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Abstract We apply a flexible inexact-restoration (IR) algorithm to optimiza-
tion problems with multiobjective constraints under the weighted-sum scalarization
approach. In IR methods each iteration has two phases. In the first phase one aims to
improve the feasibility and, in the second phase, one minimizes a suitable objective
function. We show that with the IR framework there is a natural way to explore the
structure of the problem in both IR phases. Numerical experiments are conducted on
Portfolio optimization, the Moré–Garbow–Hillstrom collection, and random fourth-
degree polynomials, where we show the advantages of exploiting the structure of the
problem.
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1316 L. F. Bueno

1 Introduction

We consider the constrained optimization problem in the form:

min f (x) s.t. h(x) = 0, x ∈ �, (1)

where � ⊂ R
n is a polytope, f : Rn → R, h : Rn → R

m and both f and h have
Lipschitz continuous gradients.

One goal of this paper is to demonstrate the practical efficiency of the Flexible
Inexact Restoration algorithm introduced in [5]. In addition, we propose a way to
minimize an objective function over the Pareto set of a multiobjective problem, which
fits well with the case when the user already has a current decision. For this type of
formulation we show that the Inexact Restoration approach has several advantages.
Numerical tests concerning problems with this structure will be shown to elucidate
both the applicability of IRmethods in this situation as well as the gain in performance
resulting from the innovations proposed in [5].

Let us define the Flexible Inexact Restoration algorithm. See [5] for details.
For all x ∈ � and λ ∈ R

m , we define the Lagrangian L(x, λ) by:

L(x, λ) := f (x) +
m∑

i=1

λi hi (x).

Given a penalty parameter θ ∈ [0, 1], we consider, for all x ∈ �, λ ∈ R
m , the

sharp Lagrangian merit function:

�(x, λ, θ) := θL(x, λ) + (1 − θ)‖h(x)‖, (2)

where ‖ · ‖ is the Euclidean norm.

Algorithm Flexible Inexact Restoration with sharp Lagrangian.

Step 0. Initialization
Set parameters r ∈ [0, 1[ and s ∈ [0, r ]. As initial approximation we choose,

arbitrarily, x0 ∈ � and λ0 ∈ R
m . We initialize θ−1 ∈ ]0, 1[ and k ← 0.

Step 1. Restoration step
Compute yk+1 ∈ � such that:

‖h(yk+1)‖ ≤ r‖h(xk)‖. (3)

If this is not possible, the algorithm stops declaring a failure in the Restoration step.
Step 2. Estimation of Lagrange Multipliers
Compute λk+1 ∈ R

m as an approximation for the Lagrange multipliers associated
with the constraints h(x) = 0.

Step 3. Descent direction
Compute the direction dk as the solution of the following problem:

min
1

2
dT Hkd + ∇L(yk+1, λk+1)T d (4)
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s.t. ∇h(yk+1)T d = 0, yk+1 + d ∈ �, (5)

where Hk is an approximation to the Hessian of the Lagrangian.
Step 4. Globalization
Step 4.1 Penalty parameter computation
Compute θk as the supremum of the values of θ ∈ [0, θk−1] such that

�(yk+1, λk+1, θ) ≤ �(xk, λk, θ) + 1 − s

2
(‖h(yk+1)‖ − ‖h(xk)‖). (6)

Step 4.2. Line search
If ‖dk‖ = 0 we define tk := 1.
Otherwise, compute tk ∈]0, 1], the largest number of the form 2−�, � = 0, 1, . . .,

such that

L(yk+1 + tkd
k, λk+1) < L(yk+1, λk+1) (7)

and

�(yk+1 + tkd
k, λk+1, θk) ≤ �(xk, λk, θk) + 1 − r

2
(‖h(yk+1)‖ − ‖h(xk)‖). (8)

Step 4.3. Iteration update
Set

xk+1 = yk+1 + tkd
k, (9)

update k ← k + 1 and go to Step 1.
In [5] itwas proved that, under reasonable assumptions, the algorithm iswell defined

and every limit point of a sequence (xk, λk) generated by the Algorithm is a feasible
Karush–Kuhn–Tucker pair of (1).

2 Application to optimization with multiobjective constraints under the
weighted-sum scalarization

Inexact Restoration methods are useful in problems in which there is a natural way to
deal with feasibility and optimality in different phases. This is the case of Bilevel
Optimization problems [8], in which Restoration consists of minimizing a func-
tion of the state variables for fixed values of the controls [1,20]. In this section we
deal with Bilevel problems coming from the weighted-sum scalarization approach
to Multiobjective Optimization. Given q functions f1, . . . , fq , a set of constraints
hi (x) = 0, i = 1, . . . , p and a polytope � ⊂ R

n , we are interested in the multiobjec-
tive problem

Minimize ( f1(x), . . . , fq(x)) subject to h(x) = 0, x ∈ �. (10)
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1318 L. F. Bueno

There are some classical concepts of solution for multiobjective problems (e.g. see
[17]). One of them states that a feasible point x∗ of a multiobjective problem is called
a Pareto efficient solution, if there is no other feasible point x such that fi (x) ≤ fi (x∗)
for all i = 1, . . . , q and f (x) 
= f (x∗). In this paper we deal with a weak notion
of solution called weak Pareto efficiency, which states that there is no other feasible
point x such that fi (x) < fi (x∗) for all i = 1, . . . , q. Given non-negative weights
wi ≥ 0, i = 1, . . . , q with

∑q
i=1 wi = 1, we define Z(w) as the set of solutions of

the weighted-sum scalarization

Minimize (with respect to x)
q∑

i=1

wi fi (x) subject to h(x) = 0, x ∈ �. (11)

It can be shown that every solution in Z(w) is a weak Pareto efficient solution and
that these notions coincide under convexity. See [17].

Given xc ∈ R
n , we are interested in the following problem:

Minimize ‖x − xc‖2 subject to x ∈ Z , (12)

where Z = ⋃{Z(w) | wi ≥ 0, i = 1, . . . , q and
∑q

i=1 wi = 1}. Therefore, problem
(12) is an instance of the problem of Optimization over a subset of the weak Pareto
efficient set (see [4,7,26] and references therein). The objective function of (12) reflects
the necessity of taking a decision x with minimal variation with respect to a possible
previous decision xc. For instance, if the goals of a portfolio program are to maximize
profit and minimize variance it is natural to establish that the best multiobjective
solution is the one that differs less from the present portfolio.

Note that if we choose positive weights wi > 0, i = 1, . . . , q with
∑q

i=1 wi = 1,
solutions in Z(w) are true Pareto efficient solutions. In fact, it can be shown that, in
this case, solutions in Z(w) are proper Pareto solutions, in the sense that the marginal
gain in one criterion can not be made arbitrarily large relative to each of the marginal
losses in other criteria. See [14,16,17]. Therefore, if we consider (12) with Z replaced
by

⋃{Z(w) | wi ≥ ε, i = 1, . . . , q and
∑q

i=1 wi = 1}, where ε > 0 is a small
tolerance, we can recover proper Pareto solutions.We note that proper Pareto solutions
and solutions of Z(w)with positiveweights coincide under convexity [17].Also, under
suitable convexity and compacity assumptions, the set of proper Pareto solutions is
dense in the set of Pareto solutions. See [3,23].

We choose to search for weak Pareto solutions under the weighted-sum scalariza-
tion approach for simplicity, but many other scalarizations have been introduced for
nonconvex problems [6,9,10,22] and one could also consider them.

In order to develop an affordable algorithm for solving (12) we rely on Nonlinear
Optimization approaches. Problem (12) may be expressed as a standard Nonlinear
Programming problem replacing the constraint x ∈ Z with the KKT conditions of
the problem (11). However, the KKT conditions of (11) do not reflect accurately the
constraint x ∈ Z . This constraint imposes that x must be aminimizer of problem (11),
not merely a stationary point.
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For simplicity, let us describe here the situation in which (11) is an unconstrained
optimization problem. In this case, the Nonlinear Programming reformulation yields:

Minimize ‖x − xc‖2 subject to
q∑

i=1

wi∇ fi (x) = 0,
q∑

i=1

wi = 1, and w ≥ 0.

(13)

Problem (13) is a standard constrained optimization problem with n + q variables
(x andw), n+1 equality constraints, and bound constraintswi ≥ 0, i = 1, . . . , q. The
fulfillment of the constraints of (13) by a pair (x, w) is not sufficient to guarantee that
x ∈ Z(w), except in the case that all the functions are convex. Furthermore, non KKT
points of (11) may be attractors for nonlinear programming softwares when solving
(13). Consider, for example, that n = q = 1 and f1(x) = 3

4 x
4 − 7

3 x
3 + 5

2 x
2. In this

case x∗ = 0 is the only KKT point of (11), although x = 1 is a local minimizer of the
infeasibility measure | f ′

1(x)|. For this reason we have that x = 1 will be likely found
by a standard nonlinear optimization method when solving (13) with an initial point
close to x = 1.

When dealing with the constrained case, the situation is even harder. One could
have that a solution of problem (11) may not be a KKT point. Consider, for example,
that n = q = 1, f1(x) = x , and h(x) = x2. In this case x∗ = 0 is the solution of (11)
but the feasible set of the reformulated problem is empty.

On the other hand, the Inexact Restoration approach seems to be adequate for
these situations since, essentially, allows one to consider the problem (12) under a
formulation that evokes more properly the essence of the problem:

Minimize
1

2
‖x − xc‖2 subject to wi ≥ 0,

q∑

i=1

wi = 1, and

x is a minimizer of (11).

Moreover, assuming that, given a set of weights w1, . . . , wq , it is possible to mini-
mize, approximately,

∑q
i=1 wi fi (x), the Inexact Restoration necessarily finds a point

that fulfills the L-AGP optimality condition [2], not requiring constraint qualifica-
tions at all. The objective of this paper is to show how these theoretical properties are
reflected in practical computations.

In order to fully exploit the potentiality of IR we need to define the specific restora-
tion procedure that we want to employ. The natural procedure is, given the (generally
infeasible) current point (xk, wk), to keep fixed wk and to obtain the restored point
yk+1 by inexact minimization of the weighted function

∑q
i=1 wk

i fi (x).
Although the Restoration Phase of the IR algorithm involves only the variables

x , the Optimality Phase involves both vectors of variables x and w. Moreover, even
in the Optimality Phase, we are able to maintain the fulfillment of the constraints∑q

i=1 wi = 1 and w ≥ 0 throughout the process by means of the following definition
of the polytope � in (1):
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1320 L. F. Bueno

� =
{

(x, w) ∈ R
n+q |

q∑

i=1

wi = 1 and w ≥ 0

}
.

As a consequence, in the Optimization Phase wewill solve Quadratic Programming
problems with the constraints defined by � and the tangent space (involving both
variables x and w) to the manifold defined by

∑q
i=1 wi∇ fi (x) = ∑q

i=1 wk
i ∇ fi (xk).

Moreover, the presence of � as a constraint of all the Optimization Phases guarantees
the strength of the condition L-AGP in this case.

In the numerical experiments we used three families of problems.

1. Portfolios: This family of problems is related to the well-known Mean-Variance
problem in portfolio optimization. The investor aims to maximize return and
to minimize the risk of the investment. In our simulation we used seven shares
from the London exchange market: AZN.L, BARC.L, KGF.L, LLOY.L, MKS.L,
TSCO.L and VOD.L, plus a risk-free asset. We consider scenarios using the his-
torical data on daily returns from July 16 (2012) to October 10 (2012) available in
[25]. The expected profit was defined as f1(x) = −vT x and, using the variance as
a measure of the risk, we have that f2(x) = xT Mx , where v is the expected return
and M is the covariance matrix for the generated scenarios. Combining the data
of these assets we can generate as many assets as desired. Therefore, we could
address this problem using up to 1000 variables. The constraints of the multiob-
jective problem are

∑n
i=1 xi = 1 and xi ≥ 0 for all i = 1, . . . , n. We defined the

current decision xc as a random point that satisfies the constraints. Note that, in
this case, (11) is a linearly constrained optimization problem. This means that the
variables of the problem, as well as in the Optimization Phase of IR, are the primal
variables x , the optimal weights w, and the Lagrange multipliers of (11).

2. MGH-generated problems: The MGH Collection of Moré et al. [21] was used to
generate 120 different multiobjective problems. We used the functions 3, 4, 5, 9,
12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, and 35 of this collection and, for each pair
(i, j)(i 
= j) of this set we defined the problem in which f1 is the function i and
f2 is the function j . The number of variables n was defined to be the maximum
of ni and n j , where ni was the number of variables of the function i in the MGH
collection and n j was the number of variables of the function j . In all the problems
the domain was the box with bounds −10 and 10 and we defined xc = 0.

3. Quartic polynomials: The third class of problems with multiobjective constraints
consisted of considering two objectives where each one is a random fourth-degree
polynomial in several variables. For simplicity, we considered only separable poly-
nomials. The objective functions f1(x) and f2(x) were defined as

fi (x) =
n∑

j=1

ai j x
4
j + bi j x

3
j + ci j x

2
j + di j x j ,

where ai j was random in [0, 10] and bi j , ci j , and di j were randomly chosen in
[−10, 10]. The current decision xc was also random, with each coordinate between
−10 and 10. We considered three instances of this problem, with n ∈ {1, 10, 20}
and 100 different problems in each case.
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3 Implementation and numerical results

Our numerical tests were designed to check the effectiveness of the IR algorithms.
More precisely, our tests are designed to corroborate (or not) that the IR framework
provides a better alternative than the straightforwardNonlinear Programmingapproach
for minimizing a function over the stationary points of the weighted-sum scalarization
problem (11).

The code that implements IR was written in Fortran, employing double preci-
sion and the following computer environment: Intel(R) Core(TM) i5-2400 CPU @
3.10GHz with 4GB of RAM memory. For solving the quadratic subproblems in the
Optimization Phase we employed Fletcher’s subroutine qlcpd.f [12] and for Restora-
tion steps weminimized the weighted-sum scalarization problem (11) using Fletcher’s
filterSD.f. The problems (12)were solved using different Inexact Restoration instances
and were also tackled using a consolidated Constrained Optimization code using the
Nonlinear-Programming reformulation. For this purpose, we also employed Fletcher’s
filterSD.f [12], which uses Sequential Linearly Constrained Programming with glob-
alization provided by a Trust Region Filter scheme. Linearly Constrained subproblems
are solved by glcpd.f, which is a limited memory spectral gradient method based on
Ritz values. The subroutines qlcpd.f and filterSD.f were always used with their default
parameters [12].

At each iteration of the IR algorithm, before the execution of Step 1, we test the
stopping criteria

‖h(xk)‖ ≤ ε f eas (14)

and

‖P�(xk − [∇ f (xk) + ∇h(xk)λk]) − xk‖ ≤ εopt , (15)

where P� is the Euclidean projection operator onto �. In the experiments we used
ε f eas = εopt = 10−8. In the Initialization Step we chose x0 = xc, λ0 = 0, and
θ−1 = 0.99.

We tested four instances of the IR algorithm:

– FF: This version corresponds, essentially, to the the Fischer–Friedlander approach
to Inexact Restoration [11]. The approximations to the Lagrange multipliers are
all null, which means that the merit function is a nonsmooth penalty φ(x, θ) =
θ f (x) + (1 − θ)‖h(x)‖. The direction obtained in the optimization phase is the
projection of the gradient on the tangent space, which correspond to set Hk equal
to the identity in (4) for all the iterations. We also enforce a 50% improvement in
the feasibility phase and we set r = s = 0.5 for all k.

– Flex-FF: This is a flexible version of FF. In this version we still do not make use
of the Lagrange multipliers and we choose the direction at the optimization phase
as in the FF method. However we increase the chance of the optimization step to
be accepted by choosing r = 0.99 and taking s = 0.

– Q-FF: In this version we use φ(x, θ) = θ f (x) + (1 − θ)‖h(x)‖ as the merit
function. On the other hand we use the Lagrange multipliers estimators to set dk
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1322 L. F. Bueno

as the solution of the quadratic problem (4)–(5) with Hk = ∇2L(yk+1, λk+1),
where λk+1 is the vector of Lagrange multipliers of the subproblem solved at the
previous Optimization Phase subproblem. We set r = 0.5 and s = 0.

– New IR: This is the complete version the flexible Algorithm. Here we use r =
0.5, s = 0, and we use the approximations of Lagrange multipliers both in the
merit function as in the definition of the quadratic Hessian. In other words, we
obtain the direction dk as the solution of the quadratic problem (4)–(5) with Hk =
∇2L(yk+1, λk+1), and we use the sharp Lagrangian�(x, λ, θ) = θL(x, λ)+(1−
θ)‖h(x)‖ as the merit function.

The Nonlinear Programming reformulation of problem (12) consists of replacing
the constraint that says that x minimizes

∑q
i=1 wi fi (x) with the KKT conditions of

this problem. This approach will be denominated “KKT” form now on.
The results of the comparison of the IR approach against “KKT” are reported

below. Note that this is not a comparison between IR and the Nonlinear Programming
code described in [12] since, in fact, we used this Nonlinear Programming code, or
a subroutine of it, both in our Restoration and in our Optimization Phase. It is a
comparison between the approach that tries to solve (12) using the KKT conditions
as constraints, without further information, and the IR algorithms that employ the
minimization structure of those constraints.

1. Portfolios: All these problems were successfully solved both by the IR algorithms
as by the Nonlinear Programming reformulation using n ∈ {8, 100, 1000}. The
execution time for the two first cases was smaller than 1s and for n = 1000 it was
smaller than 1.5 s. This was expected due to convexity. Nevertheless, the running
time for the IR approach is compatible with the KKT approach.

2. MGH-generated problems: In Fig. 1 we show the data profile for the MGH-
generated problems. We note that by reformulating the lower level problem with
its KKT conditions, only 45% of the problems are solved, however, when the
problem is solved, the computer time is much smaller than the one used by the IR
algorithms. The original FF approach solves 85.8% of the problems, while Flex-
FF solves 79.17%. Therefore, the strategy of accepting more steps aiming to avoid
the Maratos effect, resulted in a weaker performance. On the other hand, the use
of second order information and Lagrange multipliers in Q-Flex really improves
the performance, increasing to 90.8% the number of solved problems. The full
IR version of the inexact restoration method including Lagrange multipliers at the
merit functions performed best in this test by solving 92.5% of the problems.

3. Quartic polynomials: We solved 100 problems for each value of n ∈ {1, 10, 20}.
In all the 300 problems the IR algorithm found a Pareto point. However, using the
KKT approach, we obtained Pareto points only in 87 problems with n = 1, 16
problems with n = 10 and none of the problems for n = 20. This shows that the
KKT reformulation approach can fail dramatically, while the IR approach finds a
reasonable solution.

4 Conclusions

Modern Inexact Restoration methods share the following characteristics:
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Fig. 1 Data profile for the 120 test problems based on the Moré-Garbow–Hillstrom test collection

– Very mild assumptions on the method are used for Restoration.
– Approximate minimization, on the tangent set, of a function that resembles
the objective function restricted to the feasible region (the function itself, the
Lagrangian, or their linear or quadratic approximations).

Different methods differ in two main aspects:

– Mechanism used to accept or reject trial points;
– Functions employed to compare a current iterate with a trial point.

With respect to the first item above we distinguish between methods that use trust
regions, filters or line searches. The second item distinguishes between methods that
use Lagrange multipliers in the comparison current-trial and those which rely only on
functional and constraint values.

With these parameters we are able to construct the following table, where we clas-
sify the methods by Martínez and Pilotta [19], Martínez [18], Gonzaga, Karas and
Vanti [15], Fischer and Friedlander [11] and the flexible method presented in [5].

Methods Mechanism Comparison current-trial

Martínez–Pilotta Trust regions Objective function and infeasibility

Martínez Trust regions Lagrangian and infeasibility

Gonzaga-Karas-Vanti Filters Objective function and infeasibility

Fischer–Friedlander Line searches Objective function and infeasibility

Flexible method Line searches Lagrangian and infeasibility
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1324 L. F. Bueno

The methods of Fischer and Friedlander and the flexible one presented in [5] are,
in principle, preferable over the ones of Martínez and Pilotta and Martínez because
they allow one to truly prove boundedness of the penalty parameter. Boundedness
arguments are also present in the other methods but only in proofs by contradiction.
(In [18,19] boundedness is proved under the false assumption of non-convergence.
Therefore, the penalty parameters could be unbounded for thesemethods in the case of
convergence). A boundedness proof for the methods given in [18] and [19] remains to
be an open problem. Of course this question makes no sense in the case of filter-based
methods.

Methods based on Lagrangians should be less prone to Maratos-like effects than
methods based only on the true objective functions. Lagrangians on the tangent space
are better representations of the objective function on the feasible region than the true
objective function, a fact that leads one to conjecture that Newtonian methods based
on Lagrangians share the non-Maratos properties of unconstrained Newton methods,
for which the unitary step is always acceptable. However, the proof that the methods
in which the merit function is the sharp Lagrangian are Maratos-free is still an open
problem.

The Inexact Restoration framework fits well to problems that have some structure
that can be explored in the Restoration and/or in the Optimization phase. We intro-
duced a new approach to minimize a function over the Pareto set of a multiobjective
problem, under the weighted-sum scalarization approach. Those problems have the
appropriate structure to be solved with Inexact Restoration algorithms. We tested our
algorithms using a set of problems that includes Portfolio Decisions, 120 problems
derived from the MGH collection, and 300 fourth degree polynomial problems. The
numerical results show that most theoretical improvements contribute to a better prac-
tical performance of the algorithm.

Future research will include the application of alternative IR approaches to wider
families ofmultiobjective problems [24] and the application of the IR techniques intro-
duced in this paper to minimization on the Pareto frontier using more sophisticated
scalarizations [6,9,10,22]. Moreover, restoration procedures not based on scalariza-
tions [13] should also be analyzed from the point of view of Inexact Restoration.
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