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Abstract In this paper, we first give some characterizations of improvement sets via
quasi interior. Furthermore, as applications of these characterizations, we establish
an alternative theorem via improvement sets and quasi interior, and then obtain a
scalarization result of weak E-efficient solutions defined by improvement sets and
quasi interior for vector optimization problems with set-valued maps. Moreover, we
also present some examples to illustrate the main conditions and results.

Keywords Improvement sets · Quasi interior · Weak E-efficient solutions ·
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1 Introduction

In recent years, research on the theory of vector optimization has attracted more atten-
tions and has become one of the most important research topics in optimization theory
and applications. So far, there are a lot of related researchworks, see [1,2] and the refer-
ences therein. In vector optimization, various kinds of solutions including as efficient
solutions, weak efficient solutions and proper efficient solutions have been playing
an important role. In particular, the classical weak efficient solutions via topological
interior possess some very nice properties, see [3,4] and the references therein.
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Approximate solutions also have been defined in several ways in vector optimiza-
tion. Loridan presented ε-solutions of vector minimization problems in [5]. Rong
and Wu introduced weak ε-minimal solutions of vector optimization problems with
set-valued maps and established the corresponding linear scalarization theorems and
Lagrange multipliers theorems in [6]. Furthermore, Chicco et al. [7] introduced the
concept of improvement sets and presented E-efficient solutions via improvement
sets in a finite dimensional space. Gutiérrez et al. [8] generalized the concept of
improvement sets to a general real locally convex Hausdorff topological vector space.
Moreover, Zhao et al. proposed weak E-efficient solutions via improvement sets and
topological interior, and then obtained some characterizations for vector optimization
problems with set-valued maps in [9]. Zhao and Yang also proposed E-Benson proper
efficient solutions and established the corresponding linear scalarization theorems and
Lagrange multipliers theorems in [10].

The classical weak efficiency requires the nonemptiness of topological interior of
the ordering cones. However, there are many vector optimization problems with the
ordering cones havingpossibly empty topological interior.Hence, somenotions of gen-
eralized interiors will be essential. Limber andGoodrich introduced the notion of quasi
interior and obtained some characterizations in [11]. Borwein and Lewis proposed the
notion of quasi relative interior and gave some characterizations in [12]. Furthermore,
Bao and Mordukhovich established some existence results of weak efficiency defined
by several kinds of generalized interiors in [13]. Further study on characterizations of
various kinds of generalized interiors and applications can be found in [14–23].

Weak E-efficiency defined by improvement sets and topological interior unifies
some known exact and approximate efficiency in vector optimization. In this paper,
we first give some characterizations of improvement sets via quasi interior. Then
we establish an alternative theorem and a scalarization result of weak E-efficient
solutions via improvement sets and quasi interior for vector optimization problems
with set-valued maps.

2 Preliminaries

Let X be a real linear space, Y be a real nontrivial separated locally convex topological
vector space and Y ∗ be the topological dual space of Y . Let Rn be the n-dimensional
Euclidean space, Rn+ be the nonnegative orthant, Rn++ be the positive orthant, N+ be
the set of all positive integers and

l p =
⎧
⎨

⎩
y = (yn)n∈N+

∣
∣
∣
∣

∑

n∈N+
|yn|p < +∞

⎫
⎬

⎭
, 1 ≤ p < +∞

endowed with its usual norm. The positive cone of l p, denoted by l p+, is

l p+ = {y = (yn)n∈N+ ∈ l p|yn ≥ 0, n ∈ N
+}, 1 ≤ p < +∞.
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Characterizations of improvement sets via quasi interior... 771

We denote l p++ by

l p++ = {y = (yn)n∈N+ ∈ l p|yn > 0, n ∈ N
+}, 1 ≤ p < +∞.

For a nonempty subset A in Y , we denote the topological interior and topological
closure by intA and clA, respectively. A is said to be proper if A �= ∅ and A �= Y .
Moreover, the generated cone and the positive dual cone of A are respectively defined
as

coneA = {αa|α ≥ 0, a ∈ A}, A+ = {μ ∈ Y ∗|〈μ, y〉 ≥ 0, ∀y ∈ A}.

For a nonempty convex subset A in Y , the quasi interior (see [11]) and quasi relative
interior (see [12–18]) denoted by qiA and qriA are respectively defined as

qiA = {y ∈ A|cl(cone(A − y)) = Y },
qriA = {y ∈ A|cl(cone(A − y)) is a linear subspace in Y }.

Zălinescu pointed out the following fact in [18]:

qiA = A ∩ qi(clA), qriA = A ∩ qri(clA). (1)

For a convex subset A in Y , it is well known that intA ⊂ qiA ⊂ qriA; If intA �= ∅,
then intA = qiA = qriA; If qiA �= ∅, then qiA = qriA.

Definition 2.1 [7–9] Let E be a nonempty subset in Y and K be a proper convex cone
in Y . If 0 /∈ E and E + K = E , then E is said to be an improvement set with respect
to K .

Remark 2.1 There exist some improvement sets with respect to a proper convex cone
K . For example, let K = R

2+ in R2. Then R2+\{0}, R2++, (1, 1) +R
2+, {(y1, y2)|y1 ≥

−1, y2 ≥ 1} and R
2+\{(y1, y2)|0 ≤ y1 < 1, 0 ≤ y2 < 1} are improvement sets with

respect to K . So far, some applications of improvement sets via topological interior
in vector optimization are given, see [7–10] and the references therein.

Lemma 2.1 [14], Theorem 2.1 Let A and B be two nonempty convex subsets in Y
with qri A �= ∅, qri B �= ∅ and such that cl(cone(qri A − qri B)) is not a linear
subspace in Y . Then there exists y∗ ∈ Y ∗\{0Y ∗} such that 〈y∗, a〉 ≤ 〈y∗, b〉 for all
a ∈ A and b ∈ B.

Lemma 2.2 [17], Lemma 2.6 Let A be a nonempty subset in Y and K be a proper
convex cone with nonempty quasi relative interior in Y . Then

(i) cl(cone(A + qri K )) = cl(coneA + qri K );
(ii) cl(cone(A + qri K )) = cl(cone(A + K )).

Remark 2.2 Lemmas 2.1 and 2.2 still hold for the case of quasi interior since quasi
relative interior coincides with quasi interior when quasi interior of a set is nonempty.
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Lemma 2.3 [17], Lemma 2.5 Let K be a proper convex cone with nonempty quasi
relative interior in Y and cl(K − K ) = Y . If k ∈ qri K , then we have 〈k∗, k〉 > 0 for
all k∗ ∈ K+\{0}.
Remark 2.3 In Lemma 2.3, if we assume that K be a proper convex cone with non-
empty quasi interior in Y , then cl(K − K ) = Y is trivial according to the definition
of quasi interior. Hence we have 〈k∗, k〉 > 0 for all k∗ ∈ K+\{0} and k ∈ qiK .

3 Characterizations of improvement sets via quasi interior

In this section, we mainly give some characterizations of improvement sets via quasi
interior. These characterizations will be important in the sequel.

Lemma 3.1 Let K be a proper convex cone with nonempty quasi interior in Y and E
be a convex improvement set with respect to K in Y . Then E + qiK ⊂ qiE .

Proof By the fact that E + K = E and then from Proposition 1 in [18], the result is
trivial. ��
Remark 3.1 Lemma 3.1 implies that qiE �= ∅ if E �= ∅ and qiK �= ∅.
Remark 3.2 In [10], Zhao and Yang proved the fact that intE = E + intK when
intK �= ∅.However,we cannot expect that qiE = E+qiK even if qiK �= ∅. Following
the idea of Example 2 proposed by Zălinescu in [18], we present the following example
to illustrate it.

Example 3.1 Let Y = l2, y = (1,
1

2
,
1

3
, . . .), E = R++y + l1+ and K = l1+. Clearly,

y ∈ l2, y /∈ l1, K is a proper convex cone and E is a convex improvement set with
respect to K . Furthermore, qiK = l1++ and qil2+ = l2++. Therefore, we have

y ∈ E ∩ qil2+. (2)

Moreover, it follows that

clE = cl(R++y + l1+) = cl(R+y + l1+).

Therefore,

l1+ ⊂ R+y + l1+ ⊂ cl(R+y + l1+) = clE ⊂ cll2+ = l2+.

Hence from the fact that cll1+ = l2+, we have clE = l2+. So, by (1) and (2), we can
obtain that y ∈ qiE . However, we can verify that y /∈ E + qiK . On the contrary,
assume that y ∈ E + qiK . Then we have

y ∈ R++y + l1+ + qil1+ = R++y + qil1+.

So, there exists t ∈ R++ such that

(1 − t)y ∈ qil1+ ⊂ l1.
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Characterizations of improvement sets via quasi interior... 773

Then from the fact that y /∈ l1 and l1 is a linear subspace of l2, we have t = 1. This
means that 0 ∈ qiK , which is a contradiction.

Remark 3.3 Under the assumption conditions of Lemma 3.1, we can obtain that for
any given set A in Y ,

cl(cone(A + qiE)) = cl(cone(A + E)).

In fact,weonly need to prove cl(cone(A+E)) ⊂ cl(cone(A+qiE)). From E = E+K ,
Lemmas 2.2 and 3.1, we can obtain that

cl(cone(A + E)) = cl(cone(A + E + K ))

= cl(cone(A + E + qiK )) ⊂ cl(cone(A + qiE)).

Remark 3.4 The relation E + qiK ⊂ qiE is only a necessary condition for improve-
ment sets. For example, let K = R

2+ in R2 and E = {(y1, y2)|y2 ≥ 0}\{(y1, y2)|y1 ≥
0, y2 = 0}. We can easily obtain that K is a proper convex cone with nonempty quasi
interior, 0 /∈ E , E is a convex set, E + qiK ⊂ qiE and E is not an improvement set
with respect to K . However, if K is a proper convex cone with nonempty quasi interior
in Y , 0 /∈ E , E is a closed convex set in Y and E + qiK ⊂ qiE , we can verify that E
is an improvement set with respect to K . In fact, it is clear that E ⊂ E + K and

E + K ⊂ clE + cl(qiK ) ⊂ cl(E + qiK ) ⊂ cl(qiE) = E .

Lemma 3.2 Let K be a proper cone in Y . Then for any given y ∈ Y ,

cl(cone(K + y)) = cl(K + R++y).

Proof Clearly, cl(cone(K + y)) ⊂ cl(K + R++y). On the other hand, let y ∈ K +
R++y. Then there exist k ∈ K and α > 0 such that y = k + αy. Since K is a cone,
then α−1k ∈ K . Therefore,

y = α(α−1k + y) ∈ α(K + y) ⊂ cone(K + y),

which completes the proof. ��
Theorem 3.1 Let A be a nonempty subset in Y , K be a proper convex cone with
nonempty quasi interior in Y and E be an improvement set with respect to K in Y . If
cl(cone(A + E)) is a convex set, then

qi(cl(cone(A + E))) �= ∅.

Proof From qiK �= ∅, there exists k ∈ qiK , which means that

cl(cone(K − k)) = Y. (3)
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Since E is an improvement set with respect to K , then for any given e ∈ E and y ∈ A,
we have y + e + k ∈ cone(A + E) and so y + e + k ∈ cl(cone(A + E)). Moreover,
from Proposition 3.1 in [3], we have

cl(cone(cl(cone(A + E)) − y − e − k)) = cl(cone(cone(A + E) − y − e − k)).

It follows from E = E + K , Lemmas 2.2, 3.2 and (3) that

cl(cone(cl(cone(A + E)) − y − e − k)) = cl(cone(A + E) + R++(−y − e − k))

= cl(cone(A + E + R++(−y − e − k)))

⊃ cl(cone(A + E − y − e − k))

= cl(cone(A + E + K − y − e − k))

⊃ cl(cone(K − k)) = Y. (4)

Then from (4) and the definition of quasi interior that

y + e + k ∈ qi(cl(cone(A + E))),

which completes the proof. ��
Remark 3.5 If E is not an improvement set with respect to K , then Theorem 3.1 may
not be valid. The following example illustrates it.

Example 3.2 Let Y = l2, K = l2+, E = {y = (yn)n∈N+ ∈ l2+|y2n = y2n−1, n ∈
N

+}\{0} and

A = {y = (yn)n∈N+ ∈ l2|y2n = y2n−1, n ∈ N
+}.

Clearly, E is not an improvement set with respect to K and other conditions of Theo-
rem 3.1 are satisfied. Since A + E = A and A is a closed linear subspace in Y , then
qi(cl(cone(A + E))) = qiA = ∅.

Theorem 3.2 Let A be a nonempty subset in Y , K be a proper closed convex cone
with nonempty quasi interior in Y and E be a convex improvement set with respect to
K in Y . If A ∩ (−qiE) = ∅, then cone(A + E) ∩ (−qiK ) = ∅.
Proof By Lemma 3.1 and A ∩ (−qiE) = ∅, we can easily obtain that

(A + E) ∩ (−qiK ) = ∅. (5)

Assume that there exists d ∈ −qiK such that d ∈ cone(A + E). Clearly, d �= 0 since
K �= Y . Hence from d ∈ cone(A + E), there exist α > 0, y′ ∈ A and e′ ∈ E such
that d = α(y′ + e′). It follows from d ∈ −qiK and Proposition 2.5 (iv) in [15] that
y′ + e′ ∈ −qiK , which contradicts to (5) and the proof is completed. ��
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Theorem 3.3 Let A be a nonempty subset in Y , K be a proper convex cone with
nonempty quasi interior in Y and E be an improvement set with respect to K in Y .
If cl(cone(A + E)) is a convex set and qi(cl(cone(A + E))) ∩ (−qiK ) = ∅, then
cl(cone(A + E)) is not a linear subspace in Y .

Proof On the contrary, we assume that cl(cone(A+E)) is a linear subspace in Y . Then
it follows from 0 ∈ cl(cone(A+ E)) that 0 ∈ qri(cl(cone(A+ E))). By making use of
Theorem 3.1, we can obtain that 0 ∈ qi(cl(cone(A+ E))) and so cl(cone(A+ E)) =
Y . It follows from the definition of quasi interior that qi(cl(cone(A + E))) = Y .
Therefore,

qi(cl(cone(A + E))) ∩ (−qiK ) = −qiK �= ∅,

which is a contradiction. ��
Remark 3.6 If E is not an improvement set with respect to K and other conditions of
Theorem 3.3 are satisfied, then Theorem 3.3 may not be valid. For example, consider
the sets A, E and K in Example 3.2 and we can verify that cl(cone(A + E)) = A is
a linear subspace in Y .

Remark 3.7 If qi(cl(cone(A+E)))∩(−qiK ) �= ∅ andother conditions ofTheorem3.3
are satisfied, then Theorem 3.3 may not be valid. The following example illustrates it.

Example 3.3 Let Y = l2, K = l2+, E = K\{0} and A = −K . It is clear that
qi(cl(cone(A+ E)))∩ (−qiK ) �= ∅ and other conditions of Theorem 3.3 are satisfied.
However, we can verify that cl(cone(A + E)) = Y .

4 Applications in vector optimization

In this section,wefirst introduce the concept ofweak E-efficient solutions via improve-
ment sets and quasi interior. Thenwe establish an alternative theorem via improvement
sets and quasi interior and then obtain a scalarization result of weak E-efficient solu-
tions of vector optimization problems with set-valued maps.

Consider the following vector optimization problem:

(VP) min F(x) subject to x ∈ S,

where F : S ⇒ Y , S ⊂ X and S �= ∅.
In this section, we assume that K be a proper closed convex cone with nonempty

quasi interior in Y .

Definition 4.1 Let E be a convex improvement set with respect to K in Y . A point
pair (x, y) is called a weak E-efficient point of (VP) if x ∈ S, y ∈ F(x) such that

(y − qiE) ∩ F(S) = ∅.

Remark 4.1 (i) If intE �= ∅, then qiE = intE , which means that Definition 4.1
coincides with the weak E-optimal point introduced by Zhao et al. in [9];
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(ii) If F is a vector-valued map on S, K is pointed and E = K\{0} with nonempty
quasi interior, then qiE = qriK , which means that Definition 4.1 coincides with
the quasi relative minimal point of (VP) introduced by Bao and Mordukhovich in
[13].

If E is a convex improvement set with respect to K in Y , Lemma 3.1 shows that E+
qiK ⊂ qiE . In order to establish a scalarization theorem of weak E-efficient solutions
of (VP), following the assumption proposed by Grad and Pop in [23, Remark 4], we
propose the following similar condition named as Assumption (Q) for improvement
sets.
Assumption (Q) qiE ⊂ E + qiK .

Remark 4.2 Example 2 given by Zălinescu in [18] has shown that Assumption (Q) is
not always fulfilled. Moreover, Example 3.1 in Sect. 3 has indicated that Assumption
(Q) is not always fulfilled even if E is an improvement set with respect to K . Of course,
also there exist some improvement sets satisfying Assumption (Q). For example, if we
take Y = l p and K = l p+, then the following sets are improvement sets with respect
to K in Y and satisfy Assumption (Q):

(i) l p+\{0}, l p++;
(ii) y + l p+, where y ∈ l p satisfies that there exist at least one positive component;
(iii) E = (0, 1]y + l p+, where y ∈ l p+\{0}.

Let the support functional of the set A be defined as σA(y∗) = supy∈A{〈y∗, y〉},
∀y∗ ∈ Y ∗.

Theorem 4.1 Let E be a convex improvement set with respect to K in Y . If E satisfies
Assumption (Q) and cone(F(S) + E) is a closed convex set, then one and only one of
the following statements is true:

(i) ∃x ∈ S, F(x) ∩ (−qi E) �= ∅;
(ii) ∃μ ∈ K+\{0Y ∗}, 〈μ, y〉 ≥ σ−E (μ), ∀y ∈ F(S).

Proof Assume that both (i) and (ii) hold. Then there exists x ∈ S such that F(x) ∩
(−qiE) �= ∅. By Assumption (Q), there exist y ∈ F(x) and e ∈ E such that y +
e ∈ −qiK . Hence from Lemma 2.3, we have 〈μ, y〉 < 〈μ,−e〉 ≤ σ−E (μ), which
contradicts to (ii).

Assume that (i) does not hold. Then by Theorem 3.2, we have

cone(F(S) + E) ∩ (−qiK ) = ∅.

Hence, from the fact that cone(F(S) + E) is closed and Theorem 3.1, we have
qi(cone(F(S)+ E)) �= ∅. It follows from qiK �= ∅, Lemma 2.2 and E + K = E that

cl(cone(qi(cone(F(S) + E)) + qiK )) = cl(cone(cone(F(S) + E) + qiK ))

= cl(cone(F(S) + E) + qiK )

= cl(cone(F(S) + E + qiK )) (6)

= cone(F(S) + E).
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Moreover, from Theorem 3.3, cone(F(S)+ E) is not a linear subspace in Y and hence
by (6), we can obtain that cl(cone(qi(cone(F(S)+E))+qiK )) is not a linear subspace
in Y . It follows from Lemma 2.1 that there exists μ ∈ Y ∗\{0Y ∗} such that

〈μ, y + e + εk〉 ≥ 0, ∀y ∈ F(S), ∀e ∈ E, ∀k ∈ K , ∀ε > 0. (7)

Letting ε → +∞ in (7), we have 〈μ, k〉 ≥ 0 for all k ∈ K . Therefore,μ ∈ K+\{0Y ∗}.
Letting ε → 0 in (7), we can obtain that 〈μ, y〉 ≥ 〈μ,−e〉 for all y ∈ F(S) and e ∈ E .

Then

〈μ, y〉 ≥ sup
e′∈−E

〈μ, e′〉 = σ−E (μ), ∀y ∈ F(S).

This implies that (ii) does hold. ��
Remark 4.3 Let Y be a real Banach space, A be a nonempty set in Y . Then the
asymptotic cone of A is defined by A∞ = {u ∈ Y |∃(tn) ↓ 0, ∃(an) ⊂ A, tnan → u}.
If 0 ∈ A, the Bouligand tangent cone to A at 0 is defined by A0 = {u ∈ Y |∃(tn) →
+∞, ∃(an) ⊂ A, tnan → u}. According to [24], we can obtain that if A is a nontrivial
cone, then A∞ = A0 = clA. By means of Corollary 2.1 in [24], we can obtain some
sufficient conditions ensuring the closedness of cone(F(S) + E) as follows:

(i) If 0 /∈ cl(F(S) + E), (F(S) + E)∞ ⊂ cone(F(S) + E) and cone(F(S) + E) =
cone(cl(F(S) + E)), then cone(F(S) + E) is closed;

(ii) If 0 ∈ cl(F(S) + E), (F(S) + E)∞ ∪ (F(S) + E)0 ⊂ cone(F(S) + E) and
cone(F(S) + E) = cone(cl(F(S) + E)), then cone(F(S) + E) is closed.

Consider the scalar optimization problem:

(VP)μ min
x∈S 〈μ, F(x)〉, μ ∈ Y ∗\{0Y ∗},

where 〈μ, F(x)〉 = {〈μ, y〉|y ∈ F(x)}.
Definition 4.2 [9] A point x ∈ S is called an optimal solution of (VP)μ with respect
to E if there exists y ∈ F(x) such that 〈μ, y − y〉 ≥ σ−E (μ),∀x ∈ S,∀y ∈ F(x).
The point pair (x, y) is called an optimal point of (VP)μ with respect to E .

In the following, we establish a scalarization result of weak E-efficient solutions
of (VP).

Theorem 4.2 Let x ∈ S, y ∈ F(x) and E be a convex improvement set with respect to
K in Y . If E satisfies Assumption (Q) and cone(F(S)− y+ E) is a closed convex set,
then (x, y) is a weak E-efficient point of (VP) if and only if there existsμ ∈ K+\{0Y ∗}
such that (x, y) is an optimal point of (VP)μ with respect to E.

Proof Let (x, y) be a weak E-efficient point of (VP). Then (F(S)− y)∩(−qiE) = ∅.

From Theorem 4.1, there exists μ ∈ K+\{0Y ∗} such that

〈μ, y〉 − σ−E (μ) ≥ 0, ∀y ∈ F(S) − y.
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Then for any given x ∈ S and y ∈ F(x), 〈μ, y − y〉 ≥ σ−E (μ), which implies that
(x, y) is an optimal point of (VP)μ with respect to E .

Conversely, assume that (x, y) is not a weak E-efficient point of (VP). Then from
Assumption (Q), we have (y − E − qiK ) ∩ F(S) �= ∅. Hence, there exist x ′ ∈ S,
y′ ∈ F(x ′) and e′ ∈ E such that y′ − y + e′ ∈ −qiK . From μ ∈ K+\{0Y ∗} and
Lemma 2.3, we have

〈μ, y′ − y〉 − σ−E (μ) ≤ 〈μ, y′ − y + e′〉 < 0,

which contradicts to the fact that (x, y) is an optimal point of (VP)μ with respect
to E . ��

In the end of this section, we present an example to illustrate Theorem 4.2.

Example 4.1 Let X = Y = l2, S = l2+, F(x) = [0, 2]x , K = l2+ and E =
(
1

2
,
1

22
,
1

23
, . . .) + l2+. We take

x =
(
1

2
,
1

22
,
1

23
, . . .

)

∈ S, y =
(
1

2
,
1

22
,
1

23
, . . .

)

∈ F(x) = [0, 2]x .

Clearly, K is a proper closed convex cone with nonempty quasi interior, E is a convex
improvement set with respect to K . Moreover,

qiK = l2++, qiE = y + qiK ,

cone(F(S) − y + E) = cone(l2+ − y + y + l2+) = l2+.

We can verify that E satisfies Assumption (Q) and cone(F(S) − y + E) is a closed
convex set. Since (y − qiE) ∩ F(S) = ∅, then (x, y) is a weak E-efficient point of
(VP). Since K+ = l2+, then we can take

μ =
(
1

2
,
1

22
,
1

23
, . . .

)

∈ K+\{0Y ∗}.

So for any y ∈ F(S),

〈μ, y − y〉 = 〈μ, y〉 − 〈μ, y〉 ≥ −〈μ, y〉 = σ−E (μ),

which means that (x, y) is an optimal point of (VP)μ with respect to E .

Remark 4.4 Zhao et al. established an alternative theorem (see Theorem 3.1) and a
scalarization theorem (see Theorem 4.1) via improvement sets with nonempty topo-
logical interior in [9]. These results could not be applicable for those cases with
possibly empty topological interior. In this paper, Theorems 4.1 and 4.2 generalize the
corresponding results to the generalized interior case to some degree.
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Remark 4.5 About the assumption condition that cone(F(S) − y + E) is a closed
convex set in Theorem 4.2, y is a given point previously and it is only used to prove
the necessity. We mainly follow the similar ideas of the references [3,24–27] and set
this assumption condition. See Theorems 5.1 and 6.1 in [3]; Theorems 2.2 and 2.3
in [24]; Theorems 4.1 and 5.1 in [25]; Theorems 4.1, 5.1 and 5.3 in [26]; Theorems
3.2 and 3.8 in [27] etc. However, we also notice that the assumption condition is
revelent with ȳ. Hence, it remains an interesting problem that how to propose a more
appropriate assumption condition which does not depend on ȳ.

5 Concluding remarks

In this paper, we first obtain some characterizations of improvement sets via quasi inte-
rior. Furthermore, we apply these characterizations to establish an alternative theorem,
and then obtain a scalarization result of weak E-efficient solutions via improvement
sets and quasi interior. It is meaningful to generalize the corresponding results to the
case of quasi relative interior. Moreover, if we remove the assumption condition that
cone(F(S) + E) is closed, can Theorem 4.1 hold? It also remains one open question.
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15. Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex pro-
gramming. SIAM J. Optim. 19, 217–233 (2008)
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