max
{
T̂ j , Ti

}
= Tmax

i j

T max
i j Yi j = Wmax

i j

TiYi j = Wi j

Zi j T̂ j Yi j = Ŵi j

Then the following problem is equivalent to problem (11)–(18)

min
∑
j∈J

(
f j + k̂ j

T̂ j

)
X j +

∑
j∈J

∑
i∈I

(
ki
Ti
Yi j + bi jYi j + ci jWi j + ei jW

max
i j

)
(19)

s.t. ∑
j∈J

Yi j = 1 ∀i ∈ I (20)

Yi j ≤ X j ∀i ∈ I, j ∈ J (21)∑
i∈I

di Ŵi j ≤ q j ∀ j ∈ J (22)

MZi j ≥ T̂ j − Ti ∀i ∈ I, j ∈ J (23)
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M(Zi j − 1) ≤ T̂ j − Ti ∀i ∈ I, j ∈ J (24)

Tmax
i j ≥ T̂ j ∀i ∈ I, j ∈ J (25)

Tmax
i j ≥ Ti ∀i ∈ I, j ∈ J (26)

Tmax
i j ≤ Wmax

i j + M(1 − Yi j ) ∀i ∈ I, j ∈ J (27)

Ti ≤ Wi j + M(1 − Yi j ) ∀i ∈ I, j ∈ J (28)

T̂ j ≤ Ŵi j + M(2 − Yi j − Zi j ) ∀i ∈ I, j ∈ J (29)

Yi j , X j ∈ {0, 1} ∀i ∈ I, j ∈ J (30)

Tmax
i j ,Wmax

i j ,Wi j , Ŵi j ≥ 0 ∀i ∈ I, j ∈ J (31)

Ti , T̂ j ≥ ε ∀i ∈ I, j ∈ J (32)

Note how this formulation contains additional constraints, namely (26)–(29), as part of
the linearization, while the objective function and constraints (22) have been adapted
based on the newly introduced variables. Regarding the new constraints, (25) and (26)
ensure that the new variable Tmax

i j will be equal to the greatest among Ti and T̂ j , thus

replacingmax
{
T̂ j , Ti

}
from the objective function. Constraints (27)–(29) help define

the new variables Wmax
i j Wi j and Ŵi j which replace non-linear terms in the objective

function and in constraints (22).

2.3.2 Piecewise linearization

The only non-linear terms remaining in problem (19)–(31) are
k̂ j

T̂ j
X j and

ki
Ti
Yi j . To

linearize these two terms, we use piecewise linear functions to approximate
1

T̂ j
and

1

Ti
.

Since
1

T̂ j
and

1

Ti
are convex functions, they can be linearized by allowing the binary

variables that are used in the linearization to be continuous. This is very important as
this linearization does not result in a higher number of binary variables.

To linearize
1

T̂ j
, assume that we divide the range of T̂ j into n = 1, . . . , N linear

pieces using equidistant placement of the breakpoints. This will lead to N + 1 break

points t̂1j , t̂
2
j , . . . , t̂

(N+1)
j . Then,

1

T̂ j

∼= 1

t̂ nj
Û n

j +
1

t̂ n+1
j

(1−Û n
j ) = 1

t̂ n+1
j

+(
1

t̂ nj
− 1

t̂ n+1
j

)Û n
j ,

where Û n
j ∈ [0, 1] . Let V̂ n

j = Û n
j X j , then,

1

T̂ j
X j ∼= 1

t̂ n+1
j

X j + (
1

t̂ nj
− 1

t̂ n+1
j

)V̂ n
j .

Similarly,
1

Ti
∼= 1

tn+1
i

+ (
1

tni
− 1

tn+1
i

)Un
i . Now, by letting V n

i j = Un
i Yi j we get

1

Ti
Yi j ∼= 1

tn+1
i

Yi j + (
1

tni
− 1

tn+1
i

)V n
i j
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Therefore, problem (19)–(31) can be approximated as follows

min
∑
j∈J

f j X j +
∑
j∈J

∑
n∈N

k̂ j

t̂ n+1
j

X j +
∑
j∈J

∑
n∈N

k̂ j

(
1

t̂ nj
− 1

t̂ n+1
j

)
V̂ n
j +

∑
j∈J

∑
i∈I

∑
n∈N

ki

tn+1
i

Yi j

+
∑
j∈J

∑
i∈I

∑
n∈N

ki

(
1

tni
− 1

tn+1
i

)
V n
i j +

∑
j∈J

∑
i∈I

(
bi j Yi j + ci jWi j + ei jW

max
i j

)
(33)

s.t.

∑
j∈J

Yi j = 1 ∀i ∈ I (34)

Yi j ≤ X j ∀i ∈ I, j ∈ J (35)∑
i∈I

di Ŵi j ≤ q j ∀ jε J (36)

MZi j ≥ T̂ j − Ti ∀i ∈ I, j ∈ J (37)

M(Zi j − 1) ≤ T̂ j − Ti ∀i ∈ I, j ∈ J (38)

Tmax
i j ≥ T̂ j ∀i ∈ I, j ∈ J (39)

Tmax
i j ≥ Ti ∀i ∈ I, j ∈ J (40)

Tmax
i j ≤ Wmax

i j + M(1 − Yi j ) ∀i ∈ I, j ∈ J (41)

Ti ≤ Wi j + M(1 − Yi j ) ∀i ∈ I, j ∈ J (42)

T̂ j ≤ Ŵi j + M(2 − Yi j − Zi j ) ∀i ∈ I, j ∈ J (43)∑
n∈N

Ûn
j = 1 ∀ j ∈ J (44)

∑
n∈N

Un
i j = 1 ∀i ∈ I, j ∈ J (45)

X j − 1 ≤ V̂ n
j − Û n

j ∀n ∈ N ∀ j ∈ J (46)

Yi j − 1 ≤ V̂ n
i j − Û n

i j ∀n ∈ N , j ∈ J, i ∈ I (47)

V̂ n
j , Û n

j , V̂
n
i j ,

Û n
i j ∈ [0, 1] ∀i ∈ I, j ∈ J (48)

X j ,Yi j , Zi j ∈ {0, 1} ∀i ∈ I, j ∈ J (49)

T̂ j , Ti , Tmax
i j ,Wmax

i j ,

Wi j , Ŵi j ≥ 0
∀i ∈ I, j ∈ J (50)

The additional constraints in this formulation are constraints (44)–(47), which rep-
resent the piecewise linearization for the terms found in the previous objective function,
k̂ j

T̂ j
X j and

ki
Ti
Yi j . Aside from these, the formulation is identical to that described by

(19)–(32).
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3 Computational analysis

In this section we present the results obtained from the computational analysis. The
data sets used for the current analysis were found in Diabat et al. [6,9] and they include
both small and large size instances of the problem. For small sizes of the problem, i.e.
(|I | × |J |) = (6 × 3, 8 × 4, 10 × 5), we are able to obtain an optimal solution with
the help of the commercial software GAMS (General Algebraic Modeling System),
using the BARON solver. Despite the high computational time required for this solver,
and its inability to solve certain instances to optimality, nevertheless we compare its
results with those obtained using the piecewise linearization, which constitute an upper
bound to the objective value, in order to assess the quality of the bound and evaluate
the proposed approach.

We conduct our experiments on a total of 48 instances, 12 different instances for
each of these sizes, namely (6 × 3), (8 × 4), (10 × 5) and (15 × 10). The results are
summarized in Tables 1, 2, 3, 4 and they include the number of retailers and DCs, as
well as the value obtained from each method and the time required to reach a solution,
reported in both seconds and hours. Finally, the time and value ratio are given in order
to compare the two solution approaches. From all tables we can observe the very high
computational time for BARON, while Table 4 shows that the solver reaches its limit
as GAMS runs out of memory and optimality is not achieved.

Results indicate that the linearization achieves very good results, with solutions
being on overall average for all instances within 1% of the solution obtained from
the commercial solver, or 1.02% if we exclude the instances of Table 4, for which
BARON solver achieved worse results than the linearization. In addition, the gap
remains fairly stable even as the instance size increases: from Table 1, the average
solution gap is 1.0226, while from Tables 2 and 3 it is 1.0268 and 1.0247, respectively.

Table 1 Comparative results for instance (6 × 3)

Inst. BarGAMS Time (s) Time (h) Linear Time (s) Time (h) Time ratio Value ratio

1 3133 44,076 12.2 3181 467 0.1 0.0106 1.0152

2 2551 44,132 12.3 2643 427 0.1 0.0097 1.0363

3 1456 43,700 12.1 1482 396 0.1 0.0091 1.0183

4 3272 43,427 12.1 3318 472 0.1 0.0109 1.0142

5 2634 43,519 12.1 2639 453 0.1 0.0104 1.0020

6 2634 43,318 12.0 2682 405 0.1 0.0094 1.0183

7 3369 43,959 12.2 3403 402 0.1 0.0091 1.0101

8 2107 43,873 12.2 2216 414 0.1 0.0094 1.0515

9 1511 43,992 12.2 1587 406 0.1 0.0092 1.0504

10 2599 135,109 37.5 2688 1388 0.4 0.0103 1.0341

11 3479 43,868 12.2 3504 404 0.1 0.0092 1.0070

12 3466 43,455 12.1 3515 396 0.1 0.0091 1.0142

Avg. 1.0226
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Table 2 Comparative results for instance (8 × 4)

Inst. BarGAMS Time (s) Time (h) Linear Time (s) Time (h) Time ratio Value ratio

1 6253 158,056 43.9 6554 1703 0.5 0.0108 1.0482

2 3680 163,598 45.4 3720 1568 0.4 0.0096 1.0111

3 6844 145,075 40.3 6998 1372 0.4 0.0095 1.0225

4 5095 159,677 44.4 5324 1544 0.4 0.0097 1.0449

5 3396 123,804 34.4 3505 1133 0.3 0.0092 1.0320

6 4220 168,564 46.8 4280 1823 0.5 0.0108 1.0142

7 4889 122,298 34.0 5025 1302 0.4 0.0107 1.0277

8 5223 143,303 39.8 5413 1576 0.4 0.0110 1.0363

9 3285 43,585 12.1 3312 414 0.1 0.0095 1.0081

10 7436 131,469 36.5 7580 1330 0.4 0.0101 1.0194

11 6021 167,490 46.5 6252 1570 0.4 0.0094 1.0384

12 6973 190,372 52.9 7101 1968 0.5 0.0103 1.0183

Avg. 1.0268

Table 3 Comparative results for instance (10 × 5)

Inst. BarGAMS Time (s) Time (h) Linear Time (s) Time (h) Time ratio Value ratio

1 10,726 123,529 34.3 10,747 1238 0.3 0.0100 1.0020

2 10,726 142,762 39.7 11,219 1366 0.4 0.0096 1.0460

3 8107 172,790 48.0 8272 1574 0.4 0.0091 1.0204

4 8855 118,768 33.0 8900 1270 0.4 0.0107 1.0050

5 5280 206,297 57.3 5558 2098 0.6 0.0102 1.0526

6 7691 214,656 59.6 7745 2354 0.7 0.0110 1.0070

7 8689 195,886 54.4 8715 2094 0.6 0.0107 1.0030

8 8481 127,479 35.4 8689 1154 0.3 0.0091 1.0246

9 4906 188,804 52.4 5016 1894 0.5 0.0100 1.0225

10 10,643 205,876 57.2 11,191 2215 0.6 0.0108 1.0515

11 12,472 184,592 51.3 12,938 1776 0.5 0.0096 1.0373

12 7733 209,277 58.1 7923 2202 0.6 0.0105 1.0246

Avg. 1.0247

These results were obtained within a fraction of the time, on average 0.01%. The small
gap demonstrates the high solution quality obtained through the linearization, while
its significantly reduced time further enhances its attractiveness.

For large instances a different heuristic is developed, which relies on solving the
two problems sequentially. Essentially, the new heuristic approach is based on solving
the facility location problem and the inventory management problem separately. The
first step is to solve the following uncapacitated facility location problem (UFLP).

min
∑
j∈J

f j X j +
∑
j∈J

∑
i∈I

bi j Yi j
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Table 4 Comparative results for instance (15 × 10)

Inst. BarGAMS Time (s) Time (h) Linear Time (s) Time (h) Time ratio Value ratio

1 23,073 288,000 80.0 18,320 2606 0.7 0.0091 0.7940

2 17,945 288,000 80.0 14,123 3119 0.9 0.0108 0.7870

3 21,221 288,000 80.0 16,425 2933 0.8 0.0102 0.7740

4 29,054 288,000 80.0 24,551 3149 0.9 0.0109 0.8450

5 33,469 288,000 80.0 28,114 3070 0.9 0.0107 0.8400

6 27,203 288,000 80.0 22,061 2926 0.8 0.0102 0.8110

7 32,330 288,000 80.0 24,280 2681 0.7 0.0093 0.7510

8 35,748 288,000 80.0 28,527 2794 0.8 0.0097 0.7980

9 22,218 288,000 80.0 18,041 3073 0.9 0.0107 0.8120

10 42,300 288,000 80.0 35,489 2956 0.8 0.0103 0.8390

11 32,472 288,000 80.0 24,971 2769 0.8 0.0096 0.7690

12 24,497 288,000 80.0 18,691 2785 0.8 0.0097 0.7630

s.t.
∑
j∈J

Yi j = 1 ∀i ∈ I

Yi j ≤ X j ∀i ∈ I ; ∀ j ∈ J
X j ,Yi j ∈ {0, 1} ∀i ∈ I ; ∀ j ∈ J

From solving this problem, we obtain the optimal values corresponding to the set of
openDCs and the set of assignments, X∗

j and Y
∗
i j , respectively. Then, we define Joto be

the set of open DCs, i.e. Jo =
{
j\X∗

j = 1
}
. Also, let I j be the set of retailers assigned

to DC j ∈ Jo, i.e. I j =
{
i\Y ∗

i j = 1
}

,∀ j ∈ Jo. Having defined these subsets, we can

now decompose the problem into multiple one-DC multi-retailer problems. For every
j ∈ Jo, we have a one-DC multi-retailer inventory problem, as follows, which we
solve using the algorithm by Roundy [18].

min
k̂ j

T̂ j
+

∑
i∈I j

(
ki
Ti

+ ci j Ti + ei jmax
{
T̂ j , Ti

})

This decomposition allows for easier solving of the problem, since we know the
assignment of retailers to DCs. Now, we solve for T̂ ∗

j and T ∗
i . Then, for every j ∈ Jo

and for every i ∈ I j if T̂ ∗
j > T ∗

i we set Z∗
i j = 1, otherwise we set Z∗

i j = 0. At this
point we need to check whether the capacity constraints (14) are satisfied. Given that
we have solved the inventory problem without considering the capacity constraints,
they will most likely be violated. Let JV be the set of open DCs for which the capacity
constraint is violated, i.e. JV = { j ∈ Jo\T̂ ∗

j

∑
i∈I j di j Y

∗
i j Z

∗
i j > q j }. For these DCs,

the demand of retailers assigned with cycle time less than that of the DC exceeds the
capacity. Thus, it is important to adjust the cycle time of some of the retailers, in order
tomake it equal to the cycle time of theDC so that the latter does not carry inventory for
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Table 5 Comparative results for instance (20 × 15)

Inst. Linear Time (s) Time (h) SeqHeu Time (s) Time (h) Time ratio Value ratio

1 32,627 3263 0.9 58,995 3393 0.9 0.9615 0.5530

2 48,474 4847 1.3 90,643 3733 1.0 1.2987 0.5348

3 68,371 6837 1.9 126,004 5128 1.4 1.3333 0.5426

4 47,231 4723 1.3 103,262 4345 1.2 1.0870 0.4574

5 90,734 9073 2.5 182,419 8257 2.3 1.0989 0.4974

6 53,446 5345 1.5 87,429 4650 1.3 1.1494 0.6113

7 57,796 5780 1.6 99,499 5375 1.5 1.0753 0.5809

8 60,282 6028 1.7 114,586 4762 1.3 1.2658 0.5261

9 59,350 5935 1.6 118,700 5994 1.7 0.9901 0.5000

10 50,028 5003 1.4 110,004 4152 1.2 1.2048 0.4548

11 54,689 5469 1.5 91,413 4539 1.3 1.2048 0.5983

12 55,266 5527 1.5 114,309 4532 1.3 1.2195 0.4835

Table 6 Comparative results for instance (25 × 15)

Inst. Linear Time (s) Time (h) SeqHeu Time (s) Time (h) Time ratio Value ratio

1 81,430 8143 2.3 184,704 7084 2.0 1.1494 0.4409

2 67,603 6760 1.9 103,657 6287 1.7 1.0753 0.6522

3 80,387 8039 2.2 168,388 7637 2.1 1.0526 0.4774

4 52,622 5262 1.5 99,861 4210 1.2 1.2500 0.5270

5 107,934 10,793 3.0 196,710 8743 2.4 1.2346 0.5487

6 71,060 7106 2.0 138,506 6537 1.8 1.0870 0.5130

7 65,682 6568 1.8 110,917 5452 1.5 1.2048 0.5922

8 79,473 7947 2.2 128,544 6596 1.8 1.2048 0.6183

9 61,841 6184 1.7 137,292 5628 1.6 1.0989 0.4504

10 67,141 6714 1.9 122,754 5438 1.5 1.2346 0.5470

11 111,775 11,177 3.1 205,009 9501 2.6 1.1765 0.5452

12 57,175 5717 1.6 115,759 5432 1.5 1.0526 0.4939

that retailer. Having detected the retailers for which the cycle time should be adjusted,
we solve the knapsack problem for every DC in the violated set, or for every j ∈ JV :

max
∑
i∈I j

ZV
i j

s.t.

∑
i∈I j

di ZV
i j ≤ q j

T̂ ∗
j

∀ j

ZV
i j ∈ {0, 1} ∀i, j
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Table 7 Comparative results for instance (30 × 15)

Inst. Linear Time (s) Time (h) SeqHeu Time (s) Time (h) Time ratio Value ratio

1 128,345 12,835 3.6 199,996 10,524 2.9 1.2195 0.6417

2 109,162 10,916 3.0 199,580 9170 2.5 1.1905 0.5470

3 91,977 9198 2.6 174,256 7266 2.0 1.2658 0.5278

4 62,574 6257 1.7 111,913 4881 1.4 1.2821 0.5591

5 133,826 13,383 3.7 304,752 13,918 3.9 0.9615 0.4391

6 125,148 12,515 3.5 219,725 9511 2.6 1.3158 0.5696

7 126,518 12,652 3.5 269,936 9868 2.7 1.2821 0.4687

8 99,483 9948 2.8 166,288 8755 2.4 1.1364 0.5983

9 117,840 11,784 3.3 182,145 11,077 3.1 1.0638 0.6470

10 109,086 10,909 3.0 172,795 9054 2.5 1.2048 0.6313

11 126,061 12,606 3.5 226,163 12,480 3.5 1.0101 0.5574

12 89,881 8988 2.5 179,449 7011 1.9 1.2821 0.5009

Table 8 Comparative results for instance (50 × 20)

Inst. Linear Time (s) Time (h) SeqHeu Time (s) Time (h) Time ratio Value ratio

1 290,292 29,029 8.1 510,453 23,223 6.5 1.2500 0.5687

2 129,950 12,995 3.6 273,204 11,825 3.3 1.0989 0.4757

3 209,597 20,960 5.8 325,725 17,816 4.9 1.1765 0.6435

4 213,789 21,379 5.9 437,469 20,524 5.7 1.0417 0.4887

5 302,868 30,287 8.4 640,254 25,744 7.2 1.1765 0.4730

6 270,380 27,038 7.5 539,822 26,768 7.4 1.0101 0.5009

7 204,357 20,436 5.7 436,013 16,757 4.7 1.2195 0.4687

8 198,069 19,807 5.5 392,048 19,015 5.3 1.0417 0.5052

9 197,021 19,702 5.5 351,824 17,141 4.8 1.1494 0.5600

10 284,004 28,400 7.9 600,377 29,536 8.2 0.9615 0.4730

11 304,964 30,496 8.5 648,260 24,397 6.8 1.2500 0.4704

12 227,413 22,741 6.3 352,935 20,012 5.6 1.1364 0.6443

Now, for any j ∈ JV and i ∈ I j with ZV
i j = 0, we change Z∗

i j from 1 to 0, and

T ∗
i from its old value to T̂ ∗

j . The objective is to maintain the values of Z∗
i j wherever

possible; however, some will have to become equal to 0, only enough to make the
solution feasible. The aim of this problem is to decide which will become 0 and which
will remain 1. Thus, this problemwill dictate which retailers are best removed from the
capacity constraint, which means we would have to adjust their cycle times. Next, we
calculate the objective function value of the sequential heuristics approach as follows:

SeqHeu =
∑
j∈Jo

(
f j + k̂ j

T̂ ∗
j

)
+

∑
j∈Jo

∑
i∈I j

(
ki
T ∗
i

+ bi j + ci j T
∗
i + ei jmax

{
T̂ ∗
j , T

∗
i

})
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For the significantly larger instances, where (retailers × DCs) are (20 × 15), (25 ×
15), (30 × 15) and (50 × 20) we compare the piecewise linear heuristics and the
sequential heuristic in terms of the objective function value obtained, as well as the
solution time. For each of these sizes, we run 12 different instances, leading to a total
of 48 instances, and the results are shown in Tables 5, 6, 7, 8.

From these tables it is possible to observe that the longest time used by the
piecewise linearization based heuristic was 8.5 h for solving the instance of size (50
× 20), while for the sequential based heuristic this time was 6.8 h, reported in Table 8.
While the linearization requires a slightly higher computational time, on total average
3.3 h compared to 2.9 h for the sequential heuristic, its solutions are better by an
average of 50%, weighing the trade-off between time and quality to its advantage.

4 Conclusion

The current work addresses the capacitated facility location inventory problem. The
addition of capacity constraints leads to a model of higher practical value. However,
it poses an additional challenge in terms of solving the problem, due to the non-linear
terms that occur. In light of this, we aim to reformulate some of the terms tomake them
linear and implement piecewise linearization for the rest, in order to render the problem
solvable with the help of commercial software. For large problems, we develop a
sequential heuristic approach. We solve both small and large instances of the problem
to evaluate the linearization and the sequential heuristic. Our results demonstrate the
overall superiority of the linearization in terms of time and solution quality.

The promising results obtained by using the linearization demonstrate the need
for further investigating such methods in future research. For example, future work
could focus on implementing for the same problem a strategy for optimally placing
breakpoints for the linearization and selecting the placement which minimizes either
the maximal deviation of the piecewise linear function from the original one or the
area between the functions. This can be found in the works of [13,16,17]. The current
work could also be extended by adding multiple products or various transportation
options to the supply chain.
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