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Abstract In the article, we present a new perspective on the method of smooth exact
penalty functions that is becomingmore andmore popular tool for solving constrained
optimization problems. In particular, our approach to smooth exact penalty functions
allows one to apply previously unused tools (namely, parametric optimization) to the
study of these functions. We give a new simple proof of local exactness of smooth
penalty functions that significantly generalizes all similar results existing in the liter-
ature. We also provide new necessary and sufficient conditions for a smooth penalty
function to be globally exact.

Keywords Penalty function · Smooth exact penalty function · Perturbed
optimization problem · Calmness

1 Introduction

Themethod of exact penalty functions [1–3] is a powerful tool for solving various con-
strained optimization problems. However, as it is well-known, exact penalty functions
are usually nonsmooth, even in the case when the original problem is smooth. This
obstacle makes it impossible to apply (without any transformation of the problem)
well-developed and extensively studied methods of smooth unconstrained optimiza-
tion to minimization of an exact penalty function.

Huyer and Neumaier in [4] proposed a new approach to exact penalization that
allows one to overcome nonsmoothness of exact penalty functions. Namely, let the
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original constrained optimization problem has the form

min f (x) subject to F(x) = 0, x ∈ [x, x], (1)

where f : Rn → R and F : Rn → R
m are smooth function, x, x ∈ R

n are given
vectors, and

[x, x] = {
x = (x1, . . . , xn) ∈ R

n | xi ≤ xi ≤ xi ∀i ∈ {1, . . . , n}} .

The new approach relies on the introduction of additional variable ε ≥ 0 in the
following way. Choose w ∈ R

m , and note that the problem (1) is equivalent to the
optimization problem

min
x,ε

f (x) subject to F(x) = εw, ε = 0, x ∈ [x, x]. (2)

Then one defines the new “smooth” penalty function for the augmented problem (2)
as follows

Fλ(x, ε) =

⎧
⎪⎨

⎪⎩

f (x), if ε = �(x, ε) = 0,

f (x) + 1
2ε

�(x,ε)
1−q�(x,ε) + λβ(ε), if ε > 0, �(x, ε) < q−1,

+∞, otherwise.

(3)

where λ ≥ 0 is the penalty parameter, �(x, ε) = ‖F(x) − εw‖2 is the constraint
violation measure, β : [0, ε] → [0,+∞) with β(0) = 0 is the penalty term, q > 0
and ε > 0 are some prespecified thresholds. Finally, one replaces the augmented
problem (2) with the penalized problem

min
x,ε

Fλ(x, ε) subject to (x, ε) ∈ [x, x] × [0, ε]. (4)

Observe that the penalty function Fλ(x, ε) is smooth for any ε ∈ (0, ε) and x such
that 0 < �(x, ε) < q−1 provided the function β is smooth on (0, ε). Furthermore,
it was proved in [4] that under standard assumption (namely, constraint qualification)
the penalty function Fλ(x, ε) is locally exact. In other words, (x∗, ε∗) is a local min-
imum of the problem (4) if and only if ε∗ = 0 and x∗ is a local minimum of the
original problem (1). Consequently, one can apply methods of smooth unconstrained
minimization to the penalized problem (4) in order to find a solution of the initial
constrained optimization problem (1).

Later on, the approach of smooth exact penalty functions was generalized [5,6] and
successfully applied to various constrained optimization problems [7,8], including
some optimal control problems [9–11]. However, it should be noted that the existing
proofs of the exactness of the smooth penalty function (3) and its various generaliza-
tions are quite complicated, and overburdened by technical details that overshadow
understanding of the technique of smooth exact penalty functions. Also, the question
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of when the problem (1) is actually equivalent to the problem (4) in terms of opti-
mal solutions [in this case the penalty function Fλ(x, ε) is called exact] has not been
discussed in the literature.

The aim of this article is to present a new perspective on the method of smooth
exact penalty functions. This perspective allows one to apply previously unused tools
(namely, parametric optimization) to the study and construction of smooth exact
penalty functions. It also helped us to essentially simplify the proof of exactness
of these functions. Another aim of this articles is to provide necessary and sufficient
conditions for the smooth penalty function to be (globally) exact.

The paper is organised as follows. In Sect. 2 we describe a new approach to smooth
exact penalty functions. Somegeneral results that drawaconnectionbetween exactness
of the new penalty functions and some properties of perturbed optimization problems
are presented in Sect. 3. In Sect. 4 we give a new simple proof of local exactness of
a new penalty function that significantly generalizes all results on local exactness of
smooth penalty functions existing in the literature. We also provide new conditions
for the smooth penalty function to be globally exact.

2 How to construct a smooth exact penalty function?

Two main approaches are usually used for the study of exact penalty functions: direct
approach, that is based on the use of error bound estimates and metric regularity, and
indirect one, that relies on the consideration of a perturbed optimization problem. In
the indirect approach [12–15], a perturbation of the initial problem is introduced as
a tool for the study of a penalty function that is already defined. However, one can
introduce a perturbation in order to construct a penalty function.

Namely, define the perturbed objective function for the problem (1)

g(x, μ) =

⎧
⎪⎨

⎪⎩

f (x), if μ = �(x, μ) = 0,

f (x) + 1
μ

�(x,μ)
1−q�(x,μ)

, if μ > 0, �(x, μ) < q−1,

+∞, otherwise,

whereμ ≥ 0 is a perturbation parameter. Consider the perturbed optimization problem

min
x

g(x, μ) subject to x ∈ [x, x]. (5)

It is clear that the problem above with μ = 0 is equivalent to the initial problem (1).
Moreover, a penalization of the constraint F(x) = 0 is achieved via the introduced
perturbation. As a second step, note that the perturbed problem is equivalent to the
problem

min
x,μ

g(x, μ) subject to x ∈ [x, x], μ = 0.

Finally, inroduce a penalty function for the problem above that penalizes only the
constraint on the perturbation parameter, i.e. μ = 0. The penalty function has the
form
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Fλ(x, μ) = g(x, μ) + λβ(μ). (6)

and it is smooth for any μ ∈ (0, ε) and x ∈ R
n such that 0 < �(x, μ) < q−1. Thus,

the fact that the nonlinear constraints are taken into account via the perturbation (not
penalization), and the fact that the penalty term is constructed only for a simple one
dimensional constraint on the perturbation parameter allows one to avoid nonsmooth-
ness that usually arises due to the restrictive requirements on a penalty term.

In the following section, we develop the approach discussed above in the general
case, and show that exactness of the penalty function Fλ(x, μ) of the from (6) is
directly connected with some properties of the perturbed problem (5).

3 Exact penalty function for a perturbed optimization problem

Let X be a topological space, f : X → R∪{+∞} be a given function, and M , A ⊂ X
be nonempty sets such thatM∩A = ∅. Hereafter, we study the following optimization
problem:

min f (x) subject to x ∈ M, x ∈ A. (P)

Denote by � = M ∩ A the set of feasible solutions of the problem (P). Denote also
R+ = [0,+∞) and dom f = {x ∈ X | f (x) < +∞}. We suppose that the function
f is bounded from below on �.
Introduce a metric space of perturbation parameters (P, d), and a perturbed objec-

tive function g : X × P → R ∪ {+∞} such that there exists μ0 ∈ P for which the
following conditions are satisfied:

1. g(x, μ0) = f (x) for any x ∈ � (consistency condition);
2. argminx∈A g(x, μ0) = argminx∈� f (x) (exact penalization condition).

With the use of the exact penalization condition one gets that the problem (P) is
equivalent (in terms of optimal solutions) to the following optimization problem:

min
x,μ

g(x, μ) subject to x ∈ A, μ = μ0. (7)

Furthermore, the consistency condition guarantees that if (x0, μ0) with x0 ∈ � is a
local minimum of the problem above, then x0 is a local minimum of the problem (P).

We apply the exact exact penalization technique to treat the problem (7). Namely,
choose a function β : R+ → R+ ∪ {+∞} such that β(t) = 0 iff t = 0. For any λ ≥ 0
define the penalty function

Fλ(x, μ) = g(x, μ) + λβ (d(μ,μ0))

and consider the following penalized problem

min
x,μ

Fλ(x, μ) subject to x ∈ A. (8)

Observe that the function λ → Fλ(x, μ) is non-decreasing.
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Our aim is to study a relation between (local or global)minima of the initial problem
(P) and minima of the problem (8) in the context of the theory of exact penalty
functions. Recall the definition of exact penalty function.

Definition 1 Let x∗ ∈ dom f be a local minimum of the problem (P). The penalty
function Fλ is called exact at the point x∗ [or, to bemore precise, at the point (x∗, μ0)] if
there exists λ ≥ 0 such that (x∗, μ0) is local minimum of the problem (8). The greatest
lower bound of all such λ is denoted by λ(x∗).

Definition 2 The penalty function Fλ is said to be exact if there exists λ ≥ 0 such that
the function Fλ attains the global minimum on the set A× P , and if (x∗, μ∗) ∈ A× P
is an optimal solution of the problem (8), then μ∗ = μ0. The greatest lower bound of
all such λ ≥ 0 is denoted by λ∗(g, β).

Remark 1 (i) Note that if (x∗, μ∗) ∈ A× P is an optimal solution of the problem (8)
with μ∗ = μ0, then x∗ is an optimal solution of the problem (P) by virtue of the
exact penalization condition on the function g(x, μ) and the fact that Fλ(x, μ0) =
g(x, μ0). Thus, the penalty function Fλ is exact if and only if there exists λ ≥ 0
such that the problem (8) is equivalent to the problem (P) in terms of optimal
solutions.

(ii) It is easy to verify that if the penalty function Fλ is exact, then for anyλ > λ∗(g, β)

the function Fλ attains the global minimum on the set A × P , and if (x∗, μ∗) ∈
A × P is an optimal solution of the problem (8), then μ∗ = μ0.

It transpires that exactness of the penalty function Fλ is closely related to some
properties of the perturbed optimization problem

min
x

g(x, μ) subject to x ∈ A (Pμ).

Denote by h(μ) = inf x∈A g(x, μ) the optimal value function of this problem.
Recall that the problem (Pμ), μ ∈ P , is said to be β-calm at a point x∗ ∈ A if there

exists λ ≥ 0, r > 0 and a neighbourhood U of x∗ such that

g(x, μ) − g(x∗, μ) ≥ −λβ(d(μ,μ)) ∀x ∈ U ∩ A ∀μ ∈ B(μ, r),

where B(μ, r) = {μ ∈ P | d(μ,μ) ≤ r}.
Remark 2 If β(t) ≡ t , then the concept of β-calmness coincides with the well-known
concept of calmness of a perturbed optimization problem [12–15].

The following propositions describes a connection between exactness of the penalty
function Fλ and calmness of the perturbed problem (Pμ) (cf. analogous result for
classical penalty functions in [14]).

Proposition 1 Let x∗ ∈ dom f be a local minimum of the problem (P). Then the
penalty function Fλ is exact at the point x∗ if and only if the problem (Pμ0 ) is β-calm
at x∗.
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Proof The validity of the proposition follows from the fact that the inequality

g(x, μ) − g
(
x∗, μ0

) ≥ −λβ (d(μ,μ0)) ∀x ∈ U ∩ A ∀μ ∈ B(μ, r),

holds true for some λ ≥ 0, r ≥ 0 and a neighbourhood U of x∗ iff for any x ∈ U ∩ A
and μ ∈ B(μ0, r) one has

Fλ(x, μ) = g(x, μ) + β (d (μ,μ0)) ≥ g(x, μ0) = Fλ(x, μ0),

i.e. iff (x∗, μ0) is a local minimum of Fλ on the set A. ��
We need an auxiliary definition. The optimal value function h is called β-calm from

below at a point μ ∈ P if

lim inf
μ→μ0

h(μ) − h(μ)

β (d(μ,μ))
> −∞

(cf. the definition of calmness from below in [16]).

Theorem 1 Let β be strictly increasing. For the penalty function Fλ to be exact it is
necessary and sufficient that the following assumptions hold true:

1. there exists an optimal solution of the problem (P);
2. the optimal value function h(μ) is β-calm from below at μ0;
3. there exists λ0 ≥ 0 such that Fλ0 is bounded from below on the set A × P.

Proof Necessity. Since the penalty function Fλ is exact, then it attains the global
minimum on the set A × P for some λ ≥ 0. Therefore, in particular, Fλ is bounded
from below on A × P .

Fix sufficiently large λ ≥ 0, and a global minimizer (x∗, μ∗) of Fλ on the set A×P .
Due to the exactness of Fλ one has μ∗ = μ0. Therefore, as it was mentioned above,
x∗ is an optimal solution of the problem (P). Thus, the first assumption is valid as
well.

Observe that

g(x∗, μ0) ≥ h(μ0) := inf
x∈A

g(x, μ0) ≥ inf
(x,μ)∈A×P

Fλ(x, μ) = g(x∗, μ0).

Hence h(μ0) = g(x∗, μ0). With the use of exactness of Fλ one gets that for all x ∈ A
and μ ∈ P the following holds

g(x, μ) + λβ (d (μ,μ0)) = Fλ(x, μ) ≥ Fλ

(
x∗, μ0

) = g
(
x∗, μ0

) = h (μ0)

or, equivalently,

g(x, μ) − h(μ0) ≥ −λβ (d(μ,μ0)) ∀x ∈ A ∀μ ∈ P.

Since the inequality above holds true for all x ∈ A, one obtains that

h(μ) − h(μ0) ≥ −λβ(d(μ,μ0)) ∀μ ∈ P,

which implies the β-calmness from below of h at μ0.
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Sufficiency. Let x∗ be an optimal solution of the problem (P). Then taking into
account the exact penalization condition on the function g(x, μ) one gets that h(μ0) =
g(x∗, μ0), i.e. x∗ is a global minimum of the function x → g(x, μ0).

Since the optimal value function h is β-calm from below at μ0, then there exist
λ1 ≥ 0 and δ > 0 such that

h(μ) − h(μ0) ≥ −λ1β(d(μ,μ0)) ∀μ ∈ B(μ0, δ).

Hence for any x ∈ A one has

g(x, μ) − g(x∗, μ0) ≥ h(μ) − h(μ0) ≥ −λ1β(d(μ,μ0)) ∀μ ∈ B(μ0, δ)

or, equivalently, for all (x, μ) ∈ A × B(μ0, δ) the following holds

Fλ1(x, μ) = g(x, μ) + λ1β(d(μ,μ0)) ≥ g(x∗, μ0) = Fλ1(x
∗, μ0).

On the other hand, if x ∈ A and μ /∈ B(μ0, δ), then for any λ ≥ λ2, where

λ2 = λ0 + g (x∗, μ0) − c

β(δ)
, c = inf

(x,μ)∈A×P
Fλ0(x, μ) > −∞,

one has

Fλ(x, μ) = Fλ0(x, μ) + (λ − λ0)β(d(μ,μ0))

≥ c + (λ − λ0)β(δ) ≥ g(x∗, μ0) = Fλ(x
∗, μ0).

Thus, for any λ ≥ λ := max{λ1, λ2} one has

Fλ(x, μ) ≥ Fλ(x
∗, μ0) ∀(x, μ) ∈ A × P

or, in other words, the penalty function Fλ attains the global minimum on A × P
at the point (x∗, μ0). Let (x, μ) ∈ A × P be a different global minimizer of Fλ on
A× P . Let us show that μ = μ0, provided λ > λ, then one concludes that the penalty
function Fλ is exact.

Indeed, for any λ > λ, x ∈ A and μ = μ0 one has

Fλ(x
∗, μ0) = Fλ(x

∗, μ0) ≤ Fλ(x, μ) < Fλ(x, μ),

since β(d(μ,μ0)) > 0. Hence μ = μ0 by virtue of the fact that (x, μ) is a global
minimizer of Fλ on A × P . ��

Let us also point out a connection between calmness of the optimal value function
h and calmness of the problem (Pμ0 ) at optimal solutions of the problem (P) in the
case when the set A is compact.
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Theorem 2 Let the set A be compact, and the function g(x, μ) be lower semicontin-
uous (l.s.c.) on A × B(μ0, r) for some r > 0. Then for the optimal value function h
to be β-calm from below at μ0 it is necessary and sufficient that the problem (Pμ0 ) is
β-calm at every optimal solution of the problem (P).

Proof Necessity. Fix an optimal solution x∗ of the problem (P). From the definition
of β-calmness it follows that there exist λ ≥ 0 and r > 0 such that

h(μ) − h(μ0) ≥ −λβ(d(μ,μ0)) ∀μ ∈ B(μ0, r).

Since x∗ is an optimal solution of the problem (P), then h(μ0) = g(x∗, μ0) due to
the exact penalization condition on g(x, μ). Therefore

g(x, μ) − g(x∗, μ0) ≥ h(μ) − h(μ0) ≥ −λβ(d(μ,μ0)) ∀(x, μ) ∈ A × B(μ0, r).

Thus, the problem (Pμ0 ) is β-calm at x∗.
Sufficiency. Taking into account the facts that the set A is compact and the function

g(x, μ) is l.s.c. one gets that the function g(·, μ0) attains the global minimum on the
set A, and the set A∗ of all global minima of g(·, μ0) on A is compact. Furthermore,
from the exact penalization condition it follows that A∗ is also the set of all optimal
solutions of the problem (P). Hence the problem (Pμ0 ) is β-calm at every x∗ ∈ A∗.
Therefore for any x∗ ∈ A∗ there exist λ(x∗) ≥ 0, r(x∗) ≥ 0 and a neighbourhood
U (x∗) of x∗ such that

g(x, μ) − g
(
x∗, μ0

) ≥ −λ
(
x∗) β(d(μ,μ0)) ∀(x, μ) ∈ U

(
x∗) × B

(
μ0, r

(
x∗)) .

Applying the compactness of A∗ one obtains that there exists x∗
1 , x

∗
2 , . . . , x

∗
n ∈ A∗

such that A∗ ⊂ ⋃n
k=1U (x∗

k ). Denote

U =
n⋃

k=1

U
(
x∗
k

)
, λ = max

k∈1:n λ
(
x∗
k

)
, r = min

k∈1:n r
(
x∗
k

)
.

Then for any x ∈ U one has

g(x, μ) − h(μ0) ≥ −λβ(d(μ,μ0)) ∀μ ∈ B(μ0, r), (9)

due to the fact that g(x∗, μ0) = h(μ0) = infx∈A g(x, μ0) for any x∗ ∈ A∗.
Set K = A\U . Since A∗ ⊂ U , then for any x ∈ K one has g(x, μ0) > h(μ0)

(recall that A∗ is the set of all global minima of g(·, μ0) on A). Consequently, applying
the lower semicontinuity of the function g(x, μ) one gets that for any x ∈ K there
exist δ(x) > 0 and a neighbourhood V (x) of x such that

g(y, μ) > h(μ0) ∀(y, μ) ∈ V (x) × B (μ0, δ(x)) .

Observe that from the facts thatU is open and A is compact it follows that K = A\U
is also compact. Hence and from the inequality above it is easy to show that there exists
δ > 0 such that
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g(x, μ) > h(μ0) ∀(x, μ) ∈ K × B(μ0, δ).

Therefore taking into account (9) one gets that

g(x, μ) − h(μ0) ≥ −λβ(d(μ,μ0)) ∀(x, μ) ∈ A × B (μ0,min{δ, r}),

which yields

h(μ) − h(μ0) ≥ −λβ(d(μ,μ0)) ∀μ ∈ B(μ0,min{δ, r}).

Thus, the optimal valued function h is β-calm from below at μ0. ��
Combining Theorems 1 and 2, and Proposition 1 one obtains that the following

result holds true.

Corollary 1 Let the set A be compact, the function g(x, μ) be l.s.c. on A× B(μ0, r)
for some r > 0, and the function β be strictly increasing. Then the penalty function
Fλ is exact if and only if it is exact at every optimal solution of the problem (P), and
there exists λ0 ≥ 0 such that Fλ0(x, μ) is bounded from below on A × P.

4 Smooth exact penalty functions

Let us apply the theory developed in the previous section to the study of smooth exact
penalty functions. Let X and Y be metric spaces, A ⊂ X be a nonempty set, and
� : X ⇒ Y be a given set-valued mapping with closed images. For any subset C ⊂ X
and x0 ∈ X denote by

d(x0,C) = inf
x∈C d(x0, x)

the distance between C and x0. For any y ∈ Y denote, as usual, �−1(y) = {x ∈ X |
y ∈ �(x)}.

Fix an element y0 ∈ Y , and consider the following optimization problem:

min f (x) subject to y0 ∈ �(x), x ∈ A. (10)

Note that the set� of feasible solutions of this problemhas the form� = �−1(y0)∩A.
Following the general technique proposed above and the method of smooth exact

penalty functions [6], define P = R+, fix a non-decreasing functionφ : R+∪{+∞} →
R+∪{+∞} such thatφ(t) = 0 iff t = 0, and introduce the perturbedobjective function

g(x, μ) =

⎧
⎪⎨

⎪⎩

f (x), if x ∈ �,μ = 0,

+∞, if x /∈ �,μ = 0,

f (x) + 1
μ
φ

(
d (y0,�(x))2

)
, if μ > 0.

Clearly, the function g(x, μ) satisfies the consistency condition and the exact penal-
ization condition with μ0 = 0.
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Introduce the penalty function

Fλ(x, μ) = g(x, μ) + λβ(μ),

where β : R+ → R+ ∪ {+∞} is a non-decreasing function such that β(μ) = 0
iff μ = 0. Let us obtain sufficient conditions for Fλ(x, μ) to be exact. In order to
formulate these conditions, recall that a set valued mapping � is said to be metrically
subregular with respect to the set A with constant a > 0 at a point (x, y) ∈ X × Y
with y ∈ �(x) and x ∈ A if there exists a neighbourhood U of x such that

d (�(x), y) ≥ ad
(
x,�−1(y) ∩ A

)
∀x ∈ U ∩ A.

Thus, � is metrically subregular with respect to the set A iff the restriction of � to
A is metrically subregular in the usual sense. See [17,18] and references therein for
extensive study of metric subregularity.

Theorem 3 Let x∗ ∈ dom f be a localminimumof the problem (10), the function f be
Lipschitz continuous near x∗, and the set-valued mapping � be metrically subregular
with respect to the set A with constant a > 0 at (x∗, y0). Suppose also that the
following assumptions are satisfied:

1. there exists φ0 > 0 and t0 > 0 such that φ(t) ≥ φ0t for any t ∈ [0, t0];
2. there exists β0 > 0 and μ > 0 such that β(μ) ≥ β0μ for any μ ∈ [0, μ].
Then the penalty function Fλ(x, μ) is exact at the point x∗. Moreover, one has

λ(x∗) ≤ L2

4φ0β0a2
, (11)

where L ≥ 0 is a Lipschitz constant of f near x∗.

Proof Since x∗ is a local minimum of the problem (10), then there exists ρ > 0 such
that f (x) ≥ f (x∗) for any x ∈ B (x∗, ρ) ∩ �. Suppose, for a moment, that there
exists δ ∈ (0, ρ) such that

f (x) − f
(
x∗) ≥ −Ld(x,�) ∀x ∈ B

(
x∗, δ

) \�, (12)

where L ≥ 0 is a Lipschitz constant of f near x∗. Then applying the metric sub-
regularity of � with respect to A, and the fact that the function φ is non-decreasing,
one gets that for any μ > 0 and x ∈ B(x∗, r) ∩ A, where r = min{δ,√t0/a}, the
following inequalities hold true
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g(x, μ) − g
(
x∗, 0

) = f (x) − f
(
x∗) + 1

μ
φ

(
d (y0,�(x))2

)

≥ −Ld(x,�) + φ0a2

μ
d

(
x,�−1(y0) ∩ A

)2

= −Ld(x,�) + φ0a2

μ
d (x,�)2.

Note that the function h(t) = −Lt + φ0a2t2/μ attains the global minimum at the
point μL/2φ0a2, and

h

(
μL

2φ0a2

)
= − L2

4φ0a2
μ.

Hence for any μ > 0 and x ∈ B(x∗, r) ∩ A one has

g(x, μ) − g(x∗, 0) ≥ − L2

4φ0a2
μ. (13)

On the other hand, if x ∈ B(x∗, r) ∩ A and μ = 0, then either x /∈ � and g(x, μ) =
+∞ ≥ g(x∗, 0) or x ∈ � and g(x, μ) = f (x) ≥ f (x∗) = g(x∗, 0) (recall that
r ≤ δ < ρ). Therefore the inequality (13) is satisfied for any x ∈ B(x∗, r) ∩ A and
μ ≥ 0, which yields that

Fλ(x, μ) = g(x, μ) + λβ(μ) ≥ g(x, μ) + λβ0μ ≥ g
(
x∗, 0

) = Fλ

(
x∗, 0

)

for all (x, μ) ∈ B(x∗, r) × [0, μ] and for any λ ≥ L2/4φ0β0a2. Thus, the penalty
function Fλ(x, μ) is exact at x∗, and (11) holds true.

It remains to show that the inequality (12) is valid for some δ > 0. Indeed, fix
x ∈ B(x∗, ρ/2)\�. By the definition of the distance between a point and a set there
exists a sequence {xn} ⊂ � such that d(x, xn) → d(x,�) as n → ∞. Moreover,
without loss of generality one can suppose that d(x, xn) ≤ ρ/2 for any n ∈ N, since
d(x, x∗) ≤ ρ/2 and x∗ ∈ �. Consequently, one has

d
(
xn, x

∗) ≤ d (xn, x) + d
(
x, x∗) ≤ ρ

2
+ ρ

2
= ρ,

which implies f (xn) ≥ f (x∗). Therefore applying the Lipschitz continuity of f near
x∗ one obtains that for any n ∈ N the following inequalities holds true

f (x) − f
(
x∗) = f (x)− f (xn)+ f (xn)− f

(
x∗) ≥ f (x) − f (xn) ≥ −Ld (x, xn).

Passing to the limit as n → ∞ one gets the desired result. ��
Applying Corollary 1 and the theorem above one can easily obtain sufficient con-

ditions for the penalty function Fλ to be exact.
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Theorem 4 Let the set A be compact. Suppose that the following assumptions are
satisfied:

1. f is l.s.c. on A, and locally Lipschitz continuous near optimal solutions of the
problem (P);

2. � is metrically subregular with respect to the set A at (x∗, y0) for any optimal
solution x∗ of the problem (P);

3. the mapping x → d(y0,�(x)) is continuous on A;
4. φ is l.s.c., and there exists φ0 > 0 and t0 > 0 such that φ(t) ≥ φ0t for any

t ∈ [0, t0];
5. β is strictly increasing and there exists β0 > 0 and μ > 0 such that β(μ) ≥ β0μ

for any μ ∈ [0, μ].
Then the penalty function Fλ is exact.

Proof Applying Theorem 3, and taking into account the assumptions of the theorem
one obtains that the penalty function Fλ is exact at every optimal solution of the
problem (P). Since f is l.s.c. on A, and the set A is compact, then f is bounded from
below on this set. Hence the function g(x, μ) is bounded from below on A × R+,
which implies that the penalty function Fλ is also bounded from below on A × R+
for any λ ≥ 0.

Let us show that the function g(x, μ) is l.s.c. on A × R+. Then with the use of
Corollary 1 one obtains the desired result.

For any ε > 0 introduce the function

gε(x, μ) = f (x) + 1

μ + ε
φ

(
d (y0,�(x))2

)
(x, μ) ∈ A × R+.

Taking into account the fact that the function x → d(y0,�(x)) is continuous on A,
and φ is l.s.c., one gets that the function x → φ(d(y0,�(x))2) is l.s.c. on A as well.
Hence and from the lower semicontinuity of f it follows that the function gε(x, μ) is
l.s.c. on A × R+. Note that

g(x, μ) = sup
ε>0

gε(x, μ) ∀(x, μ) ∈ A × R+.

Therefore the function g(x, μ) is l.s.c. on A × R+ as the supremum of a family of
l.s.c. functions. ��

Theorem 3 can be modified to the case of more general functions g(x, μ) and
Fλ(x, μ). In particular, let

g(x, μ) =

⎧
⎪⎨

⎪⎩

f (x), if x ∈ �,μ = 0,

+∞, if x /∈ �,μ = 0,

f (x) + 1
μα φ

(
d (y0,�(x))2

)
, if μ > 0.

and

Fλ(x, μ) = g(x, μ) + λβ(μ),

where α > 0 (cf. [8,9,11]). The following result holds true.

123



Smooth exact penalty functions: a general approach 647

Theorem 5 Let x∗ ∈ dom f be a localminimumof the problem (10), the function f be
Lipschitz continuous near x∗, and the set-valued mapping � be metrically subregular
with respect to the set A at (x∗, y0). Suppose that the following assumptions are
satisfied:

1. φ(t) ≥ φ0tγ for any t ∈ [0, t0], and for some φ0 > 0, γ > 0 and t0 > 0;
2. β(μ) ≥ β0μ

σ for any μ ∈ [0, μ], and for some β0 > 0, σ > 0 and μ > 0.

Suppose also that

γ >
1

2
, σ ≤ α

2γ − 1
.

Then the penalty function Fλ(x, μ) is exact at the point x∗.

Proof Arguing in the same way as in the proof of Theorem 3 one can easily verify
that there exists � > 0 such that

g(x, μ) − g
(
x∗, 0

) ≥ −�μ
α

2γ−1 ∀x ∈ B
(
x∗, r

) ∩ A ∀μ ≥ 0,

where r > 0 is sufficiently small. Then applying the assumption on the function β

one can show that Fλ is exact at x∗, provided σ ≤ α/(2γ − 1). ��
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