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Abstract The p-hubmedian problem consists of choosing p hub locations from a set
of nodes with pairwise traffic demands in order to route the traffic between the origin-
destination pairs at minimum cost. We accept general assumption that transportation
between non-hub nodes is possible only via r -hub nodes, to which non-hub nodes are
assigned. In this paper we propose a general variable neighborhood search heuristic
to solve the problem in an efficient and effective way. Moreover, for the first time
full nested variable neighborhood descent is applied as a local search within Variable
neighborhood search. Computational results outperform the current state-of-the-art
results obtained by GRASP based heuristic.

Keywords p-hub · Heuristics · Nested variable neighborhood descent ·
Variable neighborhood search

1 Introduction

Given a set of nodes with pairwise traffic demands, the p-hub median problem [27]
consists of choosing p hub locations from the given set in order to route the traffic
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1110 R. Todosijević et al.

between origin–destination pairs at minimum cost. It is generally assumed that trans-
portation between non-hub nodes i , j is possible only via hub nodes hi , h j , to which
nodes i , j are assigned, respectively. Depending on the number of hubs that might be
assigned to a node, several variants of the p-hubmedian problem can be distinguished:

– single allocation p-hub median problem [27]: each node is assigned to exactly one
hub, which allows traffic to be sent and received only through this single hub;

– the r -allocation p-hub median problem [30]: each node can be connected to at
most r (out of p) hubs, through which it sends (receives) traffic to (from) any
other node;

– multiple allocation p-hub median problem [2,3]: each node can send and receive
traffic through any of the p hubs.

The r -allocation p-hub median problem from [30] is a generalization of the single
allocation p-hub median problem and the multiple allocation p-hub median problem.
The motivation for this variant comes from the fact that the single allocation version
is too restrictive, and the multiple allocation variant results in high fixed costs and
complicated networks.

Mathematically, the uncapacitated r -allocation p-hub median (r -p hub median
problem) problem may be stated as follows. Given n nodes and the distance matrix
D, whose each entry di j represents the distance between nodes i and j . For every pair
of nodes i and j , there is an amount of flow ti j ≥ 0 that needs to be transferred from
i to j . Transferring ti j units of flow through path i → hi → h j → j induces a cost
ci j (hi , h j ), which is computed as

ci j (hi , h j ) = ti j
(
γ dihi + αdhi h j + δdh j j

)
.

Parameters γ, α and δ are unit rates for collection (origin–hub), transfer (hub–hub),
and distribution (hub–destination), respectively. Generally, α is used as a discount
factor to provide reduced unit costs on arcs between hubs, so α < γ and α < δ. Note
that the hub nodes hi and h j on the path i → hi → h j → j may be equal (i.e.,
hi = h j ). Then, the r -allocation p-hub median problem may be modelled in terms
of the following variables (for details see [30]). Let zkk be equal to 1 if the node k
is a hub and 0 otherwise. Further, let zik be equal to 1 if non-hub node i is assigned
or allocated to node k, and 0 otherwise. Finally, let fi jkl denote the proportion of the
traffic ti j from node i to node j that travels along the path i − k − l − j , where k
and l denote hubs. Then, the formulation of uncapacitated r -allocation p-hub median
problem is as follows:

min
fi jkl

∑

i∈N

∑

j∈N

∑

k∈N

∑

l∈N
ti j (γ dik + αdkl + δdl j ) fi jkl (1)

subject to ∑

k∈N
zik ≤ r ∀i ∈ N (2)

zik ≤ zkk ∀i, k ∈ N (3)
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∑

k∈N
zkk = p (4)

∑

k∈N

∑

l∈N
fi jkl = 1 ∀i, j ∈ N (5)

∑

l∈N
fi jkl ≤ zik ∀i, j, k ∈ N (6)

∑

k∈N
fi jkl ≤ z jl ∀i, j, l ∈ N (7)

fi jkl ≥ 0 ∀i, j, k, l ∈ N (8)

zik ∈ {0, 1} ∀i, k ∈ N (9)

The set of constraints (2) ensures that each node is allocated to at most r hubs,
while constraints (3) ensure that non-hub nodes can be allocated only to hub nodes. In
addition, constraint (4) limits the number of chosen hubs to p. Finally, constraints (5)
to (7) impose the requirement that the traffic between each pair of nodes i, j through
their corresponding hubs k, l is routed entirely.

The p-hubmedian problembelongs to the class of N P hard problems. Furthermore,
even if hubs are given, the sub-problem that allocates non-hub nodes to hubs is also
N P hard [20]. The surveys of p-hub median problems may be found in Mladenović
et al. [23], Alumur and Kara [1], and Campbell and O’Kelly [5]. It is well-known that
the uncapacitated single andmultiple allocation p-hubmedian problems are N P hard.
Therefore, the uncapacitated r -allocation p-hub median problem is N P hard, as well.

While the single and multiple allocation p-hub median problems have been widely
studied in the literature [4,7–10,15–17,21], there are only two methods proposed
for solving the uncapacitated r -allocation p-hub median problem. Besides, the exact
method proposed in [30], Peiro et al. [28] propose heuristic based on GRASP meta-
heuristic that employs three local search procedures and introduce a mechanism to
eliminate low-quality solutions during the greedy phase. Therefore, they selectively
apply local searches to promising solutions.

In this paper we propose a heuristic based on variable neighborhood search (VNS)
[22] that uses nested variable neighborhood descent (nested VND) [15] as a local
search. We continue the research direction established in [15,28]. In [28], three neigh-
borhood structures for the r -p hub median problem, are proposed, but explored within
GRASP methodology. Additionally, neighborhoods were not explored in the nested
manner. In [15], a nested VND variant was suggested in its general form, but it was
not applied for solving the uncapacitated single allocation p-hub median problem
with three neighborhood structures since it would be time consuming. Therefore, the
authors proposed and tested two Mixed-nested VND procedures. (Note that [11] is
the first paper where mixed-nested VND is suggested, i.e., in each point of the j-
means neighborhood, h-means and k-means are applied sequentially.) In this paper,
we show that full nested VND, obtained by nesting two neighborhoods, is power-
ful enough, to enable us to efficiently and effectively solve r -p hub median problem
(slightly different problem than the one considered in [15]). The merit of the proposed
approach is disclosed on benchmark instances from the literature. It appears that the
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results obtained outperform those of the state-of-the-art heuristic based on GRASP.
Moreover, the full Nested VND is used for the first time as a local search within VNS.

The rest of the paper is organized in the following way. In the next section we give
rules of our heuristic. Section 3 gives computational results and comparative analysis,
while Sect. 4 concludes paper and gives directions for future research.

2 General variable neighborhood Search for the uncapacitated r-allocation
p-hub median problem

2.1 Building an initial solution

A solution of r -p hub median problem is determined by a set of hubs, the node-to-
hubs assignments, and the travel paths for each pair of nodes. The choice of p hub
locations as well as the node-to-hub assignments can be made at random or in a greedy
way. As mentioned before, finding optimal allocations is N P hard problem even if
the locations of hubs are known. If locations of hubs and node to hub allocations
are known then, the optimal paths between each pair of nodes are determined as the
possible routes with the lowest cost.

Now we will describe a greedy heuristic [28] so to get greedy solution. In order
to construct a greedy solution, it is important to determine in advance the follow-
ing functions: function g(h)—the attractiveness of node h to serve as a hub, and
aloc(i, h)—the influence of allocating non-hub node i to hub h. For that purpose, we
use the same functions as proposed in [28]. A more precise description of a greedy
heuristic is given bellow.

The attractiveness of some node h to serve as a hub is measured using the following
formula:

g(h) = min
j∈N d jh

∑

i∈N
t ji .

The rationale for such evaluation is the fact that if some node j is assigned to hub h,
then all the traffic from j to any node i may be transferred via hub h. Once values of
function g is determined for each node, the p hubs are chosen in a greedy way, i.e.,
as p nodes with the p smallest values of function g.

After choosing hub nodes, the node to hub allocations must be found. In order to
estimate the influence of allocating the node i to a previously chosen hub h, we use
the function aloc(i, h), which is computed as:

aloc(i, h) = dih
∑

j∈N
ti j +

∑

j∈N
ti j dh j .

The first term in aloc(i, h) represents the traffic cost from i to h, while the second
term measures the traffic cost associated with the arcs from h to all destinations j .
Then, each node i is assigned to r hubs with the best allocation values aloc(i, h).

When the locations of hubs are chosen and each node is assigned to r hubs, it is easy
to find traffic routes for each pair i, j and to calculate the objective function value. Let
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Hi and Hj be sets of r hubs assigned to nodes i and j , respectively. Then, for each
pair i and j , hubs hi ∈ Hi and h j ∈ Hj through which the traffic is routed from i to
j are chosen as those that minimize

ci j (hk, hl) = ti j (γ dihk + αdhkhl + δdhl j ),

i.e., (hi , h j ) = arg min{ci j (hk, hl)|hk ∈ Hi , hl ∈ Hj }. In that way the routing cost
ci j is obtained by searching hubs hi ∈ Hi and h j ∈ Hj , which minimize ci j (hk, hl).

Note that even if sets Hi and Hj have a common hub, the traffic from i to j is
not necessarily routed through that hub. Therefore, search for the best hubs hi and h j

requires examining all r2 possibilities for routing traffic from i to j .

2.2 Local search procedures

Solution representationAsmentioned before, the construction of a solution for r -p hub
median problem consists of three steps: location, assignment, and routing. However, as
it was shown in the previous section, routing is uniquely determined by locating hubs
and assigning hubs to nodes. Therefore, we represent a solution of r -p hub median
problem by a set H containing p hubs and a matrix A, where each row i contains r
hubs assigned to node i (i.e., i-th row coincides with the set Hi ). Thus our solution is
represented as S = (H, A).

Nested variable neighborhood descentA solution of r -p hub median problem may
be locally improved by changing a set of chosen hubs (set H ) or by changing the
assignments of hubs to nodes (i.e., changing the matrix A). Therefore, we introduce
two neighborhood structures of a given solution S = (H, A). The first neighborhood
structure, denoted by NH , is obtained by replacing one hub node from H by another
non-hub node from N\H . More formally,

NH (S) = {
S′ | S′ = (H ′, A′), |H ∩ H ′| = p − 1

}
.

The second neighborhood, denoted by NA, is obtained by replacing one hub
assigned to some node with another hub, while the set H remains unchanged:

NA(S) = {
S′|S′ = (H, A′), |A\A′| = 1

}
.

Let H = {h1, h2, . . . hi . . . h p} be the set of hubs that corresponds to the solution
S, and let H ′ = {h1, h2, . . . h′

i . . . h p} be a set of hubs that corresponds to the solution
S′ obtained by replacing hub node hi with non-hub node h′

i . Obviously, node-to-hub
assignments of solutions S and S′ are not the same. In order to determine matrix A′
of the solution S′, it is necessary to re-evaluate the hub assignments of all vertices
assigned to hi , since those vertices cannot use the hub hi anymore. Moreover, the
routes that do not use the hub hi should be also re-computed since the new hub h′

i
could be a better choice than the one currently used.

Unfortunately, evaluating the value of each neighborhood solution from NH

requires solving allocation problem which is N P hard [20]. So, solving exactly the
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associated allocation problem will be quite time consuming. Therefore, we find near-
optimal allocation A′ of some solution S′′ ∈ NH as follows. For each node, we firstly
determine node-to-hub allocation using the greedy procedure described in Sect. 2.1
(see Algorithm 1).

Algorithm 1: Greedy allocation

Function GreedyAllocation(H, A);
1 for i ∈ N do
2 for j = 1 to p do value( j) = aloc(i, h j );
3 Sort array value in nondecreasing order i.e.,

value(π(1)) ≤ value(π(2)) ≤ · · · ≤ value(π(p));
4 for j = 1 to r do A[i][ j] = hπ( j)

end

The solution S′′ = (H ′′, A′′) obtained in this way is then improved by exploring the
second neighborhood NA(S′′). In that way, the so-called nested variable neighborhood
descent (Nest-VND) is defined. Note that Nest-VND was suggested for the first time
in Ilić et al. [15]. The reason why we use nested strategy for exploring both NH

and NA neighborhood structures is the higher cardinality of the nested neighborhood
Nest (S):

|Nest (S)| = |NH (S)| · |NA(S)|.

Such cardinality obviously increases chances to find an improvement in that nested
neighborhood. The outline of Nest-VND procedure is provided below. The first
improvement strategy, inwhich an improvingmove is executed as soon as it is detected,
is used.

Algorithm 2: Nested VND.

Function NestVND(S);
1 for each S′′ ∈ NH (S) do
2 GreedyAllocation(H′′,A′′);
3 Select S′ as a best solution in NA(S′′);
4 if S′ is better than S then S ← S′;

end
5 return S;

2.3 General variable neighborhood search for r -p-hub problem

General variable neighborhood search (GVNS) is a variant of Variable neighbor-
hood search (VNS) metaheuristics [22]. VNS consists of an improvement phase, in
which the current solution is possibly improved by examining one or more neigh-
borhood structures, and of so-called shaking phase, in which the local minima trap
problem is hopefully resolved. The most common VNS variants are: Basic VNS,
where just one neighborhood structure is explored in the improvement phase; GVNS
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that explores deterministically several neighborhoods in the improvement phase,
i.e., it uses VND as a local search. As it is well known, the VND search may
be organized in sequential and nested way. For more variants of VNS and search
strategies within VNS, we refer the reader to recent surveys on VNS [13,14]. It
should be noted that VNS has been successfully applied for solving many opti-
mization problems (see e.g. [6,18,19,24,26,29] for some recent successful appli-
cations).

The steps of our GVNS for solving r -p hub median problem is provided in Algo-
rithm 4. Our GVNS_RP finds an initial solution by the greedy procedure described
in Sect. 2.1. That solution is then improved by procedures NestVND (depicted at
Algorithm 2) and Shake (depicted at Algorithm 3). These two subroutines, together
with neighborhood change step, are run alternately until some stopping criterium is
met. Here we used the maximum CPU time tmax. The shaking procedure consists of
replacing k hubs of a given solution with k non-hub nodes. The maximum number of
replaced hubs is denoted by kmax. It represents the VNS parameter.

Algorithm 3: Shaking procedure
Function Shake(S,k);

1 for i = 1 to k do
2 Select S′ in NH (S) at random;
3 S ← S′;

end

Algorithm 4: GVNS for solving r -p hub median problem.
Function GVNS_RP(S, kmax , tmax );

1 S ← greedy solution;
2 repeat
3 k ← 1;
4 while k ≤ kmax do
5 S′ ← Shake(S, k) ;
6 S′′ ← NestVND(S′) ;
7 k ← k + 1;
8 if S′′ is better then S then
9 S ← S′′; k ← 1;

end
end

10 t ← CpuTime();
until t > tmax ;

11 Return S;

3 Computational results

All experiments described in this section have been carried out on a computer with
Intel i7 2.8 GHz CPU and 16 GB of RAM.
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3.1 Test instances

The testing has been performed on benchmark instances available on the following
address: http://www.optsicom.es. These instances are classified in two groups:

– The AP (Australian Post) data set It is based on real data from the Australian
postal service, and was presented by Ernst and Krishnamoorthy in 1996 [7]. This
set contains 231 instances whose number of nodes n takes the following values:
60, 65, 70, 75, 80, 85, 90, 95, 100, 150 and 200. For those instances p ranges from
3 to 8, while r takes values from 2 to p − 1. The cost parameters γ, α, and δ, for
all instances, are set to 3, 0.75, and 2 respectively. These instances do not have a
symmetric flows, i.e., for a given pair of nodes (i, j), ti j is not necessarily equal to
t j i . Furthermore, flows from a node to itself can be positive (i.e., for a given node
i , tii can be strictly positive).

– The USA423 data set This data set is proposed in [28]. It consists of a data file
concerning 423 cities in the United States. Traffics are accumulated only for the
three months period. From the original data, 30 instances have been extracted,
setting p equal to 3,4,5,6,7 and r to 2, 3, . . . p − 1. For each combination of
parameters p and r , the two different sets of the cost parameter values γ, α and δ

are used: 0.1, 0.07, 0.09, and 0.09, 0.075, 0.08.

3.2 Heuristics compared

We tested GVNS_RP presented in Algorithm 4, as well as its modification named
GVNS_RP_reduced on both data sets. Namely, instead of performing complete
exploration of the NH (S), GVNS_RP_reduced examines just m · p of its elements.
These elements were generated randomly, replacing each hub node with one ofm ran-
domly chosen non-hub nodes. The reason why we decided to perform such reduction
relies on the fact that a neighborhood NH (S) for instances in the second data set is
much larger than the neighborhood NH (S) for instances in the first data set. There-
fore, exploring entirely neighborhood NH (S)within GVNS applied on instances from
the second data set might be time consuming. Note that m represents a parameter of
GVNS_RP_reduced algorithm, which defines the size of the reduced neighborhood.

3.3 Parameter calibration of VNS based heuristics

Firstly, we examine the influence of the parameter kmax on GVNS_RP algorithm. We
tested different values for kmax for instances of all sizes. However, to save the space,
here, we present results on test instance AP200-82 (n = 200, p = 8, r = 2). This
instance is of medium size and reveal the typical performance of GVNS_RP on most
of instances. The testing is performed by varying the value of kmax from 1 to p (i.e., 8).
The time limit (i.e., tmax) for GVNS_RP was set to 300 seconds. The obtained results
are presented in Table 1. For each choice of kmax value, we report the value of the best
found solution, as well as the CPU time consumed until reaching that solution.
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Table 1 Comparison of
GVNS_RP with different values
of kmax parameter

kmax Value Time

1 118,699.63 91.16

2 119,043.72 58.07

3 118,207.08 62.31

4 119,155.42 107.85

5 118,604.50 80.26

6 118,604.50 82.86

7 118,604.50 78.66

8 118,604.50 82.49

Table 2 Comparison of
GVNS_RP_reduced
algorithms with different values
of m

m Value Time

10 23,374,476,457.25 494.80

20 23,545,640,429.15 901.35

30 24,423,827,710.26 1923.83

40 24,423,827,710.26 1936.73

50 23,374,476,457.25 865.54

From the results presented in Table 1, it follows that GVNS_RP offers the best
solution when the parameter kmax is set to 3. This result is interesting and expected.
Indeed, nested neighborhood is relatively large, and big jumps from local minima are
not necessary since the nested VND local search is able to find better solution in their
vicinity. Also, the time needed to reach that solution is about 62 s, which is the second
best time with respect to all tested kmax values. Therefore, for the rest of testing, we
set kmax to 3.

The second part of experiments is devoted to determining the most suitable value
for the parameter m of GVNS_RP_reduced algorithm, whose parameter kmax is
set to 3. The testing is performed on test instance USA423-76, setting values of m
to 10, 20, 30, 40 and 50. The reason why we decided to perform testing on that
instance is the fact that USA423-76 instance is among the largest test instances, and
thus suitable for examining influence of GVNS_RP_reduced parameter m on the
solution process. The time limit (i.e., tmax) for GVNS_RP was set to 3600 s. The
obtained results are presented in Table 2. For each choice of m value, we report the
value of the best found solution, as well as the CPU time consumed until reaching that
solution.

From the results given in Table 2, it appears that GVNS_RP_reduced offers the
best solutionwhen its parameterm is set either to 10 or 50.However, the time consumed
by GVNS_RP_reduced with m = 10 is about two times shorter than the time con-
sumed byGVNS_RP_reducedwithm = 50.Additionally, under all other settings of
parameterm,GVNS_RP_reduced consumesmuchmoreCPU time, but does not suc-
ceed to find high quality solutions. So, in all further testings of GVNS_RP_reduced
algorithm, its parameters m and kmax will be set to 10 and to 3, respectively.
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3.4 Comparisons with the state-of-the-art heuristic

In this section we present comparisons of GVNS based heuristics with the GRASP
heuristic. On AP data set GVNS_RP and GVNS_RP_reduced are tested adjusting
their parameters in the following way. The running time tmax is set to 60 and 300 s
for instances with n < 80 and with n ≥ 80, respectively. On the second data set, for
both GVNS variants time limit is set to 1 h (3600 s). The results obtained on both data
sets are compared with those provided by the GRASP heuristic [28]. The GRASP
heuristic were executed on a computer with characteristics similar to those of our
computer (Intel i7 2.7 GHz CPU and 4 GB of RAM).

In Table 3 we provide comparison of solutions found by GVNS_RP and
GVNS_RP_reduced with best solutions found by GRASP on instances from AP
data set. The average value of best found solutions and average CPU times needed for
finding these solutions over all instances with the same number of nodes are reported.
The column headings are defined as follows. In the first column of Table 3, we report
the number of nodes in the considered instances, whereas in the columns ‘GRASP’,
‘GVNS_RP’ and ‘GVNS_RP_reduced’, we provide the average of best solution val-
ues found by GRASP, GVNS_RP and GVNS_RP_reduced, respectively. In columns
‘time’, the average time needed to reach best found solutions for instances with n
nodes are given, while in Column ‘impr.(%)’, we report the percentage improve-
ment obtained by GVNS_RP and GVNS_RP_reduced compared with the current
best knownvalues. From the reported results, it follows thatwithin each set of instances
with the same number of nodes, there is at least one instance where the best known
solution is improved by GVNS_RP and GVNS_RP_reduced. Moreover, the average
improvement onAPdata set achieved byGVNSvariants is around 0.25%.All newbest
known values may be found on the web site http://www.mi.sanu.ac.rs/~nenad/rphub/.

Table 3 Comparison of GRASP and GVNS on AP instances

n GRASP GVNS_RP GVNS_RP_reduced

Aver. value Aver.
time

Aver. value Aver.
time

% impr. Aver. value Aver.
time

% impr.

60 122,348.90 4.59 121,829.27 3.73 0.42 121,829.27 3.46 0.42

65 123,001.53 6.66 122,689.74 5.87 0.25 122,689.74 8.27 0.25

70 123,931.76 10.51 123,604.38 5.75 0.26 123,604.38 8.64 0.26

75 124,776.42 11.11 124,650.73 5.93 0.10 124,650.73 7.52 0.10

80 125,148.22 14.40 124,844.76 9.36 0.24 124,844.76 10.23 0.24

85 125,566.58 19.48 125,378.23 13.10 0.15 125,378.23 15.79 0.15

90 124,934.99 22.95 124,734.55 12.32 0.16 124,744.00 11.52 0.15

95 125,121.18 24.27 124,926.55 25.45 0.16 124,931.36 19.35 0.15

100 125,805.04 4.81 125,588.19 10.39 0.17 125,588.19 9.73 0.17

150 126,728.85 21.42 126,307.10 24.70 0.33 126,310.54 29.08 0.33

200 129,144.44 58.86 128,788.66 98.67 0.28 128,913.20 41.83 0.18

Avg. 125,137.08 18.10 124,849.29 19.57 0.23 124,862.22 15.04 0.22
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Table 4 Comparison of GRASP and GVNS variants on USA423 instances

Parameters GRASP GVNS_RP GVNS_RP_reduced

γ α δ Aver. value Aver.
time

Aver. value Aver.
time

% impr. Aver. av. value Aver.
time

% impr.

0.1 0.07 0.09 28,673,188,808 2880 28,541,499,618 1115 0.46 28,474,980,301 682 0.70

0.09 0.075 0.08 25,767,289,897 2880 25,552,243,305 1288 0.84 25,610,842,214 690 0.61

Also, it should be emphasized that just on one instance, the solution obtained by
GRASP was better than the one reported by GVNS variants. Comparing average CPU
times needed to solve instances, we conclude that GVNS_RP_reduced outperforms
both GVNS_RP and GRASP.

In Table 4 we report summarized results on USA423 data set. On these instances,
GVNS_RP and GVNS_RP_reduced have been tested setting their parameters in the
previously described way. The obtained results are compared with the results obtained
by GRASP [28]. For each choice of parameters γ , α, δ, and for each method, we
report the average of best found solution values (columns ‘av.value’), and aver-
age CPU times (columns ‘av.time’) consumed to reach best found solutions for
all instances with the same parameter values. In columns ‘impr.(%)’, we report
the average percentage improvement of solution values achieved by GVNS variants
relatively to GRASP. From the reported results, we conclude that both GVNS variants
outperform GRASP heuristic regarding both solution quality and CPU time. Also, it
is noted that GVNS_RP_reduced is significantly faster than GVNS_RP. That could
be explained by the fact that nested VND employed within GVNS_RP_reduced
has smaller complexity than the one used inside GVNS_RP. Further, regarding aver-
age solution improvement, GVNS_RP_reduced performs better than GVNS_RP on
the instances whose parameters γ , α, δ are set to 0.1, 0.07,0.09 respectively. On the
other hand, GVNS_RP achieves greater average improvement on the instances whose
parameters γ , α, δ take values 0.09, 0.075 and 0.08, respectively. Moreover, for each
tested instance, either GVNS_RP or GVNS_RP_reduced provided new best known
solution. These new best known solutions are available at http://www.mi.sanu.ac.rs/
~nenad/rphub/. Note that the average results obtained by GVNS_RP_reduced out-
perform GVNS_RP on the instances where parameters γ , α, δ are set to 0.1, 0.07, and
0.09 respectively, despite the fact that GVNS_RP_reduced does not perform com-
plete exploration of the NH (S), which GVNS_RP does. This can be explained by the
fact that the stopping condition is represented by maximum CPU time allowed for the
search. Therefore, sometimes it is more beneficial to explore the subset of the neigh-
borhood than the whole neighborhood, reducing the CPU time for the intensification
but increasing the time for diversification (see e.g. [12]).

Finally, we use two well-known nonparametric tests for pairwise comparisons:
Wilcoxon test and the Sign test to compare the proposed GVNS variants against
the GRASP heuristic, taking into account all considered test instances. Wilcoxon test
enables us to get the answer on the question whether two samples represent two differ-
ent populations or not, while the Sign test computes the number of instances on which
an algorithm improves upon the other algorithm. p-values of 0.000, returned by both
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tests, when used to compare GVNS_RP with the GRASP, and GVNS_RP_reduced
with GRASP, confirm the superiority of GVNS variants over the GRASP heuristic.

4 Concluding remarks

In this paper we presented new General Variable Neighborhood Search (GVNS)
approaches for solving the uncapacitated r -allocation p-hub median problem. The
full nested Variable Neighborhood Descent (VND) is implemented for the first time
as a local search routine. The merit of these approaches has been disclosed by testing
them on benchmark instances, and comparing obtained results with those offered by
GRASP heuristic. It appears that GVNS approaches are very efficient, providing a
large number of new best known solutions.

It is worth mentioning that our algorithm may be easily adapted for solving other
versions of p-hub location problems. Also, the proposed algorithm may be extended
to two level GVNS approach [25] by introducing variable neighborhood search within
nested VND. Thus, future research may include development of new GVNS based
heuristics for p-hub location problems.
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22. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)
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25. Mladenović, N., Todosijević, R., Urošević, D.: Two level General variable neighborhood search for

attractive traveling salesman problem. Comput. Oper. Res. 52, 341–348 (2014)
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