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Abstract In this paper, a fast heuristic approach is proposed for solving the multiple
depot vehicle scheduling problem (MDVSP), a well-known NP-hard problem. The
heuristic is based on a two stage procedure. The first one applies two state space
reduction procedures towards reducing the problem complexity. One procedure is
based on the solutions of the single-depot vehicle scheduling for each depot, while the
other uses the solution of a relaxed formulation of the MDVSP, in which a vehicle can
finish its task sequence in a different depot from where it started. Next, the reduced
problem is solved by employing a truncated columngeneration approach. The heuristic
approach has been implemented in several variants, through different combinations of
the reduction procedures, and tested on a series of benchmark problems provided by
Pepin et al. (J Sched 12:17–30, 2009). The heuristic variants found solutions with very
narrow gaps (below 0.7 %, on average) to best-known solutions (Pepin et al., J Sched
12:17–30, 2009), decreasing the required CPU time by an overall average factor of 17
in comparison with reported results in the literature (Otsuki and Aihara, J Heuristics
1–19, 2014).
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1 Introduction

The multi-depot vehicle scheduling problem (MDVSP) is a classical problem in oper-
ations research, arising in applications such as public transport systems, and appearing
as a subproblem in the more complex crew scheduling and management disruption
problems [6]. The MDVSP has been shown by Bertossi et al. [1] to be a NP-hard
problem.

Initially, the problem was solved using heuristic methods, given the complexity
of the problem and the computational power of the 70s and 80s [4]. Carpaneto et al.
[2] developed the first optimization method, employing an “additive lower bounding”
scheme. Bertossi et al. [1] employed Lagrangean relaxation, based on a multicom-
modity formulation. Column generation (CG) was also used to solve the MDVSP
[5,13,16]. Löbel [10] combined Lagrangian relaxation and CG to solve large instances
based on data from three public transportation companies in Germany. Kliewer et al.
[8] introduced a new vehicle scheduling network called time–space network to solve
the MDVSP. The use of this network led to a reduction in the associated mathematical
models, allowing the solution of large instances by direct application of commercial
integer programming solvers.Metaheuristicswere also employed to solve theMDVSP.
Pepin et al. [15] developed two metaheuristic algorithms based on large neighborhood
search (LNS) and tabu search, while Laurent and Hao [9] presented an iterated local
search (ILS) heuristic. More recently, Otsuki and Aihara [12] developed a variable
depth search framework which utilizes pruning and deepening techniques to speedup
the CPU time required to find a good solution.

Concerning the quality and efficiency of the solutions for the problem, Pepin et
al. [15] analyzed the performance of five different approaches to solve the MDVSP,
namely: truncated branch-and-cut, Lagrangian relaxation, column generation, LNS,
and tabu search. The comparison showed that column generation is the best method
when powerful computational resources are available, while LNS is the best option
in the presence of limited resources (this result was recently ratified by Otsuki and
Aihara [12]). However, the most important conclusion of Pepin et al.’s [15] paper is
the difficulty of these heuristics to find good solution in a reasonable time for large
instances. Given a time limit of one hour, the methods could only find solution for
instances up to 1500 tasks and eight depots. Löbel [10] andKliewer et al. [8] succeeded
to solve real-world public transit instances to optimality involving up to 20,000 and
7000 tasks, respectively. These instances, however, have a particular structure that
ease their solution process [15], being previously validated in practice.

This paper describes a simple and fast heuristic procedure to solve efficiently very
large instances of the MDVSP. The heuristics consist of two sequential steps. The
first step is based on a state space selection process intended to reduce the number
of variables in the problem. The second step employs a CG approach to solve the
reduced problem to find good solutions very quickly. The performance of variants of
the proposed heuristics were assessed on the set of testbed instances by Pepin et al.
[15]. All variants found very good solutions, with average gaps from the best-known
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solutions below 0.7 %, requiring, on average, 18 times less CPU usage. The major
contributions in this paper are as follows: (i) the introduction of effective state space
reduction techniques to decrease the problem complexity; and (ii) the development
of a heuristic approach, based on a truncated CG approach, capable of solving very
efficiently and effectively the MDVSP.

The documen is organized as follows. In the next section, we present the problem
and the formulations related to our solution method. Section 3 describes the develop-
ment and the features of the heuristic procedure. The computational experiments and
comparison with previous results are presented in Sect. 4. Finally, Sect. 5 presents
some final remarks.

2 Problem

Before defining a formal mathematical formulation for the MDVSP, we introduce
some useful notation. We define the movement of empty vehicles as a deadheading
trip. We are given a set of N service trips, each trip i ∈ N starting at time sti and
ending at time eti , along with a set of K depots, in which vk vehicles are stationed.
Let ti j be the deadheading transportation time between the ending point of trip i and
the starting point of trip j . An ordered pair of trips (i, j) is said to be compatible iff
satisfies the relation eti + ti j ≤ st j . The MDVSP objective is to find the minimal cost
fleet schedule for executing all the service trips. A vehicle schedule is defined as a
feasible sequence of service trips to perform, using the same depot as the starting and
ending point.

There are several existing mathematical formulations for this problem [15]. It is
beyond the scope of this article to discuss them in detail. We briefly present the set par-
titioning formulation, as introduced by Ribeiro and Soumis [16]. Define the MDVSP
network Gk = 〈V k, Ak〉 for each depot k ∈ K , where V k is the set of nodes, and Ak

denotes the set of arcs. Set V k = {o(k), d(k)}∪ N contains a node for each trip i ∈ N
and a pair of nodes, o(k) and d(k), representing the depot k as the initial and final nodes
of the allocated schedule of vehicle vk . Set Ak = {(o(k) × N ) ∪ (N × d(k)) ∪ E} is
the set of deadheading trips, where (N × d(k)) is the set of pull-in arcs to depot k,
and E = {(i, j)|(i, j) is a compatible pair of trips, i, j ∈ N } , (o(k)×N ) is the set of
pull-out arcs from depot k. Let ci j be the cost of transversing arc (i, j) ∈ Ak , which is
dependent on traveling and waiting costs. A path from o(k) to d(k) represents a feasi-
ble scheduling for a vehicle in depot k. TheMDVSP network can be represented by its
adjacency matrix MDVSP|K |+|N |×|K |+|N |, with MDV SP[i][ j] = ci j if (i, j) ∈ Ak

is a compatible pair of trips, and MDV SP[i][ j] = −1 otherwise.
Define �k as the set of all feasible set of paths in Gk, k ∈ K . Let p ∈ �k be a

feasible schedule with cost cp. For each path p ∈ �k , aip = 1 iff node i ∈ N is visited
in path p, aip = 0 otherwise. Using binary variable θp, with θp = 1 if schedule p is
in the solution, θp = 0 otherwise, the MDVSP can be formulated as a set partitioning
type problem as follows:

min
∑

k∈K

∑

p∈�k

cpθp (1)
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st∑

k∈K

∑

p∈�k

aipθp = 1 ∀i ∈ N (2)

∑

p∈�k

θp ≤ υk ∀k ∈ K (3)

θp ∈ {0, 1} ∀p ∈ �k, k ∈ K (4)

The objective function (1) seeks tominimize the total costs involved. Constraints (2)
assure that each trip i ∈ N is visited by only one schedule p ∈ �k , while constraints (3)
ensure that the capacity of each depot is respected. Constraints (4) define the domain
of the decision variable.

3 Method

The framework of the proposed heuristics can be described as follows:

Step 1: State space reduction of the problem by applying:
Step 1.1: k-Single Depot VSP (SDVSP), k = 1, . . . , K , based selection pro-

cedure (selection R1);
Step 1.2: Relaxed-MDVSP selection procedure (selection R2);

Step 2: Solution of the reduced problem by employing a modified truncated CG pro-
cedure.

Themethod is basically a two-step approach. The first step is a state space reduction
method intended to reduce the set of variables to a smaller, but relevant, subset of vari-
ables, decreasing the complexity of the instances. The second step solves the reduced
state space problem using an improved truncated column generation approach towards
accelerating the CG stabilization, including the use of an initialization procedure based
on the solutions of the |K |-SDVSPs.

3.1 State space reduction

In VSPs, it is natural that some trips are geographically more distant from others. In
addition to the geographical issue, there are also incompatibility issues. This means
that trips that are close geographically can be far apart due to the time in which they
must start, while others may be compatible in terms of timing, but geographically
infeasible. Several variables in the problem become too costly to be considered as
viable alternatives in an optimal or close to optimal solution, both due to distance
or timing issues. As a consequence, although the complete space is very large, the
set of “relevant” variables (with high chance of being in the final solution) is much
smaller. In fact, very few variables from the complete space state will be in the final
solution. Rooted on this observation, we developed two selection procedures, which
main objective is to identify a smaller, but representative, solution space state. Pull-
in and pull-out arcs cannot be reduced, since this led to the CG solution process to
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become unstable, not finding feasible solutions for some problem instances. Next, the
selection procedures developed are discussed in details.

3.1.1 k-SDVSP based selection procedure (selection R1)

The goal of this procedure is to identify “relevant” variables that are selected by any
solution of all |K |-SDVSPs. The reasoning behind this procedure is quite intuitive.
If a variable is not chosen as a solution considering |K |-SDVSPs, then it would have
small chance to be chosen as a candidate solution when considering the MDVSP.
Based on this reasoning, this selection procedure consists in efficiently solving |K |
individual SDVSPs. The arcs found in any of the solved SDVSPs configures the
reduced connection graph, represented by matrix MDVSPr , with a similar structure
to matrix MDVSP, in which MDV SPr [i][ j] = MDV SP[i][ j] if arc (i, j) is in
the solution of any k-SDVSP, k ∈ K ; and MDV SPr [i][ j] = −1, otherwise. Matrix
V SPk is easily obtained from MDVSP by taking into consideration only the pull-in
and pull-out arcs to and from depot k, respectively. This structure enables to solve each
SDVSP as an assignment problem (AP) following Paixão and Branco [14]. There are
several specially designed algorithms to solve linear AP. Based on results reported by
Dell’Amico and Toth [3], the algorithm LAPJV developed by Jonker and Volgenant
[7] was employed to solve each SDVSP. Algorithm 1 outlines this selection procedure.
The LAPJV algorithm has a complexity of O(n2. log n). As Algorithm 1 is executed
|K | times, the complexity of the selection procedure is O(|K |n2. log n).

Algorithm 1 k-SDVSP Based Selection Procedure
MDV SPr [i][ j] ← MDV SP[i][ j], i = 1, . . . , |K |, j = 1, . . . , |K | + |N |
MDV SPr [i][ j] ← MDV SP[i][ j], i = |K | + 1, . . . , |K | + |N |, j = 1, . . . , |K |
for all k ∈ K do
Generate matrix SDVSPk from matrixMDVSP
Solution ← LAPJV(SDVSPk )
if arc (i, j) ∈ Solution then
MDV SPr [i][ j] ← MDV SP[i][ j]

end if
end for

3.1.2 Relaxed-MDVSP selection procedure (selection R2)

This procedure uses the solution of a relaxed formulation of the MDVSP, relaxed-
MDVSP, as the selection criterion of the variables to be included in the reduced state
space. Basically, the relaxed-MDVSP is a relaxation of the multicommodity formula-
tion of the MDVSP [10], in which vehicles are allowed to end its sequence of trips in
different depots from where they started from. In order to present the formulation of
the relaxed-MDVSP, it is necessary to define the associated underlying network. Let
G = 〈V, A〉 be a digraph, where V = 1, . . . , n is the vertex set containing a node
for each service trip i ∈ N , and A is the set of arcs representing the deadheading
trips between compatible service trips. Let G∗ = 〈V ∗, A∗〉 be the graph with nodes
in V ∗ = V ∪ K , and arcs in A∗ = A ∪ A1 ∪ A2, where A1 = {(i, j)|i ∈ K , j ∈ V }
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represents the set of pull-out arcs from depots, and A2 = {(i, j)|i ∈ V, j ∈ K } the set
of pull-in arcs to depots. Introducing the decision variable xi j , representing the flow
in arc (i, j), the formulation for the relaxed-MDVSP is as follows:

min
∑

(i, j)∈A

ci j xi j

st ∑

j :(i, j)∈A∗
xi j = 1 ∀i ∈ V (5)

∑

j :(k, j)∈A1

xk j ≤ vk ∀k ∈ K (6)

∑

i :(i,k)∈A2

xk j ≤ vk ∀k ∈ K (7)

∑

j :( j,i)∈A∗
x ji −

∑

j :(i, j)∈A∗
xi j = 0 ∀i ∈ V (8)

xi j ≥ 0 ∀(i, j) ∈ A∗ (9)

The objective of this formulation is tominimize the total deadheading costs. Constraint
(5) ensure that each task is executed exactly once by a vehicle. Constraints (6) and (7)
limit the number of vehicles that can be used from each depot, while constraints (8) are
flow conservation constraints which define a multiple-path structure for each depot.
Constraint (9) defines the range of the decision variable. This problem can be seen as
a minimum cost flow problem. Since all capacities and demands are integral in the
relaxed-MDVSP, the solution of this problem is composed of integer variables [17].

The selection procedure based on the solution of the relaxed-MDVSP is very sim-
ilar to Algorithm 1, in which the relaxed model is solved just once by a commercial
linear programming solver. If arc (i, j) is in the solution of the relaxed-MDVSP then
MDV SPr [i][ j] = MDV SP[i][ j], MDV SPr [i][ j] = −1 otherwise.

3.2 Modified truncated column generation

Column generation is a well-known method to solve MDVSP [13,16]. As the number
of paths is huge, they are generated dynamically based on a Dantzig–Wolfe decom-
position, in which the restricted master problem (RMP) is a linear relaxation of model
(1)–(4) and the subproblems are the shortest path problems on the networkGk, k ∈ K .
Dual variables πi and βk are associated with constrains (2) and (3), respectively. At
iteration t , the modified costs of arc (i, j) ∈ Ak is computed by ci j −π t

i , if i ∈ N , and
ci j − β t

i , if i = o(k). The RMP is solved for each iteration to a subset of variables θp.
The dual variables of the RMP are used in the subproblems to both test the optimal
solution (if the reduced costs of all variables are all non-negative) and to generate new
columns (paths found in the subproblems which reduced cost is negative).

Our CG approach toward solving the reduced MDVSP problem is based on the
truncated CG algorithm described in Pepin et al. [15]. The algorithm requires three
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predefined parameters, namely Zmin , I , and �min . The algorithm terminates early
if the optimal value of the RMP has not decreased by more than Zmin in the last I
iterations. Parameter �min is a threshold value in the rounding of variables θp toward
an integer solution. However, we introduced some changes to this algorithm. The
modified algorithm uses two different (but similar) formulations to solve the reduced
MDVSP problem. One problem is the traditional RMP as presented by Ribeiro and
Soumis [16]. The second formulation, called the relaxed restricted master problem
(RRMP), replace constraints (2) by the following constraints:

∑
k∈K

∑
p∈�k aipθp ≥ 1 ∀i ∈ T (10)

keeping the same objective function and remaining constraints. These two problems
have different dual solutions. The rationale behind this change is to restrict the dual
variables in sign [11]. Let πi and π

′
i ,∀i ∈ N be the dual variables of constraints

(2) and (10), respectively. In the standard CG procedure, the optimal solution of the
RMP is obtained when the reduced costs of the corresponding path variables are non-
negative. This cost is computed by the expression ci j − πi at each iteration of the
method. Since πi can assume negative values given the equality in constraints (2), the
reduced cost may be positive for several iterations. As a consequence, the convergence
of the method can be rather slow, since the RMP objective function can decrease very
slowly. As π

′
i can only assume positive values, we expect that the reduced costs of

paths p obtained in the subproblems, ci j −π
′
i , will be often disturbed when compared

with the standard CG. Better bounds are often found, since the dual solutions are more
frequently changed. Since the solution of the RRMP does not respect all restrictions
in the MDVSP, this model can be used until the problem becomes “stagnated”, e.g.,
when the subproblems were not able to generate new columns, since all reduced costs
are positive. At this stage, we change the RRMP to the standard RMP. The solution
process continues until an integer solution of variables θp is found.

Another change introduced was in the way the columns are inserted in the master
problem. The algorithm described by Pepin et al. [15] insert at most |K | columns at
each iteration of the CG procedure, depending on the sign of the reduced cost of each
k ∈ K subproblem. The master problem, with these new columns, is solved once at
the beginning of the next iteration of the CG procedure. Our approach uses the tradi-
tional way of selecting columns to insert in the current master problem. However, it
solves the master problem right after a new column is inserted. During experimenta-
tion, we noticed that the inclusion of several columns at each instance was generating
many similar columns, unnecessarily solving several subproblems. This problem was
observed in several CG applications [11]. Although this procedures solves initially a
higher number of master problems, the use of updated duals helps to stabilize the CG,
resulting in better convergence.

4 Computational results

The performance of the heuristic approach was evaluated in a set of instances avail-
able at the public site http://people.few.eur.nl/huisman/instances.htm, referred to as
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Huisman’s website. The instances comprise problems sizes with 4 and 8 depots and
500, 1000, and 1500 trips, totaling 30 test problems. The number of depots (m), the
number of trips (n) and the instance id (s0, s1, s2, s3, and s4) are indicated in the name
of the instance. We have set the fixed costs of the depots pull-in and pull-out arcs
high enough (a total of 10,000) to allow the minimum cost flow problem determine
the optimal number of vehicles required for the whole journey, following Pepin et
al. [15]. The proposed heuristics were implemented in C++ and used CPLEX 12.5
to solve the linear programming models involved in the CG and in selection R2. All
experiments were performed on a computer Intel Core I5-3210 processor running at
2.80 GHz under Linux kernel 3.12 (64 bits) with 8 GB of RAM.

CG requires an initial solution. Initially, we replicated the use of artificial variables
penalized by a big-M cost as defined in Pepin et al. [15]. However, we faced a solution
process that led to poor convergence and very high CPU times for all instances. CG
required excessive time tofind solutionswithout artificial variables in the basic solution
of the RRMP. Although a good initial solution cannot guarantee a good convergence
process [11], we decided to use the paths obtained by Algorithm 1 as an initial set of
columns to the RRMP, regardless of applying selection R1. Its primal optimal solution
is used to compute an initial solution for the MDVSP, offering an upper bound on the
integer optimal value. Its dual solution provides a lower bound on the RRMP.

The following notation is used to indicate the implemented algorithms: (i)
MTCG—themodified truncated column generation using the initialization routine, (ii)
R1—state space reductionof the problembyapplyingonly selectionR1; (iii)R2—state
space reduction of the problem by applying only selection R2; (iv) R1 + R2—state
space reduction of the problem by applying selection R1 and R2. The last three algo-
rithms are variants of the developed heuristic and use MTCG to solve the reduced
space state in the second phase of the heuristic approach.

The settings of CG parameters were carried out during the experiments. The best
quality results were obtainedwith small values of Zmin and large values of I and�min .
The best solutions were found with Zmin = 0. Concerning the number of minimum
iterations, MTCG obtained good solutions with I = 5. As we reduced the state space
of an instance to be solved by the CG procedure, it was necessary to increase the value
of this parameter to I = 30, as a compensation factor. Regarding�min , good solutions
(in terms of quality and efficiency) were obtainedwith this value either set to 0.8 or 0.9.

Table 1 presents a detailed comparison of the developed algorithms for the 30
instances in Huisman’s website, concerning solution quality. For each algorithm,
Table 1 displays the optimal solution found and the solution gap (in %). The gaps
were computed using GAP = 100 × (V−V B)

V B , where V is the value computed by
the evaluated method and V B is the solution value informed in Huisman’s website.
Average and maximum gaps (in %) in relation to Huisman’s best available solutions
(using CPLEX, truncated branch-and-cut, or TCG) were also reported in this table. As
all developed algorithm have succeeded to find the same optimal number of vehicles
as presented by Huisman’s website for all instances, we decided to omit these values
for economy’s sake. We refer to this website for the obtained values.

MTCG obtained very similar results to the ones reported by Huisman’s site, with
gaps below 0.16% for all instances. These gaps could be decreased for some instances,
if a loss of efficiency is tolerated, since the solutions presented in Table 1 are good
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Table 1 Solution quality comparison with Huisman’s results

Instance Huisman MTCG Selection R1 Selection R2 Selection R1 + R2

Solution Solution Gap Solution Gap Solution Gap Solution Gap

m4n500s0 1,289,114 1,289,280 0.01 1,297,940 0.68 1,300,900 0.91 1,296,600 0.58

m4n500s1 1,241,618 1,241,970 0.03 1,247,940 0.51 1,247,170 0.45 1,247,960 0.51

m4n500s2 1,283,811 1,284,360 0.04 1,292,650 0.69 1,298,200 1.12 1,291,547 0.60

m4n500s3 1,258,634 1,259,290 0.05 1,267,820 0.73 1,267,260 0.69 1,266,780 0.65

m4n500s4 1,317,077 1,317,310 0.02 1,323,870 0.52 1,325,750 0.66 1,322,490 0.41

m4n1000s0 2,516,247 2,516,580 0.01 2,539,920 0.94 2,539,430 0.92 2,534,440 0.72

m4n1000s1 2,413,393 2,414,020 0.03 2,436,200 0.95 2,443,230 1.24 2,427,680 0.59

m4n1000s2 2,452,905 2,454,390 0.06 2,467,880 0.61 2,463,880 0.45 2,461,690 0.36

m4n1000s3 2,490,812 2,491,950 0.05 2,506,060 0.61 2,507,770 0.68 2,503,240 0.50

m4n1000s4 2,519,191 2,523,100 0.16 2,525,980 0.27 2,524,680 0.22 2,524,420 0.21

m4n1500s0 3,830,912 3,832,930 0.05 3,855,030 0.63 3,861,470 0.80 3,853,490 0.59

m4n1500s1 3,559,176 3,560,920 0.05 3,571,280 0.34 3,570,820 0.33 3,570,820 0.33

m4n1500s2 3,649,757 3,650,790 0.03 3,676,580 0.73 3,669,560 0.54 3,662,380 0.35

m4n1500s3 3,406,815 3,408,510 0.05 3,436,530 0.87 3,428,770 0.64 3,435,040 0.83

m4n1500s4 3,567,122 3,567,740 0.02 3,591,240 0.68 3,588,810 0.61 3,589,170 0.62

m8n500s0 1,292,411 1,292,590 0.01 1,302,270 0.76 1,300,370 0.62 1,300,810 0.65

m8n500s1 1,276,919 1,277,300 0.03 1,285,350 0.66 1,284,500 0.59 1,284,080 0.56

m8n500s2 1,304,251 1,304,530 0.02 1,310,880 0.51 1,309,920 0.43 1,309,930 0.44

m8n500s3 1,277,838 1,278,030 0.02 1,286,140 0.65 1,284,550 0.53 1,284,590 0.53

m8n500s4 1,276,010 1,276,210 0.02 1,283,890 0.62 1,282,690 0.52 1,282,760 0.53

m8n1000s0 2,422,112 2,422,410 0.01 2,440,000 0.74 2,439,170 0.70 2,438,330 0.67

m8n1000s1 2,524,293 2,524,640 0.01 2,536,730 0.49 2,534,950 0.42 2,535,240 0.43

m8n1000s2 2,556,313 2,556,320 0.00 2,571,010 0.57 2,578,960 0.89 2,569,170 0.50

m8n1000s3 2,478,393 2,478,390 0.00 2,488,730 0.42 2,488,060 0.39 2,487,920 0.38

m8n1000s4 2,498,388 2,499,840 0.06 2,509,520 0.45 2,509,960 0.46 2,508,890 0.42

m8n1500s0 3,500,160 3,500,580 0.01 3,522,880 0.65 3,520,360 0.58 3,520,520 0.58

m8n1500s1 3,802,650 3,802,480 0.00 3,815,900 0.35 3,840,640 1.00 3,813,860 0.29

m8n1500s2 3,605,094 3,605,680 0.02 3,627,980 0.63 3,625,970 0.58 3,625,950 0.58

m8n1500s3 3,515,802 3,516,100 0.01 3,534,960 0.54 3,531,310 0.44 3,531,480 0.45

m8n1500s4 3,704,953 3,705,220 0.01 3,729,960 0.67 3,726,310 0.58 3,726,490 0.58

Average 0.03 0.62 0.63 0.51

Maximum 0.16 0.95 1.24 0.83

trade-off values between running time and quality. Better quality solutions could be
obtained by increasing CG parameters I and �min . In terms of efficiency, MTCG also
presented competitive values with the results reported by Pepin et al. [15], on average
reducing the CPU times in around 32 %. This reduction was expected, considering
the use of more modern computational resources. MTCG efficiency is justified by the
different path structures in the subproblems of the CG procedure, resulting from the
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introduced changes described in Sect. 3.2. Given the obtained results, MTCG was
considered a valid and competitive CG implementation for the MDVSP.

Table 2 compares the optimality gap of our developed algorithmswith the following
state-of-the-art solutions reported in the literature [9,12,15] for each category instance:
(i) Lagrange relaxation (LR); (ii) large neighborhood search combinedwithCG (LNS);
(iii) Tabu search (TS); (iv) Ejection chain based approach (EC); and (v) variable depth
search algorithm (VDS). The optimality gaps were computed as follows:

Optimality GAP (in%) = 100 × (V A − Vbest )

Vbest

where Vbest is the best known solution, and V A is the solution value obtained by the
algorithm being compared, say algorithm A. The values presented in this table refer
to the best solution found for each instance category.

Table 3 shows the average CPU time spent for each algorithm to find the best solu-
tion values, comparing them with the CPU times reported by Pepin et al. [15] and
Otsuki and Aihara [12], called as VDS in the table. It is important to notice that this
efficiency comparison with the CPU times presented by Pepin et al. [15] and Otsuki
and Aihara [12] should be viewed with extreme cautions, since we performed the
experiments 6 years after the former research work, and using different experimental
conditions of both studies. Although we employed faster hardware and softwares, the

Table 2 Solution quality comparison of the developed algorithms with other methods

Category Optimality gaps (%)

LR LNS TS EC VDS MTCG R1 R2 R1 + R2 CG

m4n500 3.12 2.18 10.92 1.85 1.29 0.01 0.51 0.45 0.41 0.17

m4n1000 3.88 1.41 8.31 1.22 1.05 0.01 0.27 0.45 0.21 0.33

m4n1500 5.54 2.05 10.78 1.86 1.40 0.02 0.34 0.33 0.33 0.41

m8n500 5.54 2.05 17.87 3.00 2.26 0.01 0.51 0.43 0.44 0.55

m8n1000 6.59 3.25 19.65 2.47 2.26 0.00 0.42 0.39 0.38 0.67

m8n1500 10.15 3.69 20.82 2.84 2.44 0.00 0.35 0.44 0.29 0.84

Table 3 Solution efficiency comparison of the developed algorithms with other methods

Category Average CPU time (s)

Pepin et al. [15] VDS MTCG R1 R2 R1 + R2

m4n500 77 71 62 3 4 4

m4n1000 651 612 423 7 22 28

m4n1500 2203 2012 868 56 86 79

m8n500 119 109 175 6 13 8

m8n1000 857 787 1380 73 103 97

m8n1500 3085 2800 1813 182 208 199
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direct implementation of the truncated CG presented in Pepin et al. [15], using C++
and CPLEX 12.5, took excessive CPU time. In order to obtain comparable CPU usage
we needed to implement our MTCG with the initialization process described above.
TheCPU times reported byPepin et al. [15]were obtained usingGENCOL, a computer
program specially designed to solve a broad class of routing and scheduling problems.
Such softwares employ special routines to substantially reduce the CPU time to solve
a problem. However, the majority of these softwares are not of public domain, with
a cost beyond the budget of the average transport company in development countries.
As a consequence, we would like to point out that a precise comparison can only be
carried out among our developed algorithms, having the same data structure and the
same CPLEX parametrization. Only rough comparisons can be made using Pepin et
al. [15] and Otsuki and Aihara [12]’s results.

Tables 1, 2, and 3 show that the variants of the developed heuristics, in general,
offer good quality solutions (some with very tight gaps) in comparison with other
methods, very efficiently. Table 2 shows that our developed algorithms present the
best solution quality among the compared methods, overcoming mathematical pro-
gramming methods such as LR, metaheuristic methods such as TNS and EC, and local
search methods such as LNS and VDS. As expected, the solution quality improved
as the reduced state space is enlarged by the combination of selection procedures. An
opposite behavior is observed concerning the efficiency of the solution, characteriz-
ing a trade-off between CPU time and the optimal value of the objective function.
Algorithms R1 and R2 presented similar average solution gaps for the tested instances
(around 0.62 %). However, R2 presented a slightly higher maximum gap. Variant
R1 + R2 obtained the best objective function values among the reduction state space
based algorithms, with average and maximum gaps of 0.51 and 0.83 %, respectively.
All three variants were extremely fast in comparison with MTCG. R1 is roughly 21
times faster, on average, than MTCG; R2 is 13 time faster, on average, than MTCG;
while variant R1 + R2 is 14 times faster, on average, than MTCG. Variants R1, R2,
and R1 + R2 were 21, 16, and 17 times quicker, on average, than the CPU times
reported by Pepin et al. [15]; and 19, 14, and 15 times quicker, on average, when com-
pared with Otsuki and Aihara’s [12] CPU times. Moreover, this latter study claimed
that VDS shows the best short-term performance, since this method obtained a good
feasible solution in around 300 s CPU time for category m4n1500. Variants R1, R2,
and R1 + R2 obtained, for the same category, near best available solutions in one
quarter of this time, on average, making our developed heuristic framework a very
competitive short-term performance method for solving the MDVSP.

We could not define a pattern in the CPU times reduction based on our experiments.
For instance, variant R2 was on average quicker to solve instances with four depots,
while variant R1+R2 presented an opposite behavior. The best CPU times reductions
were obtained for instances with four depots and 1000 trips. Further experimentation
will be required to explain both behaviors.

Overall, the developed heuristic approach offered very competitive algorithms to
solve the MDVSP, specially variants R1 and R1 + R2. Both variants obtained very
good solutions, with maximum gaps below 1 % with very low CPU usage in compari-
son to previous reported results [12,15]. Variant R1+R2 offered the best compromise
solutions in terms of quality and efficiency. This variant can be a good option in con-
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texts and where solution quality is an important criterion. However, variant R1 was a
quite good surprise, finding best solution values with reasonable average solution gaps
(0.63%), but requiring theminimumCPU timeof all variants.We recommend its appli-
cation in real-time transportation logistics environments, where the MDVSP is solved
several times as a subproblem, and solution quality is an important, but no essential
criterion. Variant R2 was clearly dominated by the remaining variants. Nevertheless,
the final selection among these three variants is case dependent, and it will depend on
further experimentation, with a special attention on the settings of CG parameters.

5 Conclusion

In this paper, we presented a two-phase heuristic to solve theMDVSP. First, the heuris-
tics employs a combination of procedures to select, from the whole feasible solution
space, a good set of arcs to compose the solution of the problem. Each procedure is
based on the following selection criteria: (i) the set of paths found in the solution of |K |-
SDVSPs; and (ii) the set of paths found in the solution of a relaxed MDVSP formula-
tion, where the sequence of trips carried out by a vehicle can start and finish in different
depots. The selected set of arcs is then solved by using a modified truncated CG algo-
rithm. The developed approach led to very competitive method to solve the MDVSP.

Different combinations of the selection procedures were tested, resulting in three
different variants. On the one hand, variant R1 achieved narrow gaps to best-known
solutions (0.62% on average) with exceptional running times (roughly 34 times faster,
on average, than previous reported results). On the other hand, the variant R1+R2
offered the best trade-off between solution quality and running times. It was, on aver-
age, 16 times faster than previous reported results [12,15], obtaining solutions with
an average gap of around 0.5 %.

Future research is directed toward using the heuristic method to develop novel
approaches for solving both the real time vehicle recovery scheduling problem and
the integrated crew and VSP. In both problems, theMDVSP needs to be solved several
times as a subproblem. Moreover, we intend to alter the developed method to consider
the time–space network [8] as the underlying vehicle scheduling network.
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