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Abstract In this paper, a new full Nesterov–Todd step infeasible interior-point
method for Cartesian P∗(κ) linear complementarity problem over symmetric cone
is considered. Our algorithm starts from a strictly feasible point of a perturbed prob-
lem, after a full Nesterov–Todd step for the new perturbed problem the obtained
strictly feasible iterate is close to the central path of it, where closeness is measured
by some merit function. Furthermore, the complexity bound of the algorithm is the
best available for infeasible interior-point methods.

Keywords Cartesian P∗(κ) linear complementarity problem · Infeasible interior-
point method · Polynomial complexity
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1 Introduction

The Cartesian P∗(κ) linear complementarity problem over symmetric cone (Cartesian
P∗(κ)-SCLCP), seeks vectors x, s ∈ J such that

x ∈ K, s = A(x) + q ∈ K, 〈x, s〉 = 0, (1)

where 〈x, s〉 = tr(x ◦s) denotes the Euclidean inner product,J = J1×· · ·×JN is the
Cartesian product space with the corresponding cone of squares K = K1 × · · · ×KN

where each J j is a Euclidean Jordan algebra with dimension n j and rank r j and each
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592 B. Kheirfam

K j is the corresponding cone of squares J j , q ∈ J , and the linear transformation
A : J → J has the Cartesian P∗(κ) property for some nonnegative constant κ , i.e.,

(1 + 4κ)
∑

j∈I+

〈
x ( j), [A(x)]( j)〉 +

∑

j∈I−

〈
x ( j), [A(x)]( j)〉 ≥ 0, ∀ x ∈ J ,

where I+ = {
j : 〈

x ( j), [A(x)]( j)〉 ≥ 0
}
and I− = {

j : 〈
x ( j), [A(x)]( j)〉 < 0

}
. Note

that the dimension of J is n = ∑N
j=1 n j and the rank is r = ∑N

j=1 r j .
The concept of the Cartesian P∗(κ)-property was first introduced by Luo and Xiu

[11] in the general Euclidean Jordan algebra. Factually, it is a straightforward exten-
sion of the P∗(κ)-matrix introduced by Kojima et al. [9], where they first proved the
existence and uniqueness of the central path for the P∗(κ)-LCP and generalized the
primal-dual interior-point algorithm for linear optimization (LO) to the P∗(κ)-LCP.
The Cartesian P∗(κ)-SCLCP includes a wide class of problems, namely, P∗(κ)-LCP,
Cartesian P∗(κ) second-order cone linear complementarity problem (SOCLCP) and
Cartesian P∗(κ) semidefinite linear complementarity problem (SDLCP) as special
cases. Luo and Xiu [11] extended the path-following interior-point algorithms for
symmetric cone optimization (SCO) introduced by Schmieta and Alizadeh [16] to
the Cartesian P∗(κ)-SCLCP. Wang and Bai [18] presented a class of polynomial
interior-point algorithms for the Cartesian P∗(κ)-SCLCP based on a kernel function
and obtained the currently best known iteration bounds with the addition of a factor
(1 + 2κ) for feasible IPMs.

The primal-dual full-Newton step feasible interior-point method (IPM) for LO
was first introduced by Roos et al. [15], and the authors obtained the currently best
known iteration bound for small-update methods, namely, O(

√
n log n

ε
). Wang et al.

[19,21] and Wang and Lesaja [20] generalized the results for LO obtained by Roos
et al. in [15] to SCO, convex quadratic symmetric cone optimization (CQSCO) and
the Cartesian P∗(κ)-SCLCP, respectively. Based on a modified Nesterov–Todd (NT)-
direction, Kheirfam and Mahdavi-Amiri [8] and Kheirfam [5] presented a feasible
IPM for SCLCP and the Cartesian P∗(κ)-SCLCP. All methods mentioned so far are
feasible IPM that can be started only if a strictly feasible point is known. Usually such
a starting point is not at hand. In this case a so-called infeasible IPM (IIPM) should
be used.

IIPMs start with an arbitrary positive point and feasibility is reached as optimality
is approached. In 2006, Roos [13] proposed a full-Newton step IIPM for LO, which
starts with a strictly feasible solution of a perturbed problem and generates iterates
each of which is strictly feasible for a new perturbed problem. The author proved that
the complexity of the algorithm coincides with the best-known iteration bound for
IIPMs. Some variants of the method extended by Kheirfam and Mahdavi-Amiri [7]
to SCLCP, Kheirfam [6] to horizontal LCP (HLCP), Gu et al. [4] to SCO and Liu and
Sun [10] to LO. Recently, Roos [14] proposed a new method for LO by improving
the full-Newton step IIPMs so that the centering steps not be needed, whereas the
above-mentioned IIPMs require a few (at most three) centering steps in each main
iteration. Motivated by Roos’ recent work, we present a new full-NT step IIPM for
the Cartesian P∗(κ)-SCLCP which uses only one feasibility step in each iteration and
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the centering steps not to be required in this paper. In our algorithm, closeness to the
central path is measured by a merit function introduced in [22] which makes a simple
and interesting analysis. We derive the worst case iteration complexity, as is usual for
theoretical iteration bounds for IIPMs.

The remainder of our work is organized as follows. In Sect. 2, we briefly recall
some results from Euclidean Jordan algebra that we need in this paper. In Sect. 3, we
introduce the perturbed problem and describe an iteration of our algorithm. We then
present the algorithm. Section 4 contains the analysis of the algorithm. In Sect. 4.1,
we derive an upper bound for the proximity measure after a full-NT step. Section 4.2
serves to derive an upper bound for ω(v). In Sect. 4.3, we fix values of the parameters
θ and τ in the algorithm. As a result, we realize the algorithm to be well-defined for
the chosen values of θ and τ . We derive the iteration complexity of the algorithm in
Sect. 4.4. Finally, Sect. 5 contains some concluding remarks.

2 Euclidean Jordan algebra

Here, we briefly outline some concepts, properties, and results from Euclidean Jordan
algebras as needed. A comprehensive treatment of Euclidean Jordan algebra can be
found in [1,3,17].

A Euclidean Jordan algebra is a triple (J , ◦, 〈·, ·〉), where (J , 〈·, ·〉) is an n-
dimensional inner product space over R and ◦ : (x, y) → x ◦ y is a bilinear mapping
satisfying the following conditions for all x, y, s ∈ J :

(a) x ◦ y = y ◦ x ,
(b) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x,
(c) 〈x ◦y, s〉 = 〈x, y◦s〉,where the inner product 〈·, ·〉 is defined by 〈x, y〉 = tr(x ◦y)

for any x, y ∈ J .

We assume that there exists an element e ∈ J , which called the identify element, such
that x ◦ e = e ◦ x = x for all x ∈ J . Denote the corresponding cone of squares by
K := {x2 : x ∈ J }. Note that, by Theorem III.2.1 in [1], K is indeed a symmetric
cone. Since J is finite-dimensional, given x ∈ J , there exists a minimal positive
integer k, which called the degree of x , such that the set {e, x, . . . , xk} is linearly
dependent. The rank of J , denoted by r , is defined to be

r := max{deg(x) : x ∈ J },

where deg(x) is the degree of x . An element c ∈ J is idempotent if c ◦ c = c �= 0,
which is also primitive if it cannot be expressed as a sum of two idempotents. A set of
primitive idempotents {c1, c2, . . . , ck} is called a Jordan frame if ci ◦ c j = 0, for any
i �= j ∈ {1, 2, . . . , k}, and ∑k

i=1 ci = e. Let (J , ◦, 〈·, ·〉) be a Euclidean Jordan alge-
brawith rank(J ) = r . Then, for any x ∈ J , there exists a Jordan frame {c1, c2, . . . , cr }
and real numbers λ1(x), λ2(x), . . . , λr (x) such that x = ∑r

i=1 λi (x)ci (spectral
decomposition, Theorem III.1.2 in [1]). Every λi (x) is called an eigenvalue of x .
Since “◦” is bilinear for every x ∈ J , the Lyapunov transformation L(x) : J → J
is defined as L(x)y = x ◦ y. For each x ∈ J , define
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P(x) := 2L(x)2 − L(x2),

where, L(x)2 = L(x)L(x). The map P(x) is called the quadratic representation of
x in J , which is an essential concept in the theory of Jordan algebra and plays an
important role in the analysis of interior-point algorithms. We say two elements x, y
of a Jordan algebra J operator commute if L(x)L(y) = L(y)L(x). Two elements
x, y of a Jordan algebra J are called similar, denoted as x ∼ y, if x and y share the
same set of eigenvalues. In what follows, we generalize the definitions and properties
stated so far in this section to the general case, when the cone underlying the given
P∗(κ)-SCLCP is the Cartesian product of N symmetric cones K j , where N > 1. For
any x = (x (1), x (2), . . . , x (N )) ∈ J , where x ( j) ∈ J j , we have

‖x‖F =
√√√√

N∑

j=1

‖x ( j)‖2F , tr(x) =
N∑

j=1

tr
(
x ( j)).

For any x, s ∈ J , we have

x ◦ s =
(
x (1) ◦ s(1), x (2) ◦ s(2), . . . , x (N ) ◦ s(N )

)
, 〈x, s〉 =

N∑

j=1

〈
x ( j), s( j)

〉
.

Obviously, if e( j) ∈ J j is the identity element in the Jordan algebra for the j th
cone, then the vector e = (e(1), e(2), . . . , e(N )) is the identify element in (J , ◦).
One can easily verify that tr(e) = r . The Lyapunov transformation and the quadratic
representation of J can be adjusted to

L(x) = diag
(
L(x (1)), . . . , L(x (N ))

)
, P(x) = diag

(
P(x (1)), . . . , P(x (N ))

)
.

3 Infeasible full-NT step IPM

In the case of an infeasible method, we call the pair (x, s) an ε-solution of (1) if
the Frobenius norm of the residual vector s − A(x) − q does not exceed ε, and also
tr(x ◦ s) ≤ ε.

3.1 The perturbed problem

We start with choosing arbitrarily (x0, s0) ∈ intK × intK such that x0 ◦ s0 = μ0e
for some positive number μ0. For any ν, with 0 < ν ≤ 1, we consider the perturbed
problem

s − A(x) − q = νr0q , (x, s) ∈ K × K, (SCLCPν)

where r0q = s0 − A(x0) − q. It is obvious that (x, s) = (x0, s0) is a strictly feasible
solution of (SCLCPν), when ν = 1. We conclude that if ν = 1, then (SCLCPν)
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satisfies the IPC, i.e., there exists (x0, s0) ∈ intK× intK such that s0 −A(x0) − q =
νr0q , which then straightforwardly leads to the following result.

Lemma 1 Let (1) be feasible and 0 < ν ≤ 1. Then, the perturbed problem (SCLCPν)

satisfies the IPC.

Proof The proof is similar to the proof of the Theorem 3.1 in [7], and is therefore
omitted. ��

3.2 The central path of the perturbed problem

Let (1) be feasible and 0 < ν ≤ 1. Then, Lemma 1 implies that the problem (SCLCPν)

satisfies the IPC, for 0 < ν ≤ 1, and therefore its central path exists. This means that
the system

s − A(x) − q = νr0q , (x, s) ∈ K × K,

x ◦ s = μe, (2)

has a unique solution for any μ > 0, as the μ-center of the perturbed problem
(SCLCPν). The set of μ-centers is called the central path. In the sequel, the para-
metersμ and ν will always be in a one-to-one correspondence, according toμ = νμ0.

3.3 An iteration of our algorithm

We just established that if ν = 1 and μ = μ0, then (x0, s0) is the μ-center of the
perturbed problem (SCLCPν). In accordancewith the available results on IIPMs (e.g.,
see [7]), the initial iterates are given by

x0 = ρpe, s
0 = ρde, μ0 = ρpρd , ν = 1,

where ρp > 0 and ρd > 0 such that ‖x∗‖∞ ≤ ρp and max{‖s∗‖∞, ‖A‖Fρp} ≤ ρd
for some solution (x∗, s∗) of (1). If the pair (x, s) is feasible for the perturbed problem
(SCLCPν), and μ = ρpρdν, then we measure proximity to the μ-center of this
perturbed problem by the quantity

δ(x, s;μ) := δ(v) := ‖e − v2‖F , where v := P(w
1
2 )s√
μ

[
= P(w− 1

2 )x√
μ

]
, (3)

and w = P(x
1
2 )

(
P(x

1
2 )s

)− 1
2
[ = P(s− 1

2 )
(
P(s

1
2 )x

) 1
2
]
is called the scaling point of

x and s (Lemma 3.2 in [2]). This scaling point was first introduced by Nesterov and
Todd [12] for self-scaled cones and then adapted by Faybusovich [3] for symmetric
cones. As a consequence, we have the following lemma.

Lemma 2 (cf. Lemma 2.1 in [6]) If δ := δ(v), then

√
1 − δ ≤ λi (v) ≤ √

1 + δ, i = 1, . . . , r.
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Suppose that for some μ ∈ (0, μ0] we have x ∈ K and s ∈ K satisfying the first
equation in (2) for ν = μ

μ0 and such that δ(x, s;μ) ≤ τ . This certainly holds at the

start of the first iteration, since δ(x0, s0;μ0) = 0 < τ and s0 − A(x0) − q = νr0q ,
when ν = 1. We reduce ν to ν+ = (1− θ)ν and μ to μ+ = (1− θ)μ with θ ∈ (0, 1),
and find new iterate (x+, s+) that is feasible for the perturbed problem (SCLCPν+),
and such that δ(x+, s+;μ+) ≤ τ.

We proceed by deriving the search directions in the algorithm. For this purpose, we
find displacements Δx and Δs such that

A(Δx) − Δs = θνr0q ,

s ◦ Δx + x ◦ Δs = (1 − θ)μe − x ◦ s. (4)

Due to the fact that L(x)L(s) �= L(s)L(x), in general, the above system does not
always have a unique solution. This problem can be solved by replacing the second

equation of the system (2) by P(w− 1
2 )x ◦ P(w

1
2 )s = μe (cf. Lemma 28 in [16]). Then

the Newton system becomes

A(Δx) − Δs = θνr0q ,

P(w
1
2 )s ◦ P(w− 1

2 )Δx + P(w− 1
2 )x ◦ P(w

1
2 )Δs

= (1 − θ)μe − P(w− 1
2 )x ◦ P(w

1
2 )s. (5)

It is easily seen that x+ := x + Δx and s+ := s + Δs satisfy s − A(x) − q = ν+r0q .
The main part of the analysis is to guarantee that x+ ∈ intK and s+ ∈ intK and satisfy
δ(x+, s+;μ+) ≤ τ.

3.4 The algorithm

A formal description of the algorithm is given in Fig. 1.

Fig. 1 The algorithm A full NT − step IIPM .
Input :

accuracy parameter 0;
barraier update parameter θ, 0 < θ < 1;
threshold parameter 0 < τ < 1;

begin
x := ρpe; s := ρde; μ := ρpρd; ν = 1;

while max tr(x ◦ s), rq F do
begin

(x, s) := (x, s) + (Δx, Δs);
μ := (1 − θ)μ, ν := (1 − θ)ν;

end
end.
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4 Analysis of the algorithm

Let (x, s) denote the iterate at the start of an iteration, and δ(x, s;μ) ≤ τ .

4.1 Upper bound for δ(v+)

As established in Sect. 3.3, the full-NT step generates new iterates (x+, s+) that satisfy
the feasibility condition for (SCLCPν+), except for possibly the constraints on the
cone K. A crucial element in the analysis is to show that, after the full-NT step,
δ(x+, s+;μ+) ≤ τ .

Defining

dx := P(w− 1
2 )Δx√
μ

, ds := P(w
1
2 )Δs√
μ

, (6)

where w is the NT-scaling point of x and s, we may easily check that the system (5),
which defines the search directions Δx and Δs, can be written in terms of the scaled
directions dx and ds as follows:

A(dx ) − ds = P(w
1
2 )√

μ
θνr0q ,

dx + ds = (1 − θ)v−1 − v, (7)

where A := P(w
1
2 )AP(w

1
2 ). Furthermore, using (3) and (6) we get

x+ = √
μP(w

1
2 )(v + dx ), s+ = √

μP(w− 1
2 )(v + ds).

Since P(w
1
2 ) and P(w− 1

2 ) are automorphisms of intK (Theorem III.2.1 in [1]), x+
and s+ belong to intK if and only if v + dx and v + ds belong to intK. In this case,
using the second equation of (7), we obtain

(v + dx ) ◦ (v + ds) = v2 + v ◦ (dx + ds) + dx ◦ ds = (1 − θ)e + dx ◦ ds . (8)

Lemma 3 The iterate (x+, s+) is strictly feasible if (1 − θ)e + dx ◦ ds ∈ intK.

Proof The proof is similar to the proof of Lemma 4.2 in [4], and is therefore
omitted. ��
Corollary 1 The iterate (x+, s+) is strictly feasible if ‖λ(dx ◦ ds)‖∞ < 1 − θ.

Proof By Lemma 3, the iterate (x+, s+) is strictly feasible if (1−θ)e+dx ◦ds ∈ intK.
If ‖λ(dx ◦ds)‖∞ < 1−θ, thenwe have θ−1 < λi (dx ◦ds) < 1−θ for all i = 1, . . . , r.
Therefore,

λi ((1 − θ)e + dx ◦ ds) = 1 − θ + λi (dx ◦ ds) > 0, i = 1, . . . , r.
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598 B. Kheirfam

The last inequalities mean that (1 − θ)e + dx ◦ ds ∈ intK, and the corollary follows.
��

In the sequel, we denote

ω(v) := 1

2

(‖dx‖2F + ‖ds‖2F
)
. (9)

It follows that

‖λ(dx ◦ ds)‖∞ ≤ ‖dx ◦ ds‖F ≤ 1

2
(‖dx‖2F + ‖ds‖2F ) = ω(v). (10)

Corollary 2 If ω(v) < 1 − θ , then the iterate (x+, s+) is strictly feasible.

Proof Due to (10), ω(v) < 1 − θ implies ‖λ(dx ◦ ds)‖∞ < 1 − θ . By Corollary 1,
the proof is complete. ��
Assuming ω(v) < 1 − θ , which guarantees strict feasibility of the iterates (x+, s+),
we proceed by deriving an upper bound for δ(x+, s+;μ+). By definition, we have

δ(x+, s+;μ+) = ∥∥e − (v+)2
∥∥
F , where v+ = P((w+)− 1

2 )x+
√

μ+
[ = P((w+)

1
2 )s+

√
μ+

]
.

In what follows, we denote δ(x+, s+;μ+) shortly by δ(v+).

Lemma 4 If ω(v) < 1 − θ , then

δ(v+) ≤ ω(v)

1 − θ
.

Proof Since ω(v) < 1 − θ , using Corollary 2, it follows that x+ and s+ are strictly
feasible, hence v + dx , v + ds and (v + dx ) ◦ (v + ds) belong to intK. Similar to the
proof of Lemma 3.3 in [7], we have

√
1 − θv+ ∼ [

P((v + dx )
1
2 )(v + ds)

] 1
2 . (11)

Now, by using ‖P(x
1
2 )s − e‖F ≤ ‖x ◦ s − e‖F for any x, s ∈ intK (cf. Lemma 30 in

[16]), (11), (8) and (10), we may write

δ(v+) = ∥∥(v+)2 − e
∥∥
F =

∥∥∥P
( v + dx√

1 − θ

) 1
2
( v + ds√

1 − θ

)
− e

∥∥∥
F

≤
∥∥∥
( v + dx√

1 − θ

)
◦

( v + ds√
1 − θ

)
− e

∥∥∥
F

=
∥∥∥
(1 − θ)e + dx ◦ ds

1 − θ
− e

∥∥∥
F

= 1

1 − θ

∥∥dx ◦ ds
∥∥
F ≤ ω(v)

1 − θ
.

This completes the proof. ��
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4.2 Upper bound for ω(v)

In this section, we obtain an upper bound for ω(v) which enable us to find a default
value for θ . For this purpose, the following two lemmas play an important role.

Lemma 5 If the linear transformation A has the Cartesian P∗(κ)-property, then the
solution (dx , ds) of the linear system

A(dx ) − ds = 0,

dx + ds = h, (12)

satisfies

‖dx‖2F + ‖ds‖2F ≤ (1 + 2κ)‖h‖2F .

Proof Since A has the Cartesian P∗(κ)-property, we obtain

〈
dx , ds

〉 ≥ −4κ
∑

j∈I+

〈
d( j)
x , d( j)

s
〉 ≥ −κ

∑

j∈I+

∥∥d( j)
x + d( j)

s
∥∥2
F

≥ −κ

N∑

j=1

∥∥d( j)
x + d( j)

s
∥∥2
F = −κ

∥∥dx + ds
∥∥2
F = −κ‖h‖2F . (13)

Therefore, using the above inequality, we get

‖dx‖2F + ‖ds‖2F = ‖dx + ds‖2F − 2〈dx , ds〉 ≤ (1 + 2κ)‖h‖2F .

This completes the proof. ��
Lemma 6 If the linear transformation A has the Cartesian P∗(κ)-property, then the
solution (dx , ds) of the linear system

A(dx ) − ds = a,

dx + ds = b, (14)

satisfies

‖dx‖2F + ‖ds‖2F ≤ 4(1 + 2κ)
(‖a‖2F + ‖b‖2F

) + 2‖a‖2F .

Proof It is easily seen that the system (14) can be written as

A(dx ) − ṽ = 0,

dx + ṽ = a + b, (15)

where ṽ = ds + a. Applying Lemma 5 to (15), it follows that

‖dx‖2F + ‖ṽ‖2F ≤ (1 + 2κ)‖a + b‖2F ≤ 2(1 + 2κ)
(‖a‖2F + ‖b‖2F

)
.
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Therefore, using the above inequality, we get

‖dx‖2F + ‖ds‖2F = ‖dx‖2F + ‖ṽ − a‖2F ≤ 2
(‖dx‖2F + ‖ṽ‖2F

) + 2‖a‖2F
≤ 4(1 + 2κ)

(‖a‖2F + ‖b‖2F
) + 2‖a‖2F .

This completes the proof. ��

Comparing system (14) with the system (7) and considering a = P(w
1
2 )√

μ
θνr0q and

b = (1 − θ)v−1 − v, we get

‖dx‖2F + ‖ds‖2F ≤ 4(1 + 2κ)
(∥∥∥

θν√
μ
P(w

1
2 )r0q

∥∥∥
2

F
+ ‖(1 − θ)v−1 − v‖2F

)

+ 2
∥∥∥

θν√
μ
P(w

1
2 )r0q

∥∥∥
2

F
. (16)

On the other hand, we have

∥∥P(w
1
2 )r0q

∥∥2
F = 〈

P(w
1
2 )r0q , P(w

1
2 )r0q

〉 = 〈
P(w)r0q , r0q

〉

= 〈
P(w)r0q , 2ρde

〉 − 〈
P(w)r0q , 2ρde − r0q

〉

≤ 〈
P(w)r0q , 2ρde

〉

= 〈
P(w)(2ρde), 2ρde

〉 − 〈
P(w)(2ρde − r0q ), 2ρde

〉

≤ 〈
P(w)(2ρde), 2ρde

〉 = 4ρ2
d

〈
P(w)e, e

〉

= 4ρ2
d tr(w

2) ≤ 4ρ2
d tr(x

2)

μλmin(v)2
≤ 4ρ2

d tr(x)
2

μλmin(v)2
, (17)

where the third inequality follows by Lemma 4.5 in [4] and the last inequality by
tr(x2) ≤ tr(x)2.

Lemma 7 Let (x, s) be feasible for the perturbed problem (SCLCPν) and let
(x0, s0) = (ρpe, ρde), 〈x∗, s∗〉 = 0, ‖s∗‖∞ ≤ ρd and ‖x∗‖∞ ≤ ρp. Then, we
have

tr(x) ≤ (1 + 4κ)rρp
(
3 + δ

)
. (18)

Proof It is easily seen that

νs0 + (1 − ν)s∗ − s = A(νx0 + (1 − ν)x∗ − x).

Since the linear transformation A has the Cartesian P∗(κ)-property, it follows that

〈νx0 + (1 − ν)x∗ − x, νs0 + (1 − ν)s∗ − s〉
≥ −4κ

(
ν2〈x0, s0〉 + ν(1 − ν)

(〈x0, s∗〉 + 〈x∗, s0〉) + 〈x, s〉
)
.
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The above inequality, due to 〈x∗, s〉 + 〈x, s∗〉 ≥ 0 and Lemma 2, implies that

〈x0, s〉 + 〈x, s0〉 ≤ (1 + 4κ)

(
ν〈x0, s0〉 + (1 − ν)

(〈x0, s∗〉 + 〈x∗, s0〉) + 1

ν
〈x, s〉

)

≤ (1 + 4κ)

(
νrρpρd + 2(1 − ν)rρpρd + ρpρd

r∑

i=1

λ2i (v)

)

≤ (1 + 4κ)rρpρd
(
3 + δ

)
.

Therefore, 〈x, s0〉 ≤ (1 + 4κ)rρpρd
(
3 + δ

)
which implies the result. ��

By substituting (18) and (17) into (16) and using (9) and the fact that μ = νμ0 =
νρpρd , we obtain

ω(v) ≤ 2(1 + 2κ)

(
4(1 + 4κ)2θ2r2(3 + δ)2

1 − δ
+ (δ + θ

√
r)2

1 − δ

)

+ 4(1 + 4κ)2θ2r2(3 + δ)2

1 − δ
. (19)

4.3 Values for θ and τ

Our aim is to find a positive number τ such that if δ ≤ τ , then δ(v+) ≤ τ . By Lemma
4, this will hold if ω(v) < 1 − θ and

ω(v)

1 − θ
≤ τ. (20)

In this stage, we choose

τ = 1

8(1 + 2κ)
, θ = 1

44(1 + 2κ)(1 + 4κ)r
. (21)

Using δ ≤ τ , it follows from (19), with the right-hand side of (19) beingmonotonically
increasing with respect to δ, that

ω(v) ≤ 2(1 + 2κ)
(4(1 + 4κ)2θ2r2(3 + τ)2

1 − τ
+ (τ + θ

√
r)2

1 − τ

)

+ 4(1 + 4κ)2θ2r2(3 + τ)2

1 − τ

= 1

8(1 + 2κ)

(
8(25 + 48κ)2

1936(1 + 2κ)(7 + 16κ)
+

128
( 1
8 + 1

44(1+4κ)
√
r

)2
(1 + 2κ)

7 + 16κ

+ 4(25 + 48κ)2

1936(1 + 2κ)2(7 + 16κ)

)

≤ 1

8(1 + 2κ)
(0.9525) <

1

8(1 + 2κ)
(0.9773) = (1 − θ)τ. (22)
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This implies that ω(v) < 1 − θ with θ defined as in (21), and (20) holds. Therefore,
the iterates generated by the algorithm are strictly feasible, and the algorithm is well-
defined in the sense that the property δ(x, s;μ) ≤ τ , with τ defined as in (21), is
maintained in all iterations.

4.4 Complexity

We have found that if at the start of an iteration the iterates satisfy δ(x, s;μ) ≤ τ , and
τ and θ are defined as in (21), then after the full-NT step, the iterate is strictly feasible
and satisfies δ(x+, s+;μ+) ≤ τ . This establishes the algorithm to be well-defined.

In each main iteration, both the barrier parameter μ and the norm of the residual
vector are reduced by the factor 1 − θ . Hence, the total number of main iterations is
bounded above by

1

θ
log

max{tr(x0 ◦ s0), ‖r0q‖F }
ε

.

Thus, we may state the main result of our work.

Theorem 1 If (1) has a solution (x∗, s∗) such that ‖x∗‖∞ ≤ ρp and ‖s∗‖∞ ≤ ρd ,
then after at most

44r(1 + 2κ)(1 + 4κ) log
max{tr(x0 ◦ s0), ‖r0q‖F }

ε
,

iterations the algorithm finds an ε-solution of (1).

5 Conclusions

In this paper, we have presented a full-NT step IIPM for the Cartesian P∗(κ)-SCLCP.
The method used in each iteration only a full step. The analysis is simpler and the
closeness to central path is measured by some merit function. Finally, the iteration
bound in this paper is a worst-case bound, as is usual for theoretical iteration bounds
for IIPMs.
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