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Abstract Consider a graph G = (V, E) and a vertex subset A ⊆ V . A vertex v

is positive-influence dominated by A if either v is in A or at least half the number
of neighbors of v belong to A. For a target vertex subset S ⊆ V , a vertex subset
A is a positive-influence target-dominating set for target set S if every vertex in S
is positive-influence dominated by A. Given a graph G and a target vertex subset S,
the positive-influence target-dominating set (PITD) problem is to find the minimum
positive-influence dominating set for target S. In this paper, we show two results: (1)
The PITD problem has a polynomial-time (1 + log� 3

2��)-approximation in general
graphs where � is the maximum vertex-degree of the input graph. (2) For target set S
with |S| = �(|V |), the PITD problem has a polynomial-time O(1)-approximation in
power-law graphs.
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1 Introduction

Consider a graph G = (V, E) and a vertex subset A ⊆ V . A vertex v is positive-
influence dominated by A if either v is in A or at least half the number of neighbors
of v belong to A. The positive-influence dominating has been studied extensively in
the literature [6,12,14] due to its applications in social networks.

A positive comment produces a positive-influence and a negative comment gen-
erates a negative-influence. Every person is influenced by his friends positively or
negatively, and tends to adopt a behavior with more positive-influence. For example,
more children begin smoking when parents are smoking [10]. This is the background
of the concept of positive-influence dominating.

Suppose a companywants to advertise its product by sending out some free samples
for generating positive-influence for dominating a group of target members in a social
networks. For example, if the product iswoman’s clothing, then the target group should
consist of only women. To dominate all target members by positive-influence, how
can samples used be distributed to minimize the total number of free samples? This
viral marketing problem can be formulated as the positive-influence target-dominating
set (PITD) problem in the following way: given a graph G and a subset S of vertices,
find the minimum vertex subset A such that every vertex in S is positive-influence
dominated by A. Each vertex in S is called a target and S is called a target set. In this
paper, we show two results:

1. The PITD problem has a polynomial-time [log� + O(1)]-approximation in gen-
eral graph G where � is the maximum vertex-degree of G.

2. For target set S with |S| = �(|V |), the PITD problem has a polynomial-time
O(1)-approximation in power-law graphs.

2 Preliminaries

Consider a finite set X and a function f : 2X → �. Function f is called a submodular
function if for any two subsets A and B of X ,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

Function f is monotone nondecreasing if

A ⊂ B ⇒ f (A) ≤ f (B).

Amonotone nondecreasing submodular function f with f (∅) = 0 is called a polyma-
troid function. The followings arewell-known properties of submodular andmonotone
nondecreasing functions and polymatroid functions, which can be found in [8,11,13].
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Lemma 1 Function f is monotone nondecreasing submodular if and only if for any
element x ∈ X, and two subsets A and B with A ⊂ B,

�x f (A) ≥ �x f (B)

where �x f (A) = f (A ∪ {x}) − f (A).

Lemma 2 Suppose f is a monotone nondecreasing submodular function. Then for
any constant c, min(c, f ) is monotone nondecreasing submodular. Moreover, if f is
a polymatroid function and c > 0 is a constant, then min(c, f ) is also a polymatroid
function.

Lemma 3 If f and g are two polymatroid functions, then f + g is also polymatroid.

Consider a polymatroid function f on 2X and a nonnegative cost function c :
X → �+. Define c(A) = ∑

v∈A c(v). The following is called the submodular cover
problem:

min c(A)

subject to A ∈ �( f )

where �( f ) = {A | f (A) = f (X)}. There is a greedy approximation algorithm with
a Theorem on its performance for the submodular cover problem which can found in
[8,13].

Greedy Algorithm SC
A ← ∅;
while f (A) < f (X) do

choose x = argmaxx∈X
�x f (A)
c(x)

and set A ← A ∪ {x};
output A.

Theorem 4 If f is a polymatroid integer function on 2X , then Greedy Algorithm SC
produces an approximation solution for the submodular cover problem within a factor
of 1 + ln γ from the optimal where γ = maxx∈X f ({x}).

3 In general graphs

Consider a graph G = (V, E) and a set of targets, S ⊆ V . For any v ∈ V , denote
degA(v) = |{(u, v) | u ∈ A or v ∈ A}|. For any vertex subset A, define

fS(A) =
∑

v∈S
min

(⌈
1

2
· deg(v)

⌉

, degA(v)

)

.

Then we have the following.
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Lemma 5 For any given subset of vertices S, fS is a polymatroid function.

Proof We claim that g(A) = degA(v) is a polymatroid function for any v ∈ V . Note
that g(∅) = 0. By Lemma 1, it is sufficient to show that for any vertex x ∈ V and two
vertex subsets A and B with A ⊂ B, �x g(A) ≥ �x g(B). We divide the proof into
three cases.

Case 1. v ∈ A. Then g(A) = g(A ∪ {x}) = g(B) = g(B ∪ {x}) = deg(v). Hence,
�x g(A) = �x g(B) = 0.

Case 2. v ∈ B \ A. Then g(B) = g(B∪{x}) = deg(v). Hence,�x g(A) ≥ �x g(B) =
0.

Case 3. v /∈ B. If v �= x , then we have

�x g(A) = g(A ∪ {x}) − g(A)

= |(A ∪ {x}) ∩ N (v)| − |A ∩ N (v)|
≥ |(B ∪ {x}) ∩ N (v)| − |B ∩ N (v)|
= �x g(B),

where N (v) is the set of neighbors of v. If v = x , then we have

�x g(A) = g(A ∪ {x}) − g(A)

= deg(v) − |A ∩ N (v)|
≥ deg(v) − |B ∩ N (v)|
= �x g(B).

Now, by our claim and Lemmas 2 and 3, fS is also a polymatroid function. �
Lemma 6 A vertex subset A is a positive-influence dominating set for target S if and
only if fS(A) = fS(V ).

Proof Note that v is positive-influence dominated by A if and only if � 1
2 · deg(v)� ≤

degA(v). Now, the lemma follows immediately from this fact. �
Theorem 7 Let a target set S be given. Then there exists a polynomial-time greedy
algorithm which produces an approximation solution for the PITD problem, within
a factor of 1 + ln� 3

2�� from the optimal where � is the maximum vertex degree of
graph G.

Proof By Lemma 6, �( fS) is the set of positive-influence dominating sets for target
S. Thus, finding the minimum positive-influence dominating set for target S is the
submodular cover problem with polymatroid function fS and constant cost function
c(u) = 1 for every vertex u.

By Lemmas 5, 6 and Theorem 4, Greedy Algorithm SC produces an approximation
solution within a factor of 1+ ln γ from the optimal where γ = maxu∈V fS({u}). Note
that

fS({u}) =
∑

v∈S
min

(⌈
1

2
· deg(v)

⌉

, deg{u}(v)

)

.
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In this sum, when v = u, the corresponding term is equal to � 1
2 · deg(u)� since by

our definition of degA(v), deg{u}(u) = deg(u). When v �= u and (v, u) ∈ E , the
coresponding term is equal to 1. When v �= u and (v, u) /∈ E , the corresponding term
is equal to 0. Therefore,

γ = max
u∈V fS({u})

≤ max
u∈V

(

deg(u) +
⌈
1

2
deg(u)

⌉)

= max
u∈V

⌈
3

2
deg(u)

⌉

≤
⌈
3

2
�

⌉

.

�

4 In power law graphs

Next, we move our attention to power law graphs. A graph G is said to belong to
class C(α, γ ) if G has no isolated vertex and, for k ≥ 1, the number of vertices with
degree k is � eα

kγ �. Clearly, the maximum vertex degree � = �eα/γ �. For the number n
of vertices and the number m of edges, we have

n =
�∑

k=1

⌊
eα

kγ

⌋

≤
�∑

k=1

eα

kγ
< 2n,

and

m = 1

2
·

�∑

k=1

k

⌊
eα

kγ

⌋

≤ 1

2
·

�∑

k=1

eα

kγ−1 < 2m.

Usually, an online social network varies as time changes, which can be formulated by
a family of power law graphs with a fixed γ . In this family,m and n are varied when α

is varied. Our study will emphase on a family of power law graphs with fixed γ > 2
because many social networks are such a family of power law graphs [1–5,9].

Let us first show some properties for such a family of power law graphs C(α, γ ).

Lemma 8 For any power law graph G ∈ C(α, γ ) with fixed γ > 2, n ≥ c1 ·m where
c1 is a constant depending on only γ .

Proof It suffices to show that n/m is greater than a positive constant. Let ζ(γ ) be the
Riemann Zeta function, i.e., ζ(γ ) = ∑∞

k=1
1
kγ . Then

n/m ≥ 0.5
∑�

k=1
1
kγ

0.5
∑�

k=1
1

kγ−1

>
ζ(γ )

ζ(γ − 1)
.

�
For any vertex subset A, denote deg(A) = ∑

v∈A deg(v).
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Lemma 9 Suppose G is a graph without isolated vertex and S is a target set. Let A
be a positive-influence target-dominating set in G. Then deg(A) ≥ 0.5 · |S|.
Proof Note that at least |S| vertices are positive-influence dominated by A and each
vertex has degree at least one. Thus, deg(S) ≥ |S|. Since A is a positive-influence
target-dominating set for target set S, each vertex v ∈ S has at least half the number
of neighbors in A. Hence, we have deg(A) ≥ 0.5deg(S) ≥ 0.5|S|. �

Lemma 10 For any constant c > 0 and γ > 2, there exists a constant c2 > 0, which
depends on only c and γ , such that for any graph G in class C(α, γ ) with fixed γ > 2
and any vertex subset A,

deg(A) ≥ cm ⇒ |A| ≥ c2n.

Proof Let k0 be the largest integer such that

|A| ≤
�∑

k=k0

⌊
eα

kγ

⌋

.

Then

cm ≤ deg(A) ≤
�∑

k=k0

eα

kγ−1 . (1)

Since
∑�

k=1
1

kγ−1 → ζ(γ −1) as� → ∞, there exists�0 > 0 such that for� > �0,
∑�

k=1
1

kγ−1 ≥ 0.5ζ(γ − 1), where �0 depends on only γ . Note that for 1 ≤ k ≤ �,

� eα

kγ � ≥ 1. Therefore, for 1 ≤ k ≤ �, � eα

kγ � > 0.5 · eα

kγ . Thus, for � > �0,

m = 1

2

�∑

k=1

k ·
⌊
eα

kγ

⌋

>
1

4

�∑

k=1

eα

kγ−1

≥ 1

8
ζ(γ − 1)eα.

Choose k1 > 0 such that

∞∑

k=k1

1

kγ−1 < cζ(γ − 1)/8.

Then k1 depends on only c and γ . Moreover, for � > �0,

cm >

∞∑

k=k1

eα

kγ−1 >

�∑

k=k1

eα

kγ−1 . (2)
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Comparing (2) with (1), we obtain k0 < k1. It follows that

|A| >

�∑

k=k1

⌊
eα

kγ

⌋

≥ 1

2

�∑

k=k1

eα

kγ
≥ n

2
·
∑�

k=k1
1
kγ

∑�
k=1

1
kγ

.

Since

∑�
k=k1

1
kγ

∑�
k=1

1
kγ

→
∑∞

k=k1
1
kγ

ζ(γ )
as � → ∞,

we can choose �1 ≥ �0 such that for � > �1,

∑�
k=k1

1
kγ

∑�
k=1

1
kγ

≥ β1 = 0.5

∑∞
k=k1

1
kγ−1

ζ(γ )
.

Here, �1 depends on k1 and γ , and hence depends on only c and γ . Therefore, for
� > �1,

|A| > n(β1/2).

For � ≤ �1, we note � = e�α/γ � and hence eα ≤ (�1 + 1)γ . Therefore,

n ≤
�∑

k=1

eα

kγ
≤ β2 =

�1∑

k=1

(�1 + 1)γ

kγ
.

Since |A| ≥ 1, we have that for � ≤ �1,

|A| ≥ n · 1

β2
.

Set c2 = min(β1/2, 1/β2). Then

|A| ≥ c2n.

Since β1 and β2 depend on only c and γ , c2 depends on only c and γ . �

Theorem 11 For any family of power-lar graphs G = (V, E) in C(α, γ ) with fixed
γ > 2 and target set S with |S| ≥ μn for a constant μ > 0, there exists a polynomial-
time approximation algorithm for PITD problem, with constant performance ratio
depending on only μ and γ .

Proof Suppose A is a positive-influence target-dominating set for target set S. By
Lemma 9, deg(A) ≥ 0.5|S|. Since |S| ≥ μn and n ≥ c1m by Lemma 8, we have
deg(A) ≥ 0.5|S| ≥ 0.5μn ≥ 0.5μc1 ·m. By Lemma 10, |A| ≥ c2n where c2 depends
on 0.5μc1 and γ , i.e., depends onμ and γ . Since |A| ≤ n, the ratio of sizes of any two
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positive-influence target-dominating sets is upper bounded by 1/c2. This means that
any positive-influence target-dominating set for target S is a (1/c2)-approximation
solution. �

Given a graph G = (V, E) and a fraction r with 0 < r ≤ 1, the positive-influence
partial-dominating set (PIPD) problem is to find the minimum vertex subset A such
that at least a portion r of vertices are positive-influence dominated by A. With above
approach, we can also show the following.

Theorem 12 For any family of powr-law graphs G in class C(α, γ )with fixed γ > 2,
the PIPD problem has a polynomial-time approximation with a constant performance
ratio depending on only γ and r.

Proof Suppose that at least rn vertices are positive-influence dominated by A and
each vertex has degree at least one. Let B denote the set of vertices positive-influence
dominated by A. Then |B| ≥ rn and deg(B) ≥ rn. Since each vertex v ∈ B has
at least a half number of neighbors in A, we have deg(A) ≥ 0.5rn. By Lemma 8,
deg(A) ≥ 0.5rn ≥ 0.5rc1 · m. By Lemma 10, |A| ≥ c2n, where c2 depends on only
r and γ . This means that every feasible solution for the PIPD problem is a (1/c2)-
approximation. �

5 Discussion

Note that the positive-influence dominating set (PIDS) problem in [6,7] is exactly
the PITD problem in case S = V and the PIPD problem in case r = 1. Therefore,
all lower bound results in [6,7] can be extended to the PITD problem and the PIPD
problem. Thus, we have the following.

Theorem 13 (a) In general graphs, the PITD (and the PIPD) problem has no
polynomial-time (0.5 − ε) ln n-approximation for any ε > 0 unless N P ⊆
DT IME(nO(log log n)).

(b) In power-law graphs, both the PITD and the PIPD problems are N P-hard.

This lower-bound indicates that the result in Theorem 7 is almost the best possible.
However, it is an open problem whether there exists a PTAS for the PITD (or the
PIPD) problem.

Acknowledgements Authors wish to thank referees for their insightful comments.
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