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Abstract In this paper we propose a new class of Mehrotra-type predictor-corrector
algorithm for the monotone linear complementarity problems (LCPs). At each itera-
tion, the method computes a corrector direction in addition to the Ai–Zhang direction
(SIAM J Optim 16:400–417, 2005), in an attempt to improve performance. Starting
with a feasible point (x0, s0) in the wide neighborhoodN (τ, β), the algorithm enjoys
the low iteration bound of O(

√
nL), where n is the dimension of the problem and

L = log (x0)T s0

ε
with ε the required precision. We also prove that the new algorithm

can be specified into an easy implementable variant for solving the monotone LCPs,
in such a way that the iteration bound is still O(

√
nL). Some preliminary numerical

results are provided as well.
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1 Introduction

Consider the following monotone linear complementary problem (LCP):

s = Mx + q,

xT s = 0, x ≥ 0, s ≥ 0, (1.1)

where q ∈ Rn and M ∈ Rn×n is a monotone matrix, i.e., xT Mx ≥ 0 for any x ∈ Rn .

A particular choice of M is a block skew symmetric matrix, M =
[
0 A
−AT 0

]
. In

that case, the corresponding monotone LCP is nothing but a linear programming (LP)
problem.

The primal-dual interior-point method was first introduced by Kojima et al. [6] and
Megiddo [9], which essentially aims at solving the following parameterized problem
by Newton’s method, for shrinking values of the parameter μ > 0:

s = Mx + q,

xs = μe, x > 0, s > 0. (1.2)

The exact solution of the above problem is known as the analytic central path, with
the varying path parameter μ > 0. Applying Newton’s method to (1.2) for a given
feasible point (x, s) gives the following linear system of equations

M�x − �s = 0,
s�x + x�s = μe − xs,

(1.3)

where (�x,�s) give the Newton step. At each iteration, the method would choose
a target on the central path and apply the Newton method to move closer to the tar-
get, while confining the iterate to stay within a certain neighborhood of the analytic
central path. This method was found to be not only elegant in its simplicity and sym-
metricity, but also extremely efficient in practical implementations. There has been,
however, an inconsistency between theory and practice: fast algorithms in practice
may actually render worse complexity bounds. In their first paper [6], Kojima et al.
proposed that the iterates reside in a wide neighborhood of the central path, known as
theN−∞-neighborhood (details of the notion will be discussed later), and the targets on
the central path are shifted towards the origin by a large update (meaning a reduction
by a universal percentage, independent of the problem parameters) at each iteration.
The worst case iteration bound was proved to be O(nL), where n is the dimension
of a standard LP problem, and L is its input-length. Then, in a subsequent paper [7],
the same authors proposed a variant of the method, where the iterates are restricted
to a much smaller neighborhood, known as the N2-neighborhood, and at each step
the target is shifted with a small update. The algorithm became too conservative to
be efficient in practice. However, the worst case iteration bound of the variant was
improved to O(

√
nL). The first practically efficient O(

√
nL) primal-dual interior-

point algorithm for LP was the predictor-corrector algorithm of Mizuno, Todd and Ye
(MTY) [11]. In the predictor step, the MTY algorithm uses the so-called primal-dual
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affine scaling step with μ = 0 in (1.3) and the iterate moves to a slightly larger neigh-
borhood. Then, in the corrector step, it uses μ = xT s/n to bring the iterate towards
the central path, back to the smaller neighborhood. The iteration bound is still retained
to be O(

√
nL) since theN2 small neighborhoods are used to control the centrality of

the iterates. Recently, Ai and Zhang [1] introduced a new class of primal-dual path-
following interior-point algorithms for solving monotone LCPs, working with large
update and wide neighborhood at each iteration. They showed that their algorithm
enjoys the iteration bound of O(

√
nL). This result yields the first wide neighborhood

path-following algorithm having the same theoretical complexity as a small neigh-
borhood algorithm for monotone LCPs, which include LP as a special case. They
also proposed a predictor-corrector variant of the method in [1], and proved that the
predictor steps converge Q-quadratically if the problem has a strictly complementary
solution.

A more practical predictor-corrector algorithm whose variants are the backbone
of most interior-point algorithms based software packages is Mehrotra’s predictor-
corrector algorithm (MPC) [10]. The use of the same coefficient matrix of the Newton
system in both the predictor and corrector steps and an adaptive update of the centering
parameter led to superior practical performance compared to all the aforementioned
polynomial time algorithms. However, no convergence theory is available for Mehro-
tra’s original algorithm. In fact, there are examples for which the MPC algorithm
diverges. Simple safeguards could be incorporated into the method to force it into
the convergence framework of existing methods [12,13,15]. Recently, in [8], the
authors propose a primal-dual second-order corrector interior-point algorithm for LP,
which is a special case of the monotone LCPs. It adds a corrector step to Ai–Zhang’s
path-following algorithm [1], in an attempt to improve performance. The preliminary
implementations show that this algorithm is promising for solving LP. The current
paper aims at modifying Ai–Zhang’s path-following algorithm in [1] to gain a class of
Mehrotra-type predictor-corrector algorithm for monotone LCPs. The algorithm has
the low iteration bound of O(

√
nL) and a superior practical performance for solving

LCPs. It must be pointed out that the corrector direction and the step length of the
proposed algorithm are different from the algorithm in [8]. The new schemes in this
paper will enable us to prove the monotonicity of the duality gap with respect to the
step length for the monotone LCPs. In fact, the main result of this paper is to prove
that the proposed generic method can be specified into an easy implementable variant
with given parameters for the monotone LCPs, in such a way that the iteration bound
is O(

√
nL).

The rest of the paper is organized as follows. In Sect. 2, we recall the key features of
Ai–Zhang’s method and then present a new class ofMehrotra-type predictor-corrector
algorithm. In Sect. 3, we establish the worst case iteration complexity of the proposed
algorithm and discuss an easy implementable variant of the general method. In Sect. 4,
some preliminary numerical results are reported. In Sect. 5 some discussions and
conclusions are given.

Throughout the paper, all of the vectors are column vectors and e denotes the vector
with all components equal to one. For vector x ∈ Rn , xi denotes the i th component of
vector x and X denotes the n × n diagonal matrix with x as the diagonal components.
For any two vectors x and s, xs denotes the componentwise product of the two vectors,
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and so is true for other operations, e.g., 1/(xs) and (xs)−0.5. For any a ∈ R, a+ denotes
its nonnegative part, i.e., a+ := max{a, 0}, and a− denotes its nonpositive part, i.e.,
a− := min{a, 0}. The same notation is used for vector x ∈ Rn , namely x+ is the
nonnegative part of x and x− is the nonpositive part of x . The L p-norm of x ∈ Rn is
denoted by‖·‖p , and in particularwewrite ‖·‖ for Euclidean norm ‖·‖2.We also use the
notations I =: {1, 2, . . . , n}, F := {(x, s) ∈ Rn × Rn : s = Mx + q, x ≥ 0, s ≥ 0},
and F0 := {(x, s) ∈ Rn × Rn : s = Mx + q, x > 0, s > 0}.

2 Mehrotra-type predictor-corrector algorithm

The central path for the LCP is defined as C := {(x, s) ∈ F0 : xs = μe}, and its
so-called wide neighborhood is defined as follows:

N−∞(1 − τ) := {(x, s) ∈ F0 : xs ≥ τμ},

where τ ∈ (0, 1) is a given constant andμ = xT s/n. Ai andZhang [1] have introduced
a new neighborhood for the central path, defined as

N (τ1, τ2) := {(x, s) ∈ F0 : ‖(τ1μe − xs)+‖ ≤ (τ1 − τ2)μ},

where 0 < τ2 < τ1 < 1 are two parameters. For convenience we set β = (τ1 − τ2)/τ1
and introduce a new notation to indicate the neighborhood in this paper, i.e.,

N (τ, β) := {(x, s) ∈ F0 : ‖(τμe − xs)+‖ ≤ βτμ}.

The above defined neighborhood is itself a wide neighborhood, since one can easily
verify that

N−∞(1 − τ) ⊆ N (τ, β) ⊆ N−∞(1 − (1 − β)τ), ∀ 0 < τ, β < 1. (2.1)

Another key ingredient of Ai–Zhang’s method is to decompose the Newton step
into the following two equations:

M�x− − �s− = 0,

s�x− + x�s− = (τμe − xs)− (2.2)

and

M�x+ − �s+ = 0,

s�x+ + x�s+ = (τμe − xs)+. (2.3)

As pointed out in [1], the part (τμe − xs)− is important for the progress towards
optimality, and the other part (τμe − xs)+ is used to control the centrality. To make
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this point clear, let us move the iterate from (x, s) to (x + α�x, s + α�s), where
(�x,�s) = (�x−,�s−) + (�x+,�s+) is the usual Newton direction since

s�x + x�s = (τμe − xs)− + (τμe − xs)+ = τμe − xs. (2.4)

At each iteration we expect the duality gap to decrease by

xT s − (x + α�x)T (s + α�s) = −α(xT�s + sT�x)

= −αeT (τμe − xs)

= −α
∑

[τμe − xs]−i − α
∑

[τμe − xs]+i ,

from which we see that the negative components of τμe − xs are responsible for
reducing the duality gap. On the other hand, the positive components of τμe − xs,
i.e., xi si < τμ = τ xT s/n indicate that the iterate is “close” to the boundary of the
positive orthant. For these coordinates, using (2.4) we have

(xi + α�xi )(si + α�si ) = xi si + α(xi�si + si�xi ) + α2(�xi�si )

= xi si + α(τμ − xi si ) + α2(�xi�si ).

Because the coefficient of the first order term of α is bigger than zero, then (xi +
α�xi )(si + α�si ) increases locally and pushes the iterate to the interior of the first
orthant, i.e., keeping the centrality. Ai and Zhang [1] suggested to treat negative and
positive components of τμe − xs separately to obtain a better iteration complexity
bound for wide neighborhood IPMs.

Our new Mehrotra-type predictor-corrector algorithm uses the information from
(2.2) to compute the corrector direction by

M�xc− − �sc− = 0,

s�xc− + x�sc− = −αa�x−�s−, (2.5)

where αa ∈ [0, 1] is the maximum feasible step length that ensures (x + αa�x−, s +
αa�s−) ≥ 0, i.e.,

αa := argmax{αa ∈ [0, 1] : x + αa�x− ≥ 0, s + αa�s− ≥ 0}. (2.6)

Finally, the new iterate is

(x(α), s(α)) := (x, s) + (�x(α),�s(α))

:= (x, s) + α1((�x−,�s−) + (�xc−,�sc−)) + α2(�x+,�s+). (2.7)

To get the best step lengths we expect to solve the following subproblem:

min x(α)T s(α)

s.t. (x(α), s(α)) ∈ N (τ, β),

0 ≤ α1, α2 ≤ 1. (2.8)
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Most recently, in [3] the author provided an example that shows that Mehrotra-type
predictor-corrector algorithmsmay fail to converge to an optimal solution. The cause of
the bad performance of the algorithm on the problem is that the corrector direction had
too much influence on the resulting search direction. Indeed, in [8,15] the new iterate
is constructed as a quadratic function of the step length from the current iterate, where
the predictor direction and the corrector aremultiplied by the step length and the square
of the step length, respectively. In a similar way, Salahi et al. [13] propose finding the
corrector by weighting the term �x−�s− in (2.5) by the allowed step length αa for
the predictor direction. Moreover, [12] combines above two methods and Colombo
and Gondzio [5] give the general method with weighting the corrector by a parameter
ω ∈ (0, 1]. Our method in this paper is similar to [13]. However, instead of trying to
correct all Newton direction, we only try to correct the direction (�x−,�s−), along
which the iterate approaches to the boundary of the positive orthant. The direction
(�x+,�s+), along which the iterate is pushed to the interior of the positive orthant, is
already reasonably good, and does not need to be changed. In fact, the step size taken
along the direction (�x+,�s+) can always be chosen one according to Ai and Zhang
[1]. On the other hand, instead of adding the centering term to the corrector step, we
move it to the predictor step as in [4,8,15]. We point out that the corrector direction
and the step lengths in the present paper are different from the algorithm in [8]. The
new schemes will enable us to prove the monotonicity of the duality gap with respect
to the step length for the monotone LCPs. Then, the proposed generic method can be
specified into an easy implementable variant with given parameters and the iteration
bound is still O(

√
nL).

Now, after all the previous discussions we outline the Mehrotra-type predictor-
corrector algorithm as follows.

Algorithm 2.1 (Mehrotra-type predictor-corrector algorithm)
Input parameters ε > 0, 0 < τ, β < 1, and an initial point (x0, s0) ∈ N (τ, β)

with μ0 = (x0)T s0/n.

Step 0 Set k := 0.
Step 1 If (xk)T sk ≤ ε, then stop.
Step 2 (Predictor step) Compute the directions (�xk−,�sk−) by (2.2) and (�xk+,�sk+)

by (2.3). Find the maximum feasible step length αa by (2.6).
Step 3 (Corrector step) Compute the directions (�xc,k− ,�sc,k− ) by (2.5). Find the step

lengths αk = (αk
1, α

k
2) giving a sufficient reduction of the duality gap and

assuring (x(αk), s(αk)) ∈ N (τ, β).
Step 4 Let (xk+1, sk+1) := (x(αk), s(αk)) and μk+1 = (xk+1)T sk+1/n. Set k :=

k + 1 and go to Step 1.

There are three comments we would like to address about the presented algorithm.
First of all, the algorithm is a feasible algorithm, and an initial point (x0, s0) inN (τ, β)

is needed. It is easy to obtain such a point by employing homogeneous and self-dual
embedding method for the monotone LCP of Ye [2,14]. Second, although we suggest
to solve the subproblem (2.8) to decide the best step lengths, solving this problem
could be expensive. Hence, a “sufficient” duality gap decrease obtained at a low
computational cost is preferred against the “maximal possible” duality gap decrease at
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a high computational cost. Even if we do not use the optimal solution of problem (2.8)
as the step lengths, we are still able to achieve polynomial convergence. In fact, wewill
prove in Sect. 3 that the above algorithm can be specified into an easy implementable

variant with given parameters, and has an iteration bound of O(
√
n log (x0)T s0

ε
). Third,

in spite of the fact that three linear systems (2.2), (2.3), and (2.5) have to be solved,
the additional cost is very marginal, since they have the same coefficient matrix.

Before proceeding to the complexity result, we have to give some technical lemmas
that will be used frequently during the analysis.

Lemma 2.1 Let (x, s) ∈ F0, (�x−,�s−) be the solution of (2.2), and αa is the
maximum feasible step length defined by (2.6). Let I+ = {i ∈ I : (�x−)i (�s−)i > 0}
and I− = {i ∈ I : (�x−)i (�s−)i < 0}. Then

(�x−)i (�s−)i ≤ xi si
4

, ∀i ∈ I+

and

−(�x−)i (�s−)i ≤ xi si
α2
a

, ∀i ∈ I−.

Proof By Eq. (2.2) for i ∈ I+ we have

si (�x−)i + xi (�s−)i = (τμ − xi si )
− ≤ 0.

Since (�x−)i (�s−)i > 0, this inequality implies that both si (�x−)i < 0 and
si (�s−)i < 0. Then, from

2
√
xi si (�x−)i (�s−)i ≤ −si (�x−)i − xi (�s−)i = (xi si − τμ)+ ≤ xi si

we get (�x−)i (�s−)i ≤ xi si
4

.

For the maximum feasible step length αa , one has

(xi + αa(�x−)i )(s + αa(�s−)i ) ≥ 0.

This is equivalent to

xi si + αa(τμ − xi si )
− + α2

a(�x−)i (�s−)i ≥ 0.

For i ∈ I− the statement of the lemma follows. ��
Lemma 2.2 Let (x, s) ∈ F0, (�x−,�s−) be the solution of (2.2). Then, we have

∑
i∈I−

|(�x−)i (�s−)i | ≤
∑
i∈I+

(�x−)i (�s−)i ≤ xT s

4
.
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Proof By the monotonicity we have �x−T�s− ≥ 0. Therefore, the result of the
lemma is a direct consequence of Lemma 2.1. ��
Lemma 2.3 [1, Lemma 3.5] Let u, v ∈ Rn be such that uT v ≥ 0, and let r = u + v.
Then, we have

‖(uv)−‖1 ≤ ‖(uv)+‖1 ≤ 1

4
‖r‖2.

We also note the following simple but useful relationships:

− xT s ≤ eT (τμe − xs)− ≤ −(1 − τ)xT s, (2.9)

eT (τμe − xs)+ ≤ √
n‖(τμe − xs)+‖. (2.10)

Let us denote

h(α) := xs + α1(τμe − xs)− + α2(τμe − xs)+ − α1αa(�x−�s−).

Lemma 2.4 Suppose (x, s) ∈ N (τ, β), β ≤ 1/2, and α1 ≤ α2

√
βτ
2n . Then we have

‖(�x(α)�s(α))−‖1 ≤ ‖(�x(α)�s(α))+‖1 ≤ 2

3
α2
2βτμ.

Proof Denote u := (x−0.5s0.5)�x(α), v := (x0.5s−0.5)�s(α) and

r := (xs)−0.5(α1(τμe − xs)− + α2(τμe − xs)+) − α1αa(xs)
−0.5(�x−�s−).

So by Eqs. (2.2), (2.3) and (2.5) we have uT v = �x(α)T�s(α) ≥ 0 and u + v = r .
Therefore, by Lemma 2.3 we have

‖(�x(α)�s(α))−‖1 ≤ ‖(�x(α)�s(α))+‖1
≤ 1

4
‖(xs)−0.5(α1(τμe − xs)− + α2(τμe − xs)+)

−α1αa(xs)
−0.5(�x−�s−)‖2

≤ 1

4
(‖(α1(τμe − xs)− + α2(τμe − xs)+)/

√
xs‖

+α1αa‖(�x−�s−)/
√
xs‖)2.

By the relationships (2.1) we have

‖(α1(τμe − xs)− + α2(τμe − xs)+)/
√
xs‖2

= α2
1‖(τμe − xs)−/

√
xs‖2 + α2

2‖(τμe − xs)+/
√
xs‖2

≤ α2
1‖(

√
xs − τμ/

√
xs)+‖2 + α2

2‖(τμe − xs)+‖2/((1 − β)τμ)

≤ α2
1‖

√
xs‖2 + α2

2(βτμ)2/((1 − β)τμ)
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≤ α2
2
βτ

2n
(nμ) + α2

2βτμ

= 3

2
α2
2βτμ.

By Lemma 2.1 and Lemma 2.2 we have

(α1αa‖(�x−�s−)/
√
xs‖)2

= α2
1

⎛
⎝α2

a

∑
i∈I+

((�x−)i (�s−)i )
2

xi si
+ α2

a

∑
i∈I−

((�x−)i (�s−)i )
2

xi si

⎞
⎠

≤ α2
1

⎛
⎝1

4

∑
i∈I+

(�x−)i (�s−)i −
∑
i∈I−

(�x−)i (�s−)i

⎞
⎠

≤ α2
1

(
1

16
nμ + 1

4
nμ

)

≤ 5

32
α2
2βτμ. (2.11)

Therefore

‖(�x(α)�s(α))+‖1 ≤ 1

4

(√
3

2
α2
2βτμ +

√
5

32
α2
2βτμ

)2

≤ 2

3
α2
2βτμ.

The proof is complete. ��
By Lemma 2.1, if τμ − xi si ≤ 0, then it holds that

h(α)i = xi si + α1(τμ − xi si ) − α1αa(�x−)i (�s−)i

≥ xi si + α1τμ − α1xi si − 1

4
α1αaxi si

≥
(
1 − 5

4
α1

)
xi si + α1τμ, (2.12)

and if τμ − xi si > 0, then

h(α)i = xi si + α2(τμ − xi si ) − α1αa(�x−)i (�s−)i

≥ xi si + α2τμ − α2xi si − 1

4
α1αaxi si

≥
(
1 − 1

4
α1 − α2

)
xi si + α2τμ. (2.13)

Since (x, s) ∈ N (τ, β), by (2.9), (2.10) and Lemma 2.4 we have

μ(α) = (x + �x(α))T (s + �s(α))/n

= xT s/n + α1e
T (τμe − xs)−/n + α2e

T (τμe − xs)+/n

−α1αa�xT−�s−/n + �x(α)T�s(α)/n
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≤ μ − α1(1 − τ)μ + α2‖(τμe − xs)+‖/√n + ‖(�x(α)�s(α))+‖1/n
≤ μ − α1(1 − τ)μ + α2βτμ/

√
n + 2α2

2βτμ/(3n)

≤ μ − α1(1 − τ)μ + 5α2βτμ/(3
√
n). (2.14)

By above result and Lemma 2.2 we have

μ(α) ≥ μ + α1e
T (τμe − xs)−/n − α1αa�xT−�s−/n

≥ μ − α1x
T s/n − 1

n
α1αa

∑
i∈I+

(�x−)i (�s−)i

≥ μ − α1μ − 1

4
α1αaμ

≥
(
1 − 5

4
α1

)
μ. (2.15)

Lemma 2.5 Suppose that the current iterate (x, s) ∈ N (τ, β), τ ≤ 1/8, and β ≤
1/2. If α1 = α2

√
βτ
2n , then we have ‖(τμ(α)e − h(α))+‖ ≤ (1 − α2)βτμ.

Proof If τμ − xi si ≤ 0, by (2.12) and (2.14) we have

τμ(α) − h(α)i

≤ τ(μ − α1(1 − τ)μ + 5α2βτμ/(3
√
n)) −

(
1 − 5

4
α1

)
xi si − α1τμ

≤ τ(μ − α1(1 − τ)μ + 5α2βτμ/(3
√
n)) −

(
1 − 5

4
α1

)
τμ − α1τμ

= −3

4
α1τμ + α1τ

2
1μ + 5α2βτ 21μ/(3

√
n)

=
(

−3

4
+ τ + 5

3

√
2βτ

)
α1τμ

≤ 0,

and if τμ − xi si > 0, by (2.13) and above result we have

τμ(α) − h(α)i

≤ τ(μ − α1(1 − τ)μ + 5α2βτμ/(3
√
n)) −

(
1 − 1

4
α1 − α2

)
xi si − α2τμ

=
(
1 − 1

4
α1 − α2

)
(τμ − xi si ) − 3

4
α1τμ + α1τ

2
1μ + 5α2βτ 21μ/(3

√
n)

≤
(
1 − 1

4
α1 − α2

)
(τμ − xi si )

≤ (1 − α2)(τμ − xi si ),
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which implies that

‖(τμ(α)e − h(α))+‖ ≤ (1 − α2)‖(τμe − xs)+‖ ≤ (1 − α2)βτμ.

The proof is complete. ��
Lemma 2.6 Suppose that the current iterate (x, s) ∈ N (τ, β), τ ≤ 1/8, and β ≤
1/2. If α1 = α2

√
βτ
2n , then we have ‖(τμ(α)e − x(α)s(α))+‖ ≤ βτμ(α).

Proof Using Lemmas 2.4 , Lemmas 2.5 and (2.15) we obtain

‖(τμ(α)e − x(α)s(α))+‖ = ‖(τμ(α)e − h(α) − �x(α)�s(α))+‖
≤ ‖(τμ(α)e − h(α))+‖ + ‖(−�x(α)�s(α))+‖
≤ (1 − α2)βτμ + 2

3
α2
2βτμ

=
(
1 − 5

4
α1

)
βτμ +

(
5

4
α1 − 1

3
α2

)
βτμ

≤
(
1 − 5

4
α1

)
βτμ

≤ βτμ(α).

The proof is complete. ��
Lemma 2.7 Suppose that (x, s) ∈ N (τ, β). If x(α)s(α) > 0 for some α ∈ [0, 1]2,
then (x(α), s(α)) > 0.

Proof For all t ∈ [0, 1], we have
x(tα)s(tα) = (x + �x(tα))(s + �s(tα))

= xs + t (s�x(α) + x�s(α)) + t2�x(α)�s(α)

= (1 − t2)xs + (t − t2)(s�x(α) + x�s(α)) + t2x(α)s(α)

= (1 − t2)xs + (t − t2)(α1(τμe − xs)− + α2(τμe − xs)+

−α1αa(�x−�s−)) + t2x(α)s(α)

≥ (1 − t2)xs + (t − t2)
(
−α1xs − α1αa

4
xs

)
+ t2x(α)s(α)

≥ (1 − t2)xs − 5

4
(t − t2)xs + t2x(α)s(α)

= (1 − t)(1 − t/4)xs + t2x(α)s(α)

> 0.

By using continuity, it follows that (x(α), s(α)) > 0, since (x, s) > 0. ��
By Lemma 2.6 and Lemma 2.7, we get a sufficient condition to keep all the iterates

in the neighborhood N (τ, β).

Lemma 2.8 Suppose that the current iterate (x, s) ∈ N (τ, β), τ ≤ 1/8, and β ≤
1/2. If α1 = α2

√
βτ
2n , then (x(α), s(α)) ∈ N (τ, β).
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3 The iteration bound and an implementation

The following key result shows that the objective function in the optimization problem
with two variables (2.8) is monotone with respect to α1 for any fixed α2.

Theorem 3.1 Suppose (x, s) ∈ N (τ, β), τ ≤ 1/16, and β ≤ 1/5. For any fixed
α2 ∈ [0, 1], x(α)T s(α) is a monotonically decreasing function in α1 for α1 ∈ [0, 1].
Proof We have

x(α)T s(α) = (x + α1(�x− + �xc−) + α2�x+)T (s + α1(�s− + �sc−) + α2�s+)

= (x + α2�x+)T (s + α2�s+) + α2
1(�x− + �xc−)T (�s− + �sc−)

+α1((x + α2�x+)T (�s− + �sc−) + (s + α2�s+)T (�x− + �xc−)).

Therefore, by (2.2) and (2.5) we have

∂(x(α)T s(α))

∂α1

= 2α1(�x− + �xc−)T (�s− + �sc−)

+ (x + α2�x+)T (�s− + �sc−) + (s + α2�s+)T (�x− + �xc−)

= 2α1(�x− + �xc−)T (�s− + �sc−) + xT (�s− + �sc−)

+ sT (�x−+�xc−)+α2((�x+)T (�s−+�sc−)+(�s+)T (�x− + �xc−))

≤ 2α1‖((�x− + �xc−)(�s− + �sc−))+‖1 + eT (τμe − xs)−

−αa�xT−�s−+α2((�x+)T (�s−+�sc−) + (�s+)T (�x− + �xc−))

≤ 2‖((�x− + �xc−)(�s− + �sc−))+‖1 − eT (xs − τμe)+

+ |(�x+)T (�s− + �sc−) + (�s+)T (�x− + �xc−)|. (3.1)

Denote

D = X0.5S−0.5, u = D−1(�x− + �xc−), v = D(�s− + �sc−)

and

r = (xs)−0.5(τμe − xs)− − αa(xs)
−0.5(�x−�s−).

So by (2.2) and (2.5) we have uT v ≥ 0 and u + v = r . Therefore, by Lemma 2.3 we
have

‖((�x− + �xc−)(�s− + �sc−))+‖1 = ‖(uv)+‖1 ≤ 1

4
‖r‖2. (3.2)

By Lemma 2.1, Lemma 2.2 and (2.11) we have

‖u + v‖2 = ‖r‖2
= ‖(xs)−0.5(τμe − xs)− − αa(xs)

−0.5(�x−�s−)‖2
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= ‖(xs)−0.5(τμe − xs)−‖2 + α2
a‖(xs)−0.5(�x−�s−)‖2

− 2αae
T ((τμe − xs)−(�x−�s−)/(xs))

= ‖(xs − τμe)+/
√
xs‖2 + α2

a‖(xs)−0.5(�x−�s−)‖2
+ 2αae

T ((xs − τμe)+(�x−�s−)/(xs))

≤ ‖
√

(xs − τμe)+‖2 +
(

1

16
nμ + 1

4
nμ

)
+ 1

2
eT (xs − τμe)+

= 5

16
nμ + 3

2
eT (xs − τμe)+. (3.3)

Since (x, s) ∈ N (τ, β),

‖D−1�x+ + D�s+‖2 = ‖(xs)−0.5(τμe − xs)+‖2 ≤ (βτ)2μ

(1 − β)τ
. (3.4)

By (3.3), (3.4) and the monotonicity of M , we have

|(�x+)T (�s− + �sc−) + (�s+)T (�x− + �xc−)|
= |(D−1�x+)T v + (D�s+)T u|
≤ ‖(D−1�x+, D�s+)‖‖(u, v)‖
≤ ‖D−1�x+ + D�s+‖‖u + v‖

≤
√

(βτ)2μ

(1 − β)τ

(
5

16
nμ + 3

2
eT (xs − τμe)+

)

≤
√

29n

16(1 − β)τ
βτμ. (3.5)

Substituting (3.2), (3.3) and (3.5)into (3.1) finally yields that

∂(x(α)T s(α))

∂α1
≤ 5

32
nμ − 1

4
eT (xs − τμe)+ +

√
29n

16(1 − β)τ
βτμ

≤ 5

32
nμ − 1

4
(1 − τ)nμ +

√
29n

16(1 − β)τ
βτμ

= 1

4
nμ

⎛
⎝−3

8
+ τ +

√
29β2τ

(1 − β)n

⎞
⎠

< 0. (3.6)

The proof is complete. ��
In view of Theorem 3.1, we may solve subproblem (2.8) approximately in the

following way. First, set α2 = θ ∈ (0, 1]. Second, find the greatest α1 ∈ [0, 1]
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such that (x(α), s(α)) ∈ N (τ, β). Then, we have α1 ≥ θ
√

βτ/(2n) by Lemma 2.8.
Moreover, from (2.14) we also have

μ(α) ≤ (
1 − α1(1 − τ) + 5α2βτ/(3

√
n)

)
μ

≤
(
1 − θ

(
1 − τ − 5

3

√
2βτ

)√
βτ/(2n)

)
μ

≤
(
1 − θ

(
1 − 1

8
− 5

√
2

12

) √
βτ/(2n)

)
μ

≤
(
1 − θ

√
βτ

4
√
2n

)
μ.

Thus, at each iteration, we have

(xk)T sk ≤
(
1 − θ

√
βτ

4
√
2n

)k

(x0)T s0,

which implies that (xk)T sk ≤ ε when k ≥ 4
√
2n

θ
√

βτ
log (x0)T s0

ε
.

It is clear that if the plane-search procedure (2.8) is replaced by this line search

procedure in Algorithm 2.1, the O(
√
n log (x0)T s0

ε
) iteration bound holds. At the same

time, the exact plane-search (2.8) would lead to at least the same amount of reduction
of the duality gap, and hence the iteration bound still holds. Now it is easy to present
the complexity result of the algorithm.

Theorem 3.2 Algorithm 2.1 will terminate in O(
√
n log (x0)T s0

ε
) iterations with a

solution xT s ≤ ε.

4 Numerical results

In order to get a feel of how the method might perform in practice, we shall test our
algorithms on some randomly generated instances. We have implemented the three
algorithms (Algorithm 2.1, Ai and Zhang’s path-following algorithm and predictor-
corrector algorithm in [1]) in MATLAB on an Intel Core 2 PC (1.86 Ghz) with 1
GB RAM, and the results are summarized in Tables 1 and 2. These three algorithms
will be denoted, respectively, by New-MPC, Ai–Zhang’s PF and Ai–Zhang’s PC.
We used test problems generated as in [1]. The parameters were chosen as follows:
α2 = 1, τ = 0.001 and β = 1/2.We use bisection in closed interval [√βτ/(2n), 1] to
find the greatest α1 such that (x(α), s(α)) ∈ N (τ, β). All algorithms terminate after
the relative duality gap satisfies

xT s/(1 + (x0)T s0) ≤ 10−8.

We first test the monotone LCPs which are generated as follows: A = rand(n),
M = A’ * A, q = ones(n,1) − M * ones(n,1). Then the monotone LCP has an
initial feasible point (e, e). Table 1 lists the average number of iterations (iter) and
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Table 1 Numerical results on
monotone LCPs with M = AT A

n Ai–Zhang’s PF Ai–Zhang’s PC New-MPC

Iter Time Iter Time Iter Time

100 9.7 0.0092 11.9 0.0106 7.5 0.0081

200 10.9 0.0366 12.8 0.0423 7.9 0.0270

300 10.5 0.1055 12.9 0.1304 7.9 0.0831

400 11.1 0.2279 13.4 0.2709 8.3 0.1795

500 10.9 0.4007 13.1 0.4793 8.0 0.3063

600 11.2 0.6670 14.0 0.8256 8.1 0.5148

700 11.6 1.0414 13.8 1.2202 8.4 0.7868

800 12.4 1.5841 14.5 1.8201 8.4 1.1159

900 12.5 2.1878 14.1 2.4264 8.4 1.5269

1000 12.0 2.7687 14.7 3.3216 8.3 1.9732

Table 2 Numerical results on
monotone LCPs with
M = AT A + (B − BT )

n Ai–Zhang’s PF Ai–Zhang’s PC New-MPC

Iter Time Iter Time Iter Time

100 4.0 0.0032 4.0 0.0048 3.7 0.0030

200 4.0 0.0077 4.0 0.0078 3.0 0.0078

300 4.0 0.0280 3.0 0.0233 3.0 0.0219

400 4.0 0.0626 3.0 0.0486 3.0 0.0545

500 3.9 0.1203 3.0 0.0908 3.0 0.0890

600 3.4 0.1717 3.0 0.1421 3.0 0.1550

700 3.0 0.2452 3.0 0.2188 3.0 0.2439

800 3.0 0.3485 3.0 0.3439 3.0 0.3392

900 3.0 0.4844 3.0 0.5204 3.0 0.5030

1000 3.0 0.6343 3.0 0.6609 3.0 0.6719

the average CPU time (time) per iteration of ten randomly generated problems with
the same n. To test the influence from the skewness of matrix M , we also test the
LCPs generated as follows: A = rand(n), B = rand(n), M = A’ * A + (B − B’),
q = ones(n,1) − M * ones(n,1). The numerical results are shown in Table 2. It turns
out that the number of iterations actually decreases on average as compared with the
case when M is purely positive semidefinite.

Our preliminary implementations show that this algorithm is promising. From the
results presented in Table 1, we see that, in the number of iterations and the computa-
tional time, the proposed new algorithm saves about 28.19 and 27.77 %, respectively,
compared to Ai–Zhang’s path-following algorithm, and about 40.09 and 38.17 %,
respectively, compared to Ai–Zhang’s predictor-corrector algorithm.

5 Conclusions

The current paper aims at modifying Ai and Zhang’s primal-dual path-following
interior-point method [1] to gain a class of Mehrotra-type predictor-corrector algo-
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rithm for monotone LCPs. We have shown that the use of the corrector step does
not cause any loss in the worst-case complexity of the algorithm. We prove that the
proposed generic method can be specified into an easy implementable variant with
given parameters and the iteration bound is still O(

√
nL). Our preliminary imple-

mentation also provides us an encouraging evidence that the new algorithm may also
performwell in practice. Certainly, our implementations are very coarse. More refined
linear algebras and efficient strategies to choose step lengths deserve more work for
real applications of the algorithm. A theoretical direction for the future research is
generalization the algorithm to the P∗(κ) LCPs or general conic optimization.
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