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Abstract By using the generalized Fermat rule, the Mordukhovich subdifferential
for maximum functions, the fuzzy sum rule for Fréchet subdifferentials and the sum
rule for Mordukhovich subdifferentials, we establish a necessary optimality condition
for the local weak sharp efficient solution of a constrained multiobjective optimiza-
tion problem. Moreover, by employing the approximate projection theorem, and some
appropriate convexity and affineness conditions, we also obtain some sufficient opti-
mality conditions respectively for the local and global weak sharp efficient solutions
of such a multiobjective optimization problem.

Keywords Multiobjective optimization · Weak sharp efficiency · Optimality
conditions · Mordukhovich generalized differentiation

1 Introduction

In this paper, we consider the following multiobjective optimization problem with
equality and inequality constraints:

(MOP) min f (x) s.t. gi (x) ≤ 0, i ∈ I, h j (x) = 0, j ∈ J , x ∈ �,

where f : R
n → R

m with f (x) = ( f1(x), f2(x), . . . , fm(x)) is a vector-valued
function, fk, k ∈ K, gi , i ∈ I and h j , j ∈ J are locally Lipschitz functions defined
on R

n , K = {1, 2, . . . ,m}, I = {1, 2, . . . , p} and J = {1, 2, . . . , q} are index sets,
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and� is a nonempty locally closed subset ofR
n . For simplicity, we denote the feasible

set of (MOP) by S := {x ∈ R
n | gi (x) ≤ 0, i ∈ I, h j (x) = 0, j ∈ J , x ∈ �}. Let

R
m+ and 0Rm denote respectively the nonnegative quadrant and origin of R

m . As we
know, a point x̂ ∈ S is said to be a local efficient solution for (MOP) iff there exists a
neighborhood U of x̂ such that

f (x) − f (x̂) /∈ −R
m+ \ {0Rm }, ∀x ∈ S ∩U.

Recall from [1–4] that a point x̂ ∈ S is said to be a local sharp efficient solution for
(MOP) iff there exists a neighborhood U of x̂ and a real number η > 0 such that

max
1≤k≤m

{ fk(x) − fk(x̂)} ≥ η‖x − x̂‖, ∀x ∈ S ∩U.

It is obvious that every local sharp efficient solution must be also a local efficient
solution. Specially, the local sharp efficient solution reduces to the standard local
sharp minima for scalar optimization problems when m = 1, that is, (MOP) has only
one object. We refer to [5–7] for more details.

In the past few decades, the multiobjective optimization, or generally vector
optimization, which is devoted to make an optimal decision with more than one
object, has received extensive attentions; see [8–11] and references therein. Recently,
investigation on the characterization of various efficient solutions for multiobjective
optimization problems, by virtue of the advanced tools of variational analysis and
generalized differentiation, has been of great interest in academic and professional
communities. Bao and Mordukhovich [12] studied the super efficiency for (MOP)
introduced by Borwein and Zhuang [13], and derived some verifiable necessary opti-
mality conditions by using modern variational principles and variational techniques.
Ginchev et al. [1] proposed the notion of local sharp efficient solution (equivalently,
strict local minimizer or isolated minimizer) for (MOP) and established some opti-
mality conditions by virtue of the Dini derivative. Subsequently, by means of the
Mordukhovich generalized differentiation and the normal cone, Chuong [3] obtained
a nonsmooth version of Fermat rule for the local sharp efficient solution of (MOP).
For more details, we refer to [4,14].

Just as we know, the local sharp efficient solution is closely related to the conver-
gence and stability analysis inmathematical programming; see [15–18] and references
therein. However, every local sharp solution is isolated in the solution set. In order to
overcome this difficulty, Burke and Ferris [19] proposed the concept of weak sharp
minima for scalar optimization problems, which allowed the solutions not to be iso-
lated. Furthermore, there were a lot of papers devoted to characterize the weak sharp
minima and study its applications in other standard optimality topics, such as varia-
tional inequalities, error bounds and algorithm analysis; see [6,7,20,21] and references
therein. Inspired by the afore-mentioned ideas, we pay our attention to the following
weaker efficiency, called weak sharp efficient solution, for (MOP).

Definition 1.1 A point x̂ ∈ S is said to be a local weak sharp efficient solution for
(MOP) iff there exist a neighborhood U of x̂ and a real number η > 0 such that

max
1≤k≤m

{ fk(x) − fk(x̂)} ≥ ηd(x,˜S), ∀x ∈ S ∩U,
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where ˜S := {x ∈ S | f (x) = f (x̂)} = S ∩ f −1( f (x̂)). Specially, if U = R
n , then x̂

is said to be a global weak sharp efficient solution for (MOP).

Comparing and contrasting the local weak sharp efficient solution, defined in Def-
inition 1.1, and the local sharp efficient solution, defined in [1–4], it is easy to verify
that the local sharp efficient solution x̂ ∈ S is isolated in the solution set˜S. While, the
local weak sharp efficient solution x̂ ∈ S may not be isolated in ˜S. Simultaneously, if
x̂ ∈ S is a local weak sharp efficient solution for (MOP), then it must be also a local
sharp efficient solution whenever x̂ is isolated in ˜S. Thus, the weak sharp efficiency
not only solves the isolation of the sharp efficiency, which is rigorous in real appli-
cations, but also provides a more general and easier accessible form for our analysis.
Moreover, characterizations on the weak sharp efficiency for (MOP), similar to the
scalar case, are very important and useful to study the metric subregularity property
and growth condition for vector-valued functions, and the stability analysis for the
solution set-valued mapping to parametric vector optimization problems. For more
details, we refer to [21–24] and references therein.

The main purpose of the paper is to establish some generalized nonsmooth Fer-
mat rules for weak sharp efficient solutions of (MOP) in terms of the advanced tools
of variational analysis and generalized differentiation. We first establish a necessary
optimality condition for the local weak sharp efficient solution of (MOP) by means
of a nonsmooth version of generalized Fermat rules, the Mordukhovich subdifferen-
tial for maximum functions, the fuzzy sum rule for Fréchet subdifferentials and the
sum rule for Mordukhovich subdifferentials. Simultaneously, by using the isolation
of sharp efficient solutions, we immediately get a corresponding necessary condition
to [3, Theorem 3.5] for the sharp efficient solution. Moreover, we also obtain some
sufficient optimality conditions respectively for the local and global weak sharp effi-
cient solutions of (MOP) by employing the approximate projection theorem and some
appropriate convexity and affineness conditions. Our results about the weak sharp
efficiency for (MOP) are more general and extensive, and the methods used in this
paper are different form those in [1–4].

The rest of the paper is organized as follows. In Sect. 2, we recall some basic con-
cepts, properties and tools generally used in variational analysis. Section 3 contains
the main results concluding a nonsmooth Fermat rule for the local weak sharp effi-
cient solution and some sufficient optimality conditions respectively for the local and
global weak sharp efficient solutions under some appropriate convexity and affineness
assumptions.

2 Preliminaries

The main tools for our study in this paper are the Mordukhovich generalized differ-
entiation notions which are generally used in variational analysis; see more details
in [6,25]. Throughout the paper, all spaces under consideration are finite dimen-
sional spaces denoted by R

n, n ∈ N, and the inner product and the norm of R
n

are denoted respectively by 〈•, •〉 and ‖ • ‖. In general, we denote by BRn the closed
unit ball in R

n , and B(x̂, δ) the open ball with center at x̂ and radius δ > 0 for any
x̂ ∈ R

n . For a nonempty subset S ⊂ R
n , we denote cl S, bd S and cone S by the

closure, boundary and cone hull of S, respectively. As usual, the distance function
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1290 S. K. Zhu

d(•, S) : R
n → R, the indicator function ψ(•, S) : R

n → R∪{+∞} and the support
function ψ∗(•, S) : R

n → R ∪ {+∞} of S are respectively defined by

d(x, S) := inf
y∈S ‖x − y‖, ∀x ∈ R

n,

ψ(x, S) := 0 if x ∈ S and ψ(x, S) := +∞, if x /∈ S,

and

ψ∗(x∗, S) := sup
x∈S

〈x∗, x〉, ∀x∗ ∈ R
n .

Given a point x̂ ∈ S, the set S is called closed around x̂ iff there is a neighborhoodU of
x̂ such that S∩U is closed. Moreover, if S is closed around every x̂ ∈ S, then S is said
to be locally closed. Let S be closed around x̂ . Recall that the contingent cone T (S, x̂)
of S at x̂ is T (S, x̂) := {v ∈ R

n | ∃vn → v, ∃tn ↓ 0 s.t. x̂ + tnvn ∈ S, ∀n ∈ N}, and
the Fréchet normal cone ̂N (S, x̂) of S at x̂ , which is a convex and closed subset of R

n

consisting of all the Fréchet normals, has the form

̂N (S, x̂) :=
⎧

⎨

⎩

x∗ ∈ R
n | lim sup

x
S−→x̂

〈x∗, x − x̂〉
‖x − x̂‖ ≤ 0

⎫

⎬

⎭

,

where x
S−→ x̂ means x → x̂ and x ∈ S. Specially, if x̂ /∈ S, we set ̂N (S, x̂) = ∅. The

Mordukhovich (or basic, limiting) normal cone N (S, x̂) of S at x̂ is defined by

N (S, x̂) :=
{

x∗ ∈ R
n | ∃xn S−→ x̂, ∃x∗

n → x∗ with x∗
n ∈ ̂N (S, xn), ∀n ∈ N

}

.

Specially, if S is convex, then it follows T (S, x̂) = cl cone (S − x̂) and

̂N (S, x̂) = N (S, x̂) = T (S, x̂)◦ = {

x∗ ∈ R
n | 〈x∗, x − x̂〉 ≤ 0, ∀x ∈ S

}

.

Let h : R
n → R ∪ {+∞} be an extended real-valued function and let x̂ ∈ dom h,

where dom h := {x ∈ R
n | h(x) < +∞} denotes the domain of h. The analytic

ε-subdifferential̂∂aεh(x̂) of h at x̂ is defined by

̂∂aεh(x̂) :=
{

x∗ ∈ R
n | lim inf

x→x̂, x �=x̂

h(x) − h(x̂) − 〈x∗, x − x̂〉
‖x − x̂‖ ≥ −ε

}

.

Specially, when ε = 0, the analytic ε-subdifferential ̂∂aεh(x̂) of h at x̂ reduces to
the general Fréchet subdifferential, and is denoted bŷ∂h(x̂). The Mordukhovich (or
basic, limiting) subdifferential ∂h(x̂) of h at x̂ is defined by

∂h(x̂) :=
{

x∗ ∈ R
n | ∃xn h−→ x̂, ∃x∗

n → x∗ with x∗
n ∈ ̂∂h(xn), ∀n ∈ N

}

,
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where xn
h−→ x̂ means xn → x̂ and h(xn) → h(x̂). If x̂ /∈ dom h, then we set

̂∂h(x̂) = ∂h(x̂) = ∅. Obviously, ̂∂h(x̂) ⊂ ∂h(x̂) for all x ∈ R
n . Specially, we

get ̂∂ψ(x̂, S) = ̂N (S, x̂) and ∂ψ(x̂, S) = N (S, x̂). Simultaneously, ̂∂d(x̂, S) =
BRn ∩ ̂N (S, x̂) and ∂d(x̂, S) ⊂ BRn ∩N (S, x̂). Furthermore, if h is a convex function,
then we have

̂∂h(x̂) = ∂h(x̂) = {

x∗ ∈ R
n | 〈x∗, x − x̂〉 ≤ h(x) − h(x̂), ∀x ∈ R

n} .

Next, we recall some useful and important propositions and definitions for this
paper. First of all, the following necessary optimality condition, called generalized
Fermat rule, for a function to attain its local minimum plays a key role for our analysis.

Theorem 2.1 [6,25] Let h : R
n → R ∪ {+∞} be a proper lower semicontinuous

function. If h attains a local minimum at x̂ ∈ R
n, then 0Rn ∈ ̂∂h(x̂), which implies

0Rn ∈ ∂h(x̂).

We recall the following fuzzy sum rule for the Fréchet subdifferential and the sum
rule for the Mordukhovich subdifferential, which are important in the sequel.

Theorem 2.2 [6,25] Let f, h : R
n → R ∪ {+∞} be proper lower semicontinuous

around x̂ ∈ dom f ∩ dom h. If f is Lipschitz continuous around x̂, then

(i) for every x∗ ∈ ̂∂( f + h)(x̂) and every ε > 0, there exist x1, x2 ∈ B(x̂, ε) such
that | f (x1)− f (x̂)| < ε, |h(x2)− h(x̂)| < ε and x∗ ∈ ̂∂ f (x1)+̂∂h(x2)+ εBRn .

(ii) ∂( f + h)(x̂) ⊂ ∂ f (x̂) + ∂h(x̂).

Finally in this section, we recall the following important approximate projection
theorem in the convex case for the paper.

Theorem 2.3 [26] Assume that S ⊂ R
n is a closed, convex and nonempty subset.

Let θ ∈ (0, 1). Then, for every x /∈ S, there exist x̃ ∈ bd S and x∗ ∈ N (S, x̃) with
‖x∗‖ = 1 such that

θ‖x − x̃‖ < min{d(x, S), 〈x∗, x − x̃〉}.

3 Main results

In this section, we focus our attention on establishing some optimality conditions
for the local (global) weak sharp efficiency in multiobjective optimization problems
in terms of the advanced tools of variational analysis and generalized differentiation.
Concretely, by using the generalized Fermat rule, theMordukhovich subdifferential for
maximum functions, the fuzzy sum rule for Fréchet subdifferentials and the sum rule
for Mordukhovich subdifferentials, we firstly establish a necessary condition for the
localweak sharp efficient solution of (MOP).Moreover, by employing the approximate
projection theorem, and some appropriate convexity and affineness conditions, we also
obtain some sufficient conditions for the local and global weak sharp efficient solutions
of (MOP), respectively.

123



1292 S. K. Zhu

Given arbitrary x̃ ∈ �, we set

I(x̃) := {

i ∈ I | gi (x̃) = 0} andJ (x̃) = { j ∈ J | h j (x̃) = 0
}

.

Definition 3.1 [3] Given arbitrary x̃ ∈ �, the constraint qualification (CQ) is said to
be satisfied at x̃ iff there do not exist μi ≥ 0, i ∈ I(x̃) and γ j ≥ 0, j ∈ J (x̃), such
that

∑

i∈I(x̃) μi + ∑

j∈J (x̃) γ j �= 0 and

0Rn ∈
∑

i∈I(x̃)

μi∂gi (x̃) +
∑

j∈J (x̃)

γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

+ N (�, x̃).

Just as shown in [3], the (CQ), defined in Definition 3.1, can be guaranteed by
the well-knownMangasarian-Fromovitz constraint qualification in the smooth setting
when x̃ ∈ S and � = R

n . We refer to [3,4,6,25] for more details.
Next, we establish the following necessary optimality condition for local weak

sharp efficient solutions of (MOP) under the above-defined (CQ).

Theorem 3.1 Assume that the (CQ), defined by Definition 3.1, is satisfied around
x̂ ∈ S with respect to ˜S, i.e., there exists a neighborhood U of x̂ such that the (CQ)

holds at any x̃ ∈ ˜S ∩ U. If x̂ is a local weak sharp efficient solution for (MOP), then
there exist real numbers η, δ > 0 such that for every x̃ ∈ ˜S ∩ B(x̂, δ), one has

ηBRn ∩ ̂N (˜S, x̃) ⊂
{

∑

k∈K
λk∂ fk(x̃) +

∑

i∈I
μi∂gi (x̃)

+
∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| λk ≥ 0, k ∈ K,

∑

k∈K
λk =1, μi ≥ 0, μi gi (x̃)=0, i ∈ I, γ j ≥ 0, j ∈ J

}

+N (�, x̃). (3.1)

Proof Since x̂ ∈ S is a local weak sharp efficient solution for (MOP), there exist real
numbers η, δ1 > 0 such that

max
1≤k≤m

{ fk(x) − fk(x̂)} ≥ ηd(x,˜S), ∀x ∈ S ∩ B(x̂, δ1). (3.2)

Moreover, the (CQ) is satisfied around x̂ ∈ S with respect to˜S. Thus, there exists some
δ2 > 0 such that the (CQ) holds at any x̃ ∈ ˜S ∩ B(x̂, δ2). Let 0 < δ < min{ 12δ1, δ2}
and take arbitrary x̃ ∈ ˜S ∩ B(x̂, δ). It follows from̂∂d(x̃,˜S) = BRn ∩ ̂N (˜S, x̃) that
for every x∗ ∈ BRn ∩ ̂N (˜S, x̃), we have x∗ ∈ ̂∂d(x̃,˜S). Then, for every ε > 0, there
exists 0 < δ3 < 1

2δ1 such that

〈x∗, x − x̃〉 ≤ d(x,˜S) + ε‖x − x̃‖, ∀x ∈ B(x̃, δ3). (3.3)
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Weak sharp efficiency in multiobjective optimization 1293

Note that, for every x ∈ B(x̃, δ3), we get ‖x− x̂‖ ≤ ‖x− x̃‖+‖x̃− x̂‖ < δ3+δ < δ1,
that is, x ∈ B(x̂, δ1). Together with (3.2) and (3.3), it follows

η〈x∗, x − x̃〉 ≤ max
1≤k≤m

{ fi (x) − fi (x̂)} + ηε‖x − x̃‖, ∀x ∈ S ∩ B(x̃, δ3). (3.4)

Furthermore, since x̃ ∈ ˜S, i.e., x̃ ∈ S and f (x̃) = f (x̂), (3.4) implies that x̃ is a local
minimum point of the following function ϕ : R

n → R ∪ {+∞} defined by

ϕ(x) :=−η〈x∗, x − x̃〉 + max
1≤k≤m

{ fk(x) − fk(x̂)}+ηε‖x − x̃‖ + ψ(x, S), ∀x ∈ R
n .

Applying Theorem 2.1 (generalized Fermat rule), we have 0Rn ∈ ̂∂ϕ(x̃). Since fk, k ∈
K are all Lipschitz continuous around x̃ , the function φ : R

n → R, defined by φ(x) :=
max1≤k≤m{ fk(x)− fk(x̂)}, is also Lipschitz continuous around x̃ . Specially, let � > 0
be the modulus. Moreover, since S is locally closed, the indicator function ψ(•, S)

is lower semicontinuous around x̃ . Together with the global Lipschitz continuity of
‖ • −x̃‖ with modulus 1, we get from Theorem 2.2(i) (fuzzy sum rule for Fréchet
subdifferentials) that for the proceeding ε > 0, there exist xε

1 , x
ε
2 , x

ε
3 ∈ B(x̃, ε), such

that

|φ(xε
1)| < ε, ηε‖xε

2 − x̃‖ < ε, ψ(xε
3 , S) < ε

and

ηx∗ ∈ ̂∂φ(xε
1) + ηε̂∂‖ • −x̃‖(xε

2) +̂∂ψ(•, S)(xε
3) + εBRn .

Since ψ(xε
3 , S) < ε, we have xε

3 ∈ S and ̂∂ψ(•, S)(xε
3) = ̂N (S, xε

3). Note that φ

is Lipschitz continuous around x̃ with modulus � and xε
1 ∈ B(x̃, ε). Then it follows

from [25, Proposition 1.85] with ε = 0 that for all sufficiently small ε > 0, one has
̂∂φ(xε

1) ⊂ �BRn . Similarly, we get̂∂‖ • −x̃‖(xε
2) ⊂ BRn . Together with BRn being

compact, and moreover, xε
1 , x

ε
2 , x

ε
3 ∈ B(x̃, ε), we have

xε
1

φ−→ x̃, xε
2

‖•−x̃‖−−−→ x̃, xε
3

S−→ x̃, asε ↓ 0,

which imply
ηx∗ ∈ ∂φ(x̃) + N (S, x̃), (3.5)

(taking ε ↓ 0 and passing to a subsequence if necessary). On one hand, by using
the Mordukhovich subdifferential of maximum functions [25, Theorem 3.46(ii)] and
Theorem 2.2(ii) (sum rule for Mordukhovich subdifferentials), we get from x̃ ∈ ˜S that
f (x̃) = f (x̂) and

∂φ(x̃) ⊂
{

∑

k∈K
λk∂ fk(x̃) | λk ≥ 0, k ∈ K,

∑

k∈K
λk = 1

}

. (3.6)
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On the other hand, let

� := {

x ∈ R
n | gi (x) ≤ 0, i ∈ I, h j (x) = 0, j ∈ J }

.

Then S = � ∩ �. Since δ < δ2 and x̃ ∈ ˜S ∩ B(x̂, δ), the (CQ) holds at x̃ . Note that

⎧

⎨

⎩

∑

i∈I(x̃)

μi ∂gi (x̃) +
∑

j∈J (x̃)

γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| μi ≥ 0, i ∈ I(x̃), γ j ≥ 0, j ∈ J (x̃)

⎫

⎬

⎭

⊂
⎧

⎨

⎩

∑

i∈I(x̃)

μi ∂gi (x̃) +
∑

j∈J (x̃)

γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| μi ≥ 0, i ∈ I(x̃), γ j ≥ 0, j ∈ J (x̃)

⎫

⎬

⎭

+ N (�, x̃)

always holds since 0Rn ∈ N (�, x̃). Thus, it follows from the (CQ) that there do
not exist μi ≥ 0, i ∈ I(x̃) and γ j ≥ 0, j ∈ J (x̃) = J , such that

∑

i∈I(x̃) μi +
∑

j∈J γ j �= 0 and

0Rn ∈
∑

i∈I(x̃)

μi∂gi (x̃) +
∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

.

Applying [25, Corollary 4.36], we have

N (�, x̃) ⊂
⎧

⎨

⎩

∑

i∈I(x̃)

μi ∂gi (x̃) +
∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| μi ≥ 0, i ∈ I(x̃), γ j ≥ 0, j ∈ J
⎫

⎬

⎭

.

(3.7)

Moreover, it follows from (3.7) and [25, Corollary 3.37] that the (CQ) being satisfied
at x̃ implies

N (S, x̃) = N (� ∩ �, x̃) ⊂ N (�, x̃) + N (�, x̃). (3.8)

Let μi = 0 for every i ∈ I \ I(x̃). Then, it follows from (3.7) and (3.8) that

N (S, x̃) ⊂
{

∑

i∈I
μi ∂gi (x̃) +

∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| μi ≥ 0, μi gi (x̃) = 0, i ∈ I,

γ j ≥ 0, j ∈ J
}

+ N (�, x̃). (3.9)

Note that x̃ ∈ ˜S ∩ B(x̂, δ) and x∗ ∈ BRn ∩ ̂N (˜S, x̃) are arbitrary. Thus, combining
(3.5), (3.6) and (3.9), we can conclude that (3.1) holds. This completes the proof. ��
The following example shows that the (CQ) being satisfied around x̂ ∈ S with respect
to ˜S is essential for Theorem 3.1.

Example 3.1 Let the vector-valued map f : R → R
2 be defined by f (x) :=

( f1(x), f2(x)) with f1(x) = f2(x) := min{0, x} for all x ∈ R. Moreover, let the
functions g : R → R and h : R → R be respectively defined by g(x) := (x −1)3 and
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h(x) := min{0, x} for all x ∈ R. Take � := [−2, 2] ⊂ R and consider the following
constrained multiobjective optimization problem:

min f (x) s.t. g(x) ≤ 0, h(x) = 0, x ∈ �.

It is easy to verify that the feasible set S = [0, 1]. Specially, let x̂ = 1 ∈ S.
Then, f (x̂) = (0, 0) and ˜S = S ∩ f −1( f (x̂)) = S. Obviously, x̂ is not isolated in
˜S. It follows from Definition 1.1 that x̂ ∈ S is a local weak sharp efficient solution.
However, (3.1) does not hold for every η, δ > 0. In fact, by direct calculating, we have
∂ f1(x̂) = ∂ f2(x̂) = {0}, ∂g(x̂) = {0}, ∂h(x̂) = {0}, ∂(−h)(x̂) = {0}, N (�, x̂) = {0}
and N (˜S, x̂) = [0,+∞). Thus, we get ηBR2 ∩ N (˜S, x̂) = [0, η] and

⎧

⎨

⎩

∑

k∈K
λk∂ fk(x̂) +

∑

i∈I
μi∂gi (x̂) +

∑

j∈J
γ j

(

∂h j (x̂) ∪ ∂(−h j )(x̂)
)

| λk ≥ 0, k ∈ K ,

∑

k∈K
λk = 1, μi ≥ 0, μi gi (x̂) = 0, i ∈ I, γ j ≥ 0, j ∈ J

}

+ N (�, x̂) = {0},

which shows that (3.1) does not hold for every η, δ > 0. Meantime, the (CQ) is also
not satisfied around x̂ ∈ S with respect to ˜S.

It is worth noting that if x̂ ∈ S is a local sharp efficient solution for (MOP), then
x̂ is isolated in ˜S. Thus, ̂N (˜S, x̃) = R

n and the (CQ) only needs to be satisfied at
x̂ . Together with Theorem 3.1, the following necessary condition for the local sharp
efficiency corresponding to [3, Theorem3.5] immediately holds:

Corollary 3.1 Assume that the (CQ), defined by Definition 3.1, is satisfied at x̂ ∈ S.
If x̂ is a local sharp efficient solution for (MOP), then there exists a real number η > 0
such that

ηBRn ⊂
⎧

⎨

⎩

∑

k∈K
λk∂ fk(x̂) +

∑

i∈I
μi ∂gi (x̂) +

∑

j∈J
γ j

(

∂h j (x̂) ∪ ∂(−h j )(x̂)
)

| λk ≥ 0, k ∈ K ,

∑

k∈K
λk = 1, μi ≥ 0, μi gi (x̂) = 0, i ∈ I, γ j ≥ 0, j ∈ J

⎫

⎬

⎭

+ N (�, x̂).

Remark 3.1 Note that, in order to establish the necessary condition for the local sharp
efficiency, Chuong [3, Theorem 3.5] employed the exact sum rule for Fréchet sub-
differentials, which is exploited in [27, Theorem 3.1]; see also Chuong and Yao [4,
Theorem 3.1] for the semi-infinite vector optimization problem. Simultaneously, Zhou
et al. [28, Theorem 4.1] also obtained some necessary conditions by virtue of the exact
sum rule for Mordukhovich subdifferentials under appropriate regularity and differen-
tiability assumptions. However, we use a different method, i.e., Theorem 2.2(i) (fuzzy
sum rule for Fréchet subdifferentials), to obtain a more general necessary condition
for the local weak sharp efficinecy in Theorem 3.1.
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Now, by employing the approximate projection theorem, and some appropriate
convexity and affineness conditions, we establish the following sufficient optimality
conditions for the local and global weak sharp efficient solutions of (MOP), respec-
tively.

Theorem 3.2 Given x̂ ∈ S, let� be a closed and convex set, and˜S be convex. Suppose
that fk, k ∈ K and gi , i ∈ I are convex functions, and h j , j ∈ J are affine functions.
If there exist real numbers η, δ > 0 such that for every x̃ ∈ ˜S ∩ B(x̂, δ),

ηBRn ∩N (˜S, x̃) ⊂
⎧

⎨

⎩

∑

k∈K
λk∂ fk (x̃) +

∑

i∈I
μi ∂gi (x̃) +

∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| λk ≥ 0, k ∈ K ,

∑

k∈K
λk = 1, μi ≥ 0, μi gi (x̃) = 0, i ∈ I, γ j ≥ 0, j ∈ J

⎫

⎬

⎭

+ N (�, x̃), (3.10)

then x̂ is a local weak sharp efficient solution for (MOP). Specially, if (3.10) holds for
δ = +∞, then x̂ is a global weak sharp efficient solution for (MOP).

Proof Note that � is a closed and convex set, gi , i ∈ I are convex functions, and
h j , j ∈ J are affine functions. Thus, the feasible set S is closed and convex. Together
with the local Lipschitz continuity of fk, k ∈ K and the convexity of˜S, it follows that
˜S = S ∩ f −1( f (x̂)) is a closed and convex set. Next, we consider the following two
cases with 0 < δ < +∞ and δ = +∞, respectively.

(i) Assume that (3.10) holds for 0 < δ < +∞. Let 0 < δ1 < 1
2δ. In what follows,

we show
ηd(x,˜S) ≤ max{ fk(x) − fk(x̂)}, ∀x ∈ S ∩ B(x̂, δ1). (3.11)

In fact, take arbitrary x ∈ S ∩ B(x̂, δ1). If x ∈ ˜S, i.e., x ∈ S and f (x) = f (x̂), then
(3.11) holds trivially. While, if x /∈ ˜S, then 0 < d(x,˜S) ≤ ‖x − x̂‖ < δ1 since x̂ ∈ ˜S.

Thus, we get 0 < 1
δ1
d(x,˜S) < 1. Moreover, for every θ ∈

(

1
δ1
d(x,˜S), 1

)

, it follows

from Theorem 2.3 (approximate projection theorem) that there exist x̃ ∈ ˜S and

x∗ ∈ BRn ∩ N (˜S, x̃) (3.12)

such that
θ‖x − x̃‖ < min{d(x,˜S), 〈x∗, x − x̃〉}. (3.13)

Thus, we have ‖x− x̃‖ < 1
θ
d(x,˜S) < δ1, and then, ‖x̃− x̂‖ ≤ ‖x̃−x‖+‖x− x̂‖ <

δ1 + δ1 < δ, which implies x̃ ∈ ˜S ∩ B(x̂, δ). Together with (3.10) and (3.12), it
follows that there exist λk ≥ 0 with

∑

k∈K λk = 1, u∗
k ∈ ∂ fk(x̃), k ∈ K, μi ≥ 0 with

μi gi (x̃) = 0, v∗
i ∈ ∂gi (x̃), i ∈ I, γ j ≥ 0, w∗

j ∈ ∂h j (x̃) ∪ ∂(−h j )(x̃), j ∈ J and
ω∗ ∈ N (�, x̃) such that

ηx∗ =
∑

k∈K
λku

∗
k +

∑

i∈I
μiv

∗
i +

∑

j∈J
γ jw

∗
j + ω∗. (3.14)
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Note that x ∈ S. Then x ∈ �. Since � is convex, we get

〈ω∗, x − x̃〉 ≤ 0. (3.15)

Simultaneously, since fk, k ∈ K and gi , i ∈ I are convex functions, we have

〈u∗
k , x − x̃〉 ≤ fk(x) − fk(x̃), ∀k ∈ K (3.16)

and
〈v∗

i , x − x̃〉 ≤ gi (x) − gi (x̃), ∀i ∈ I. (3.17)

Furthermore, since h j , j ∈ J are affine functions, there exists α j ∈ {−1, 1} such that
〈w∗

j , x − x̃〉 = α j (h j (x) − h j (x̃)), ∀ j ∈ J . (3.18)

Since x ∈ S, it follows gi (x) ≤ 0 for all i ∈ I and h j (x) = 0 for all j ∈ J . Together
with (3.14)–(3.18) and x̃ ∈ ˜S, we get x̃ ∈ S, f (x̃) = f (x̂) and

〈ηx∗, x − x̃〉 =
〈
∑

k∈K
λku

∗
k +

∑

i∈I
μiv

∗
i +

∑

j∈J
γ jw

∗
j + ω∗, x − x̃

〉

≤
∑

k∈K
λk

(

fk(x) − fk(x̃)
)

+
∑

i∈I
μi

(

gi (x) − gi (x̃)
)

+
∑

j∈J
γ jα j

(

h j (x) − h j (x̃)
)

≤
∑

k∈K
λk max{ fk(x) − fk(x̃)} +

∑

i∈I

(

μi gi (x) − μi gi (x̃)
)

≤ max{ fk(x) − fk(x̂)}
∑

k∈K
λk = max{ fk(x) − fk(x̂)}. (3.19)

Since x̃ ∈ ˜S, we have d(x,˜S) ≤ ‖x − x̃‖. Together with (3.13) and (3.19), we get

ηθd(x,˜S) ≤ ηθ‖x − x̃‖ < 〈ηx∗, x − x̃〉 ≤ max{ fk(x) − fk(x̂)}.
Let θ ↑ 1. Then (3.11) holds since x ∈ S ∩ B(x̂, δ1) is arbitrary. Thus, x̂ is a local
weak sharp efficient solution for (MOP).

(ii) Let (3.10) hold for δ = +∞. Take arbitrary x̃ ∈ ˜S. Since ˜S is a closed and
convex set, we have N (˜S, x̃) = T (˜S, x̃)◦. Moreover, it follows from [19, Theorem
3.1] that

d(x, T (˜S, x̃)) = ψ∗(x,BRn ∩ T (˜S, x̃)◦) = sup
x∗∈BRn∩N (˜S,x̃)

〈x∗, x〉, ∀x ∈ R
n,

and from [29, Theorem A.1-4] that

d(x,˜S) = sup
x̃∈˜S

d(x, x̃ + T (˜S, x̃)), ∀x ∈ R
n .
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Thus, we can conclude that for every x ∈ S,

ηd(x,˜S) = sup
x̃∈˜S

ηd(x − x̃, T (˜S, x̃)) = sup
x̃∈˜S

sup
x∗∈BRn∩N (˜S,x̃)

〈ηx∗, x − x̃〉. (3.20)

Take arbitrary x̃ ∈ ˜S and x∗ ∈ BRn ∩ N (˜S, x̃). Since (3.10) holds for δ = +∞, by
the similar method to the proof of (i), we have

〈ηx∗, x − x̃〉 ≤ max{ fk(x) − fk(x̂)}, ∀x ∈ S.

Together with (3.20), we get

ηd(x,˜S) ≤ max{ fk(x) − fk(x̂)}, ∀x ∈ S,

that is, x̂ is a global weak sharp efficient solution for (MOP). This completes the
proof. ��
Remark 3.2 Corresponding to the method used in [3, Theorem 3.7], we apply the
expressions of special distance functions, instead of the Hahn-Banach theorem, to
obtain the sufficient condition for the global weak sharp efficiency in Theorem 3.2.
However, the similar method is not applicable to establish sufficient conditions for
local weak sharp efficient solutions since the reference point x̂ ∈ S is not isolated in
˜S. Here in the proof of Theorem 3.2, we employ Theorem 2.3 (approximate projection
theorem) to overcome this difficulty.

To end this paper, we give the following example to illustrate Theorem 3.2.

Example 3.2 Let the vector-valued map f : R
2 → R

2 be defined by f (x) :=
( f1(x), f2(x)) with f1(x) := max{0,−x1} and f2(x) := max{0, x2} for all x =
(x1, x2) ∈ R

2. Moreover, let the functions g : R
2 → R and h : R

2 → R be respec-
tively defined by g(x) := |x1|+x2 and h(x) := x1+x2 for all x = (x1, x2) ∈ R

2. Take
� := [−1, 1] × [−1, 1] ⊂ R

2 and consider the following constrained multiobjective
optimization problem:

min f (x) s.t. g(x) ≤ 0, h(x) = 0, x ∈ �.

Obviously, f and g are convex functions and h is an affine function defined on R
2.

Furthermore, � is a closed and convex subset and the feasible set S = {x ∈ R
2 |

0 ≤ x1 ≤ 1, x1 + x2 = 0}. Specially, let x̂ = ( 12 ,− 1
2 ) ∈ S. Then f (x̂) = (0, 0) and

˜S := S ∩ f −1( f (x̂)) = S, which implies that ˜S is also a closed and convex set. Take
arbitrary η > 0 and x̃ ∈ ˜S. Next, we consider the following three cases for x̃ ∈ ˜S:

Case 1: x̃ = (0, 0). Then ∂ f1(x̃) = [−1, 0] × {0}, ∂ f2(x̃) = {0} × [0, 1], ∂g(x̃) =
[−1, 1] × {1}, ∂h(x̃) = {(1, 1)}, ∂(−h)(x̃) = {(−1,−1)}, N (�, x̃) = {(0, 0)} and
N (˜S, x̃) = {x ∈ R

2 | x1 ≤ x2}. Thus, we have

ηBR2 ∩ N (˜S, x̃) = {x ∈ R
2 | x1 ≤ x2, x

2
1 + x22 ≤ η2}
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and
⎧

⎨

⎩

∑

k∈K
λk∂ fk(x̃) +

∑

i∈I
μi∂gi (x̃) +

∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| λk ≥ 0, k ∈ K ,

∑

k∈K
λk = 1, μi ≥ 0, μi gi (x̃) = 0, i ∈ I, γ j ≥ 0, j ∈ J

}

+ N (�, x̃)

=
{

x ∈ R
2 | x2 ≤ x1 + 1, x1 ≤ 0 ≤ x2

}

+
{

x ∈ R
2 | −x2 ≤ x1 ≤ x2, x2 ≥ 0

}

+
{

x ∈ R
2 | x1 = x2

}

=
{

x ∈ R
2 | x1 ≤ x2

}

,

which implies that (3.10) holds for all η > 0.

Case 2: x̃ = (1,−1). Then ∂ f1(x̃) = ∂ f2(x̃) = {(0, 0)}, ∂g(x̃) = {(1, 1)},
∂h(x̃) = {(1, 1)}, ∂(−h)(x̃) = {(−1,−1)}, N (�, x̃) = {x ∈ R

2 | x2 ≤ 0 ≤ x1} and
N (˜S, x̃) = {x ∈ R

2 | x1 ≥ x2}. Thus, we have

ηBR2 ∩ N (˜S, x̃) =
{

x ∈ R
2 | x1 ≥ x2, x

2
1 + x22 ≤ η2

}

and
⎧

⎨

⎩

∑

k∈K
λk∂ fk(x̃) +

∑

i∈I
μi∂gi (x̃) +

∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| λk ≥ 0, k∈K ,

∑

k∈K
λk = 1, μi ≥ 0, μi gi (x̃) = 0, i ∈ I, γ j ≥ 0, j ∈ J

}

+ N (�, x̃)

= {x ∈ R
2 | x1 = x2 ≥ 0} + {x ∈ R

2 | x1 = x2} + {x ∈ R
2 | x2 ≤ 0 ≤ x1}

= {x ∈ R
2 | x1 ≥ x2}.

Clearly, (3.10) holds for all η > 0.

Case 3: x̃ �= (0, 0) and x̃ �= (1,−1). Then ∂ f1(x̃) = ∂ f2(x̃) = {(0, 0)},
∂g(x̃) = {(1, 1)}, ∂h(x̃) = {(1, 1)}, ∂(−h)(x̃) = {(−1,−1)}, N (�, x̃) = {(0, 0)}
and N (˜S, x̃) = {x ∈ R

2 | x1 = x2, x1 ∈ R}. Thus, we have

ηBR2 ∩ N (˜S, x̃) = {x ∈ R
2 | x1 = x2, x

2
1 + x22 ≤ η2}

and
⎧

⎨

⎩

∑

k∈K
λk∂ fk(x̃) +

∑

i∈I
μi∂gi (x̃) +

∑

j∈J
γ j

(

∂h j (x̃) ∪ ∂(−h j )(x̃)
)

| λk ≥ 0, k ∈ K ,
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∑

k∈K
λk = 1, μi ≥ 0, μi gi (x̃) = 0, i ∈ I, γ j ≥ 0, j ∈ J

}

+ N (�, x̃)

=
{

x ∈ R
2 | x1 = x2 ≥ 0} + {x ∈ R

2 | x1 = x2
}

=
{

x ∈ R
2 | x1 = x2

}

.

Obviously, (3.10) still holds for all η > 0.
Therefore, we can conclude that (3.10) holds for all η > 0 and all x̃ ∈ ˜S. Moreover,

it follows from Definition 1.1 that x̂ ∈ S is a global weak sharp efficient solution, and
simultaneously, x̂ is obviously not isolated in ˜S.
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