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Abstract We show how to separate a doubly nonnegative matrix, which is not com-
pletely positive and has a triangle-free graph, from the completely positive cone. This
method can be used to compute cutting planes for semidefinite relaxations of com-
binatorial problems. We illustrate our approach by numerical tests on the stable set
problem.
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1 Introduction

Burer showed in [4] that every optimization problemwith quadratic objective function,
linear constraints, and binary variables can equivalently be written as a linear problem
over the completely positive cone. This includes many NP-hard combinatorial prob-
lems, for example the maximum clique problem. The complexity of these problems is
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then shifted entirely into the cone constraint. In fact, even checking whether a given
matrix is completely positive is an NP-hard problem [8]. Replacing the completely
positive cone by a tractable cone like the cone of doubly nonnegative matrices results
in a relaxation of the problem providing a bound on its optimal value. For matrices of
order n ≤ 4, the doubly nonnegative cone equals the completely positive cone (cf. [1,
Theorem 2.4]) which means that the relaxation is exact. For order n ≥ 5, however,
there are doubly nonnegative matrices that are not completely positive. So in general,
an optimal solution of the doubly nonnegative relaxation is not completely positive.
Therefore, it is desirable to add a cut, i.e., a linear constraint that separates the obtained
doubly nonnegative solution from the completely positive cone, in order to get a tighter
relaxation yielding a better bound.

The basic idea to use copositive cuts, i.e., cuts that are defined by copositive matri-
ces, was first introduced by Bomze et al. [3]. Since then several approaches to compute
such cuts have been presented [2,5,6,10,19]. In this paper, we concentrate on doubly
nonnegative matrices that have a triangle-free graph and show how to separate such a
matrix that is not completely positive from the completely positive cone.

After giving characterizations of copositivity and complete positivity of a matrix
in Sect. 2, we show in Sect. 3 how to construct cuts to separate triangle-free doubly
nonnegative matrices from the completely positive cone. In Sect. 4, we illustrate the
presented method by applying it to some stable set problems. The results are discussed
and compared to the results of previous approaches.

We are going to use the following notations: The vector of all ones is denoted by e,
the matrix of all ones by E , and the identity matrix by I . For A ∈ R

n×n , let diag(A)

denote the vector of diagonal elements of A. The Hadamard product A ◦ B of two
matrices A, B ∈ R

m×n is the matrix with entries (A◦ B)i j = ai j bi j . Let Sn denote the
space of symmetric n × n matrices. The usual (trace) inner product of two matrices
X,Y ∈ Sn is 〈X,Y 〉 = trace(XY ) = ∑n

i, j=1 xi j yi j . Observe that for A, B,C ∈ Sn ,
we have by the definitions of Hadamard product and inner product that

〈A ◦ B,C〉 = 〈A, B ◦ C〉 = 〈A ◦ C, B〉. (1)

If K is an n × n matrix, and x ∈ R
n , then

xT K x = 〈K , xxT 〉. (2)

Let u ∈ R
n . Combining (1) and (2), we have

xT (K ◦ uuT )x = 〈K , (u ◦ x)(u ◦ x)T 〉 = (u ◦ x)T K (u ◦ x). (3)

We denote the cone of symmetric entrywise nonnegative n × n matrices by Nn , and
the cone of symmetric positive semidefinite n × n matrices by S+

n . The cone Dn :=
S+
n ∩Nn is called the doubly nonnegative cone. Its dual cone is D∗

n = S+
n +Nn . The

cone COPn of copositive n×n matrices and its dual cone CPn of completely positive
n × n matrices are defined as
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COPn = {A ∈ Sn : xT Ax ≥ 0 for all x ∈ R
n+}

and

CPn =
{

k∑

i=1

aia
T
i : ai ∈ R

n+ for all i = 1, . . . , k

}

.

A copositive matrix is said to be extreme if it generates an extreme ray of the copositive
cone. The extremematrices in COPn with n > 5 are not generally known. The extreme
5 × 5 copositive matrices, however, are fully characterized [14]. These are all the
matrices that may be obtained by simultaneous permutation of rows and columns and
diagonal scaling by a positive diagonal matrix from the following matrices: the rank 1
positive semidefinite matrices xxT where x has both positive and negative entries, the
elementary symmetric matrices, the Horn matrix

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and the matrices described by Hildebrand in [14] which are of the form

H(θ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − cos θ1 cos(θ1 + θ2) cos(θ4 + θ5) − cos θ5

− cos θ1 1 − cos θ2 cos(θ2 + θ3) cos(θ5 + θ1)

cos(θ1 + θ2) − cos θ2 1 − cos θ3 cos(θ3 + θ4)

cos(θ4 + θ5) cos(θ2 + θ3) − cos θ3 1 − cos θ4

− cos θ5 cos(θ5 + θ1) cos(θ3 + θ4) − cos θ4 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4)

with θ ∈ {
θ ∈ R

5++ | eT θ < π
}
. We will refer to these matrices asHildebrand matri-

ces. For general n, the copositive and extreme copositive {−1, 1}-matrices were fully
characterized byHaynsworth andHoffman [13], and the copositive and extreme copos-
itive {−1, 0, 1}-matrices were fully characterized by Hoffman and Pereira [15].

For every X ∈ Sn , the graph of X , denoted by G(X), is the graph with vertices
{1, . . . , n}, where {i, j} is an edge if and only if i 
= j and Xi j 
= 0.

The comparison matrix M(A) of a square matrix A is defined by

(M(A))i j =
{ |ai j | if i = j

−|ai j | if i 
= j.

Finally, for x ∈ R
n we denote by x� the vector such that

(x�)i =
{
x−1
i if xi 
= 0

0 if xi = 0,
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and if x ≥ 0, then
√
x denotes the vector with (

√
x)i = √

xi .

2 Useful observations

In this section we characterize completely positive matrices in terms of Hadamard
products with copositive matrices. We start with some basic facts on copositivity:

Proposition 2.1 Let K ∈ Sn. Then the following are equivalent:

(a) K ∈ COPn,
(b) K ◦ uuT ∈ COPn for every nonnegative u ∈ R

n,
(c) K ◦ uuT ∈ COPn for every positive u ∈ R

n,
(d) There exists a positive u ∈ R

n such that K ◦ uuT ∈ COPn.

Proof Clearly, we only have to prove (a) ⇒ (b) and (d) ⇒ (a).
(a) ⇒ (b): If K ∈ COPn and u is a nonnegative vector, then (3) implies that

xT (K ◦ uuT )x = (u ◦ x)T K (u ◦ x) ≥ 0,

for every nonnegative x ∈ R
n . That is, K ◦ uuT ∈ COPn .

(d) ⇒ (a): If K ◦ uuT ∈ COPn for a positive u ∈ R
n , then

K = (K ◦ uuT ) ◦ (u�)(u�)T ∈ COPn,

since (a) implies (b). ��
The next theorem gives similar statements for extreme copositive matrices.

Proposition 2.2 Let K ∈ Sn. Then the following are equivalent:

(a) K is an extreme copositive matrix,
(b) K ◦ uuT is an extreme copositive matrix for every positive u ∈ R

n,
(c) There exists a positive u ∈ R

n such that K ◦ uuT is an extreme copositive matrix.

Proof If u > 0 and D is the diagonal matrix with diagonal u, then K ◦ uuT = DK D.
So the equivalence of (a), (b) and (c) is the known fact about preservation of extremality
under scaling by a positive diagonal matrix. ��

Note that if u ≥ 0 is not strictly positive and K is an extreme copositive matrix,
then K ◦ uuT may not be extreme. To see this, we consider the Horn matrix H which
is an extreme 5 × 5 matrix and has 2 × 2 principal submatrices of all ones which are
not extreme in COP2, e.g., the principal submatrix on rows and columns 1 and 3. So
if the entries 1 and 3 of u are equal to one, and all other entries of u are zeros, then
H ◦ uuT is not extreme.

We now characterize complete positivity of a matrix X in terms of copositivity of
the Hadamard product of X with copositive matrices.

Proposition 2.3 Let X ∈ Sn. Then the following are equivalent:

(a) X ∈ CPn,
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(b) K ◦ X ∈ COPn for every K ∈ COPn,
(c) K ◦ X ∈ COPn for every extreme copositive matrix K ∈ COPn,
(d) K ◦ X ∈ COPn for every extreme copositive matrix K ∈ COPn whose diagonal

entries are either zero or one.

Proof It suffices to prove (a) ⇒ (b) and (d) ⇒ (a).
(a) ⇒ (b): If X ∈ CPn , then X = ∑p

i=1 uiu
T
i , where ui ∈ R

n is nonnegative for
every i . Then for every K ∈ COPn , the matrix K ◦ X = ∑p

i=1 K ◦uiuTi is copositive
as a sum of copositive matrices by Proposition 2.1.

(d) ⇒ (a): Let K be an arbitrary extreme copositive matrix. Define d = diag(K )

and u = √
d�. Then K ◦ uuT ∈ COPn is also extreme, and all its diagonal entries

are either zero or one. Since by assumption (K ◦ uuT ) ◦ X ∈ COPn we get from

Proposition 2.1 that K ◦ X = (K ◦ uuT ) ◦ X ◦ √
d
√
d
T ∈ COPn . Consequently,

0 ≤ eT (K ◦ X)e = 〈X, K 〉. Since K was an arbitrary extreme copositive matrix, this
means that X is in the cone dual to COPn , that is, X ∈ CPn . ��
Corollary 2.4 Let X ∈ Dn. Then the following are equivalent:

(a) X ∈ CPn,
(b) K ◦ X ∈ COPn for every K ∈ COPn\(S+

n + Nn),
(c) K ◦ X ∈ COPn for every extreme K ∈ COPn\(S+

n + Nn),
(d) K ◦X ∈ COPn for every extreme K ∈ COPn\(S+

n +Nn)whose diagonal entries
are either zero or one.

Proof If K ∈ (S+
n + Nn), then clearly K ◦ X ∈ (S+

n + Nn). Hence in this case it
suffices to consider in Proposition 2.3 matrices K ∈ COPn\(S+

n + Nn). ��

3 Cutting planes

In this section, we construct cutting planes to separate doubly nonnegative matrices
which are not completely positive from the completely positive cone. In other words,
given X ∈ Dn\CPn , we aim to find a K ∈ COPn such that 〈K , X〉 < 0.

One might argue that in view of the NP-hardness of checking complete positivity,
it is difficult to verify that the given X is not completely positive. This is true in
general, but certain structures in the graph G(X) can provide us with precisely this
information. To be more specific, we will see below that if G(X) has a triangle-free
subgraph such that a scaling of the corresponding submatrix has a spectral radius
ρ > 1, then X /∈ CPn , and from this structure we will construct a copositive matrix
which cuts off X from CPn .

As mentioned in the introduction, the basic idea to use copositive cuts was first
introduced by Bomze et al. [3] and further applied to the maximum clique problem by
Bomze et al. [2]. We will consider the cuts from [2] in more detail when comparing
them in Sect. 4.2 to the cuts that we introduce in Sect. 3.3.

Burer et al. [5] characterize 5 × 5 extreme doubly nonnegative matrices which are
not completely positive and show how to separate such a matrix from the completely
positive cone. Dong and Anstreicher [10] generalize this procedure to doubly non-
negative matrices that are not completely positive and have at least one off-diagonal
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zero, and to larger matrices having block structure. Extending the results of [5,10],
Burer and Dong [6] establish the first full separation algorithm for 5 × 5 completely
positive matrices. In [19], Sponsel and Dür present the first algorithm to separate an
arbitrary matrix X /∈ CPn from the completely positive cone. Their approach is based
on (approximate) projections onto the copositive cone.

3.1 Generating copositive cuts

The basic idea of our approach is stated in the following theorem.

Theorem 3.1 Let X ∈ Dn\CPn, and let K ∈ COPn be such that K ◦ X /∈ COPn.
Then for every nonnegative u ∈ R

n such that uT (K ◦ X)u < 0, the copositive matrix
K ◦ uuT is a cut separating X from CPn.

Proof We have, by (1) and (2), that

〈K ◦ uuT , X〉 = uT (K ◦ X)u < 0. ��

If K ◦ X /∈ COPn , as assumed in the theorem, then by Kaplan’s copositivity
characterization [16, Theorem 2], K ◦ X has a principal submatrix having a positive
eigenvector corresponding to a negative eigenvalue. This shows that we can always
choose u to be this eigenvector with zeros added to get a vector in R

n .
The following property is obvious but useful, since it allows to construct cutting

planes based on submatrices instead of the entire matrix.

Proposition 3.2 Assume that K ∈ COPn is a copositive matrix that separates a
matrix X from CPn. If A ∈ R

n×p and B ∈ Sp are arbitrary matrices, then the
copositive matrix

(
K 0

0 0

)

is a cut that separates

(
X A

AT B

)

from CPn+p.

Note that for a cut it is desirable to have an exposed extreme copositivematrix K rather
than just any copositive K , since an exposed matrix K will provide a supporting
hyperplane which generates a maximal face of CPn (see [9, Theorem 2.20]) and
therefore a better (deeper) cut. Since finding an exposed copositive matrix is even
harder than finding an extreme copositive matrix, and since the set of exposedmatrices
is dense in the set of extreme matrices, we will aim for an extreme copositive matrix
to construct our cut.

A matrix X ∈ Sn is reducible if there is a permutation matrix P such that

PX PT =
(
X1 0

0 X2

)

with symmetricmatrices X1, X2. Amatrix that is not reducible is said to be irreducible.
We will assume that the matrices that we want to separate from the completely pos-
itive cone are irreducible, since any reducible symmetric matrix can be written as a
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block diagonal matrix and then the problem can be split into subproblems of smaller
dimension where each of the diagonal blocks is considered separately.

3.2 The 5× 5 case

We first consider 5 × 5 matrices, since this is the smallest dimension where Dn\CPn

is nonempty. We will use the following terminology and result from Väliaho [20] (that
can be traced back to [7,12]):

Definition 3.3 Amatrix A is called copositive of order k, if every principal submatrix
of A of order k is copositive. A is called copositive of exact order k if it is copositive
of order k but not of order k + 1.

By [20, Theorem 3.8], we have the following.

Lemma 3.4 Let A ∈ Sn. If A is copositive of exact order n − 1, then A−1 ≤ 0.

Using this lemma we can prove our next result.

Theorem 3.5 Let X ∈ D5\CP5. Then

(a) There exists an extreme matrix H ∈ COP5\(S+
5 + N5) with no zero entries and

with diag H = e such that

B := X ◦ H

is not copositive, and B−1 is irreducible and nonpositive.
(b) Let u be a Perron vector of −B−1. Then u > 0 and

K := H ◦ uuT

is an extreme copositive matrix separating X from CP5.

Proof (a) The existence of an extreme H ∈ COP5\(S+
5 + N5) whose diagonal has

only zero and one entries such that B = X ◦ H is not copositive follows from
Corollary 2.4.We actually have diag H = e, since every extremematrix in COP5,
which is not inS+

5 +N5, has a positive diagonal. If H is a permutedHornmatrix, it
has no zero entry. Otherwise, H is a permuted Hildebrand matrix of the form (4).
In that case, H may have some (at most two) zeros above the diagonal, but a
slight change of the parameters θ in H will yield another permuted Hildebrand
matrix H ′ with no zeros, such that X ◦ H ′ /∈ COP5 (since the complement of
COP5 is open). Since X ∈ D5, all its 4× 4 principal submatrices are completely
positive. By Proposition 2.3 this implies that all 4× 4 principal submatrices of B
are copositive. So B is copositive of exact order 4, and by Lemma 3.4 we have
B−1 ≤ 0. Since X ∈ D5\CP5, the graph G(X) contains a 5-cycle [1, Corollary
2.6]. In particular, X is irreducible. By the choice of H , B, and therefore B−1,
are also irreducible.
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(b) Let ρ > 0 be the Perron eigenvalue of −B−1, and let u be a Perron vector.
Then u is positive by the Perron–Frobenius Theorem [1, Theorem 1.13]. It is
also an eigenvector of B corresponding to the negative eigenvalue λ = − 1

ρ
of B.

Define the matrix K := H ◦ uuT , which is extreme copositive according to
Proposition 2.2. Then

〈K , X〉 = 〈H ◦ uuT , X〉 = 〈uuT , X ◦ H〉 = uT (X ◦ H)u = uT Bu = λuT u<0,

which shows that K provides the desired cut. ��
Although the approach is different, the basic structure of this cut is the same as

for the cuts in [5] which separate an extreme doubly nonnegative matrix which is not
completely positive from the completely positive cone. The cuts in [5] are of the form
H ◦ uuT , with H denoting the Horn matrix. However, the vector u there is different
from the one we use here. Also note that the construction in [5] works for extreme
doubly nonnegative matrices only, whereas the procedure outlined above works for
arbitrary 5 × 5 doubly nonnegative matrices.

Theorem 3.5 is an existence result. While it guarantees that a cut of this form exists,
it does not provide information on how to choose the right H such that X ◦ H is not
copositive. In the next section we show that if G(X) is the 5-cycle, H can be chosen
to be the Horn matrix. More generally, we consider doubly nonnegative matrices with
a triangle-free graph.

3.3 Separating a triangle-free doubly nonnegative matrix

We return to matrices of order n × n. We may assume that our matrix X ∈ Dn has
Xii 
= 0, otherwise the corresponding row and column would be zero, and we can
base our cut on a submatrix with no zero diagonal elements. Furthermore, by applying
a suitable scaling if necessary we can assume that diag(X) = e.

Now suppose that an irreducible X ∈ Dn has a triangle-free graph G(X). Then we
have

X = I + C, diag(X) = e, G(X) is connected and triangle-free. (5)

The nonnegative matrix C has zero diagonal and G(C) = G(X).
We now characterize complete positivity of X in terms of the spectral radius of C .

Lemma 3.6 A matrix X ∈ Dn of the form (5) is completely positive if and only if the
spectral radius ρ of C fulfills ρ ≤ 1.

Proof Since G(X) is triangle-free, by [11, Theorem 5] X ∈ CPn if and only if its
comparison matrix M(X) is positive semidefinite. In our case, we have that M(X) =
I − C . Since ρ is the maximal eigenvalue of C , we have that 1 − ρ is the minimum
eigenvalue of M(X), whence M(X) is positive semidefinite if and only if 1 − ρ ≥ 0,
as claimed. ��
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For the separation of a doubly nonnegative matrix in the form (5) which is not
completely positive from CPn , we will use a {−1, 0, 1}-matrix: Given a triangle-free
graph G, let A ∈ Sn be defined by

Ai j =

⎧
⎪⎨

⎪⎩

−1 if {i, j} is an edge of G,

+1 if i = j or the distance between i and j in G is 2,

0 otherwise.

(6)

We call this matrix the Hoffman–Pereira matrix corresponding to G. By [15,
Theorem 3.2], the matrix A is copositive whenever G is triangle-free. If the diam-
eter of G is 2, then the Hoffman–Pereira matrix does not have any zero entries, and is
extreme [13]. This is the case for n = 5, and A is then a permutation of theHornmatrix.

Theorem 3.7 Let X ∈ Dn\CPn be of the form (5), let u be the Perron vector of C,
and let A be the Hoffman–Pereira matrix corresponding to G(X). Then

(a) u > 0 and uT M(X)u < 0,
(b) M(X) = X ◦ A and

K := A ◦ uuT

is a copositive matrix separating X from CPn.

Proof (a) The assumption that G(X) is connected means that X , and therefore C ,
is irreducible, which implies that u > 0 by the Perron–Frobenius Theorem. As
before, we have M(X) = I − C , and since X /∈ CPn , we have from Lemma 3.6
that the spectral radius ρ of C fulfills ρ > 1. Consequently, we get

uT M(X)u = uT u − uTCu = uT u(1 − ρ) < 0.

(b) It is easy to see that M(X) = X ◦ A, and we have

〈X, A ◦ uuT 〉 = 〈X ◦ A, uuT 〉 = uT (X ◦ A)u = uT M(X)u < 0. (7)

Since u > 0 and A is copositive, the matrix K := A ◦ uuT is copositive, which
by the above is a cut that separates X from CPn . ��

Note that by Proposition 2.2, since u > 0, the cut matrix K is extreme if and only if
the Hoffman–Pereira matrix A is extreme. This happens, e.g., when the graph G(X)

is an odd cycle.

Cycle graphs

Cycle graphs are special triangle-free graphs. When the graph of a matrix X ∈ Dn

of the form (5) is a cycle, more can be said. First note that if G(X) is an even cycle,
then X ∈ CPn (cf. [1, Corollary 2.6]).

If G(X) is an odd cycle, then by applying [15, Theorem 4.1] it can be easily seen
that the Hoffman–Pereira matrix corresponding to G(X) is extreme. Thus the matrix
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K := A ◦uuT that provides the cut separating X from the completely positive cone in
Theorem 3.7 is extreme as well, and therefore the cut produced in this case would be
deeper than the general cuts generated by Hoffman–Pereira matrices. When the graph
is the 5-cycle, the Hoffman–Pereira matrix is a permutation of the Horn matrix.

4 Application to the stable set problem

We next illustrate the separation procedure from Sect. 3.3 by applying it to some
instances of the stable set problem. The results are discussed in Sect. 4.1 and compared
to the results of other separation procedures in Sects. 4.2 and 4.3.

As shown in [17], the problem of computing the stability number α of a graph G
can be stated as a completely positive optimization problem:

α = max{〈E, X〉 : 〈I, X〉 = 1, 〈AG , X〉 = 0, X ∈ CPn} (8)

where AG denotes the adjacency matrix of G. Replacing CPn by Dn results in a
relaxation of the problem providing a bound on α. This bound ϑ ′ is called Lovász-
Schrijver bound:

ϑ ′ = max{〈E, X〉 : 〈I, X〉 = 1, 〈AG , X〉 = 0, X ∈ Dn}. (9)

We consider some instances for which ϑ ′ 
= α and aim to get better bounds by
adding cuts to the doubly nonnegative relaxation. The cuts are computed based on
Sect. 3.3.

Let X̄ denote the optimal solution we get by solving (9). If ϑ ′ 
= α, then X̄ ∈
Dn\CPn . We want to find cuts that separate X̄ from the feasible set of (8). If G(X) is
triangle-free, we can use Theorem 3.7 to separate X from CPn . Otherwise, we look
for a principal submatrix whose graph is triangle-free and whose comparison matrix is
not positive semidefinite, construct a cut for this submatrix, then use Proposition 3.2.

Let Y denote such a submatrix. In general, diag(Y ) 
= e as in (5). Therefore, we
consider the scaled matrix DY D, where D is a diagonal matrix with Dii = 1√

Yii
.

Since Y is a doubly nonnegative matrix having a triangle-free graph, the same holds
for DY D. Furthermore, DY D can be written as DY D = I +C , where C is a matrix
with zero diagonal and G(C) a triangle-free graph. Let ρ denote the spectral radius
ofC and let u be the eigenvector ofC corresponding to the eigenvalue ρ. Furthermore,
let A be as in Sect. 3.3. If ρ > 1, then according to (7), we have

0 > 〈A ◦ uuT , DY D〉 = 〈D(A ◦ uuT )D,Y 〉.

Therefore, D(A ◦ uuT )D defines a cut that separates Y from the completely positive
cone.

4.1 Numerical results for some stable set problems

As test instances, we consider the 5-cycle C5 and the graphs G8, G11, G14 and G17
from [18]. In each case we determine all submatrices as described above. It turns out
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Table 1 Results on different stable set problems

Graph α ϑ ′ ϑK
min ϑK

max ϑK
all # cuts Reduction

(%)

C5 2 2.236 2.0000 2.0000 2.0000 1 100

G8 3 3.468 3.3992 3.3992 3.2163 4 54

G11 4 4.694 4.6273 4.6672 4.4307 10 38

G14 5 5.916 5.8533 5.8977 5.6460 20 29

G17 6 7.134 7.0745 7.1227 6.8615 35 24

that for these instances the biggest order of such a submatrix is 5 × 5. The matrix
A we use is therefore a permutation of the Horn matrix. We then solve the doubly
nonnegative relaxation after adding each of these cuts and after adding all computed
cuts. The results are shown in Table 1. We denote by ϑK

min and ϑK
max the minimal

respectively maximal bound we get by adding a single cut to the doubly nonnegative
relaxation (9), and ϑK

all denotes the bound we get after adding all computed cuts. The
last column indicates the reduction of the optimality gap ϑ ′ − α when all cuts are
added.

4.2 Comparison with cuts based on subgraphs with known clique number

In this section,we compare our cuts to the ones introduced byBomze et al. [2], since the
basic structure is quite similar. In [2], the maximum clique problem is considered and
cuts are computed to improve the bound resulting from solving the doubly nonnegative
relaxation of that problem. These cuts are based on subgraphs with known clique
number.

To make it easier to compare the results, we assume that we want to compute the
clique number ω of the complement of a graph G, i.e., that we want to determine
ω(Ḡ), which is equivalent to the problem of computing the stability number α of G.
As we have seen above (see (8)), the problem can be stated as

ω(Ḡ) = α(G) = max{〈E, X〉 : 〈I, X〉 = 1, 〈AG, X〉 = 0, X ∈ CPn}. (10)

Let ϑ ′ denote the bound on α that we get by solving the doubly nonnegative relaxation
of (10).

The construction of cuts in [2] is based on the observation that for any optimal
solution X̄ of the doubly nonnegative relaxation of (10), we have X̄i j = 0 for all
{i, j} ∈ EG with EG denoting the edge set of G. This means that X̄i j > 0 implies
i = j or {i, j} ∈ EḠ . The cuts introduced in [2] are based on subgraphs F of Ḡ with
known clique number ω(F). According to [17, Corollary 2.4], the matrix

C ′
F =

(

1 − 1

ω(F)

)

E − AF
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Table 2 Comparison with the cuts based on [2]

Graph α ϑ ′ ϑK
min ϑF

min ϑK
max ϑF

max ϑK
all ϑF

all

C5 2 2.236 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

G8 3 3.468 3.3992 3.4149 3.3992 3.4149 3.2163 3.2609

G11 4 4.694 4.6273 4.6508 4.6672 4.6712 4.4307 4.5097

G14 5 5.916 5.8533 5.8805 5.8977 5.9023 5.6460 5.7506

G17 6 7.134 7.0745 7.1038 7.1227 7.1263 6.8615 6.9843

is copositive, and consequently also

CF =
(
C ′
F 0

0 0

)

is copositive.
In [2], a heuristic approach is used to find subgraphs F of Ḡ with known clique

number ω(F) such that the matrix CF is a cut that separates X̄ from the feasible set
of (10). For the computational results, subgraphs with clique number ω(F) = 2 or 3
are considered. We will concentrate on the case that F is a subgraph with ω(F) = 2,
i.e., F is a triangle-free subgraph of Ḡ.

In the approach described in Sect. 3.3, we consider (scaled) submatrices Y = I +C
of X̄ that have a triangle-free graphG(C). Since X̄i j > 0 implies i = j or {i, j} ∈ EḠ ,
we can conclude that G(C) is a subgraph of Ḡ. From the definition of A in (6) it
becomes clear that the negative entries of the cut correspond to the edges of G(C).
The same holds for the cutsCF , i.e., the negative entries ofCF correspond to the edges
of F which is a subgraph of Ḡ. Therefore, the basic structure of the cuts is the same
in the sense that the negative entries of the constructed matrices correspond to edges
of a subgraph of Ḡ. In Sect. 3.3, we consider triangle-free graphs, which is a special
case of the cuts in [2]. The main difference is how the cuts are constructed. Whereas
the entries of C ′

F are either (1− 1
ω(F)

) or − 1
ω(F)

, the cut K in Sect. 3.3 combines the
basic matrix A with the eigenvector u.

Next,we compareboth constructions numerically. For thatweconsider the instances
from Sect. 4 and compute cuts of the formCF for all 5×5 principal submatrices of the
optimal solution X̄ of the doubly nonnegative relaxation of (10) that have a triangle-free
graph F . As for the cuts K in Sect. 4, we then add these cuts to the doubly nonnegative
relaxation and compute new bounds on ω(Ḡ) = α(G). We denote by ϑ F

min and ϑ F
max

the minimal and maximal bounds (respectively) we get by adding a single cut, and
by ϑ F

all the bound resulting from adding all computed cuts. The results are shown in
Table 2.

The results show that the bounds based on the cuts K from Sect. 3.3 are better
than the bounds based on the cuts CF from [2]. This comes from the fact that the
construction of the cuts K is more specific. The cuts K do not only reflect which
entries of X̄ are positive but also the entries of X̄ themselves play a role, in form of the
eigenvector u. On the other hand, the cuts in [2] are more general since they also apply
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Table 3 Comparison with other cuts from the literature

Graph α ϑ ′ ϑK
all ϑBFL ϑDA

mean,1 ϑDA
mean,4 ϑSD

G8 3 3.468 3.216 3.000 – – 3.213

G11 4 4.694 4.431 4.280 4.362 4.248 4.260

G14 5 5.916 5.646 5.485 5.585 5.422 5.757

G17 6 7.134 6.862 6.657 6.814 6.620 6.986

to subgraphs with higher clique number. Moreover, if those cuts are not restricted to
triangle-free subgraphs, then better bounds are obtained as the results in [2] show.

4.3 Comparison with other cutting planes

Finally, we compare our results to the results presented in [10] and [19]. For the
sake of completeness, we also include the results reported in [2] although these cuts
have already been discussed in Sect. 4.2. The different bounds are stated in Table 3.
The bound from [2] is denoted by ϑBFL. The bound developed in [10] is based on
an iterative procedure, whence we cite in the table the bounds ϑDA

mean,1 (their mean

bound in the first round) and ϑDA
mean,4 (their mean bound after four rounds). Finally,

ϑSD denotes the bound given in [19].
As can be seen from the table, the bounds ϑBFL and ϑDA are for all instances

slightly better than our bound ϑK
all. For ϑBFL, this comes from the fact that the cuts

in [2] are more general in the sense that they are not only based on triangle-free
subgraphs but also use K4-free subgraphs. Nevertheless, we have seen in Sect. 4.2
that our construction gives better results when the underlying subgraph is the same.

The procedure giving ϑDA from [10] is an iterative one that is conceptionally quite
different from ours. It requires detecting suitable submatrices as well as solving a
number of semidefinite optimization problems in each iteration. Therefore, the com-
putational effort to compute ϑDA is much higher than the effort for ϑK

all which makes
it plausible that the numerical results for that procedure are slightly better than ours.

Finally, our bound ϑK
all is comparable to ϑSD and beats it in two out of the four

considered graphs. Also the procedure to compute ϑSD is computationally much more
expensive than the one presented here, so ϑK

all is superior in the sense that it gives
comparable or better results with a much lower computational effort.
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