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Abstract We consider a combined IPM–SQP method to solve smooth nonlinear
optimization problems, which may possess a large number of variables and a sparse
Jacobian matrix of the constraints. Basically, the algorithm is a sequential quadratic
programming (SQP) method, where the quadratic programming subproblem is solved
by a primal-dual interior point method (IPM). A special feature of the algorithm is that
the quadratic programming subproblem does not need to become exactly solved. To
solve large optimization problems, either a limited-memory BFGS update to approx-
imate the Hessian of the Lagrangian function is applied or the user specifies the
Hessian by himself. Numerical results are presented for the 306 small and dense
Hock-Schittkowski problems, for 13 large semi-linear elliptic control problems after
a suitable discretization, and for 35 examples of the CUTEr test problem collection
with more than 5000 variables.

Keywords Nonlinear programming · Large-scale optimization · SQP methods ·
IPM methods · Numerical tests

1 Introduction

We consider the nonlinear programming problem to minimize an objective function
subject to inequality constraints,

x ∈ IRn : min f (x)
g(x) ≤ 0,

(1)
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1272 B. Sachsenberg, K. Schittkowski

where x is an n-dimensional parameter vector. It is assumed that the functions f (x)
and g(x) = (g1(x), . . . , gm(x))T are twice continuously differentiable on the IRn .
To illustrate the underlying mathematical algorithm, we omit equality constraints and
upper and lower bounds of variables to facilitate the notation.

The basic idea is to mix a sequential quadratic programming (SQP) and an interior
point method (IPM) for nonlinear programming. In an outer loop, a sequence of
quadratic programming subproblems is constructed by approximating the Lagrangian
function

L(x, u) := f (x) + uT g(x) (2)

quadratically and by linearizing the constraints. The resulting quadratic programming
subproblem (QP)

d ∈ IRn : min 1
2d

T H(xk, uk)d + ∇ f (xk)T d
g(xk) + ∇g(xk)d ≤ 0

(3)

is then solved by an interior point solver. A pair (xk, uk) denotes the current iterate in
the primal-dual space, H(xk, uk) the Hessian of the Lagrangian function of (2), i.e.,
H(xk, uk) = ∇xx L(xk, uk) or a suitable approximation, and ∇g(xk) is the Jacobian
matrix of the vector of constraints. We call xk ∈ IRn the primal and uk ∈ IRm the dual
variable or the multiplier vector, respectively. The index k is an iteration index and
stands for the k-th step of the optimization algorithm, k = 0, 1, 2, . . ..

Sequential quadratic programming methods are well known, and numerous mod-
ifications and extensions have been published on SQP methods. Review papers are
given by Boggs and Tolle [2] and Gould and Toint [12]. Most optimization textbooks
have chapters on SQP methods, see, for example, see Fletcher [9], Gill, Murray and
Wright [10], and Sun and Yuan [25]. A method for solving large scale quadratic
programs is introduced in Cafieri et al. [4].

An alternative approach is the interior point method (IPM) developed in the 90’s,
see, e.g., Griva et al. [14], There are numerous alternative algorithms and imple-
mentations available differing especially by their stabilization approaches, by which
convergence towards a stationary point can be guaranteed, see, e.g., Byrd, Gilbert, and
Nocedal [3], D’Apuzzo et al. [7], or the review paper of Gondzio [11]. The underlying
strategy consists of replacing the constrained optimization problem (1) by a simpler
one without inequality constraints,

x ∈ IRn, s ∈ IRm : min f (x) − μ
∑m

j=1 log
(
s j

)

g(x) + s = 0.
(4)

Here, s = (s1, . . . , sm)T > 0 denotes a vector ofm slack variables,where the positivity
has to be guaranteed separately. The smaller the so-called barrier term μ is, the closer
are the solutions of both problems. It is essential to understand that we now have n+m
primal variables x and s, and in addition m dual variables u ∈ IRm , the multipliers
of the equality constraints of (4). Since, however, these multiplier approximations are
also used to approximate the multipliers of the inequality constraints of (1), we also
require that u > 0 throughout the algorithm.
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A combined SQP–IPM algorithm 1273

By applying Newton’s method to the KKT conditions (4), we construct a sequence
of systems of linear equations, see, for example, Byrd, Gilbert, and Nocedal [3]. Thus,
we solve a so-called primal-dual system of linear equations

⎛

⎝
Hk ∇g(xk)T 0

∇g(xk) −Bk I
0 Sk Uk

⎞

⎠

⎛

⎝
dxk
duk
dsk

⎞

⎠ +
⎛

⎝
∇ f (xk) + ∇g(xk)T uk
g(xk) + sk − Ckuk

Skuk − μke

⎞

⎠ = 0. (5)

Here, k denotes the actual iteration index and xk , sk , and uk are the primal and dual
iterates. Sk and Uk are positive diagonal matrices containing the vectors sk and uk
along the diagonal. Bk,Ck ∈ IRm×m are positive diagonal regularization matrices
and I denotes the identity matrix. Moreover, we introduce e = (1, ..., 1)T ∈ IRm .
The barrier term μk introduced in (4), is internally adapted and depends now on the
iteration index k.

A step length αk > 0 along dk = (dxk , dsk , d
u
k ) is determined to achieve sufficient

decrease of a merit function and to get the next iterate

⎛

⎝
xk+1
sk+1
uk+1

⎞

⎠ =
⎛

⎝
xk
sk
uk

⎞

⎠ + αk

⎛

⎝
dxk
dsk
duk

⎞

⎠, (6)

where 0 < αk ≤ 1 and where sk+1 > 0 and uk+1 > 0 must be guaranteed by recursive
reduction of αk . The matrix Hk in (5) is either the Hessian matrix of the Lagrangian
function L(xk, uk) or a corresponding quasi-Newton matrix updated in each step.
Convergence is measured by evaluating the norm of

F (xk, sk, uk) :=
⎛

⎝
∇ f (xk) + ∇g(xk)T uk

g(xk) + sk
Skuk

⎞

⎠. (7)

In Sect. 2 we give a brief overview of the algorithm, and some numerical results
are summarized in Sect. 3.

2 The combined SQP–IPM algorithm

In our situation, we proceed from an SQP algorithm,where the quadratic programming
subproblem (3) is solved by an interior-point method for a fixed k, i.e., we replace (3)
by

dx ∈ IRn,

ds ∈ IRm : min 1
2d

x T H(xk, uk)dx + ∇ f (xk)T dx − μk
∑m

j=1 log
(
skj + dsj

)

g(xk) + ∇g(xk)dx + sk + ds = 0,
(8)

where dx is the primal variable, and sk +ds is considered as slack variable to facilitate
the subsequent notation. du denotes now the implicitly defined dual variable of (8).
Moreover, we use the notation sk = (sk1 , . . . , s

k
m)T and ds = (ds1, . . . , d

s
m)T .
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1274 B. Sachsenberg, K. Schittkowski

The approximate primal and dual solution returned by an IPM solver depends on an
internal iteration index l and is denoted by dxk,l , d

s
k,l , and the multiplier approximation

duk,l , respectively. They are supposed to converge towards a solution of the quadratic
program (3). Note that we do not change the Hessian matrix H(xk, uk) during the
inner iteration.

Thus, the overall algorithm consists of two nested loops identified by two iteration
indices k and l. By xk , sk , and uk we denote the outer iterates of primal, slack, and
dual variables, respectively, k = 0, 1, 2, . . .. x0 is a user-provided starting point and
u0 > 0, s0 > 0 are usually set internally by the algorithm. The multiplier and slack
variables must satisfy uk > 0 and sk > 0 in all subsequent steps. Correspondingly,
dxk,l , d

s
k,l , and duk,l are the iterates of the inner cycle with sk + dsk,l > 0 and duk,l > 0,

l = 0, 1, 2, . . .. To get an SQPmethod, the inner loop continues until termination at an
optimal solution subject to a small tolerance. The outer loop requires an additional line
search along the direction obtained by the inner loop, to converge towards a stationary
point.

On the other hand, a user may terminate the inner loop at any time, e.g., by setting a
small value for the maximum number of iterations. Thus, it is not required to solve the
quadratic programming problem exactly. A possible reason could arise when solving
very large optimization problemswith relatively fast function and gradient evaluations,
to avoid time-consuming linear algebra manipulations of the internal QP solver.

Applying again Newton’s method to the KKT optimality conditions of (8), we get a
primal-dual system of linear equations in each iteration of the inner loop, formulated
now in the primal and the dual space analogously to (5),

⎛

⎝
Hk ∇g(xk)T 0

∇g(xk) −Bk,l I
0 Ds

k,l Du
k,l

⎞

⎠

⎛

⎝
�dxk,l
�duk,l
�dsk,l

⎞

⎠

+
⎛

⎝
Hkdxk,l + ∇ f (xk) + ∇g(xk)T duk,l

g(xk) + ∇g(xk)dxk,l + sk + dsk,l − Ck,lduk,l
Ds
k,ld

u
k,l − μk,l e

⎞

⎠ = 0. (9)

Here, k denotes the outer iteration index, l an inner iteration index, and xk , sk , and
uk are the outer iterates. Ds

k,l , and Du
k,l are positive diagonal matrices containing the

vectors sk + dsk,l and d
u
k,l along the diagonal. Bk,l ,Ck,l ∈ IRm×m are positive diagonal

regularization matrices. Their choice depends on the used merit function to get a
descent direction. For the l2-merit function (16) and the flexible penalty function (18),
for example, we adapt the regularization of Chen and Golfarb [5] to our SQP–IPM
algorithm,

Bk,l = Ck,l =
∥
∥
∥g(xk) + ∇g(xk)dxk,l + sk + dsk,l

∥
∥
∥
2

rk
I. (10)

rk is a penalty parameter updated in the outer cycle to guarantee descent of a merit
function. The corresponding update formulae depend on the merit function chosen,
and are found in the references.
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A combined SQP–IPM algorithm 1275

The barrier term μk,l introduced in (9) is internally adapted and depends on the
iteration indices k and l. Convergence is obtained if the right-hand side of (9) is below
a tolerance εk > 0.

After solving (9), we get new iterates

dxk,l+1 = dxk,l + αk,l�dxk,l ,

dsk,l+1 = dsk,l + αk,l�dsk,l , (11)

duk,l+1 = duk,l + αk,l�duk,l ,

where αk,l ∈ (0, 1] is a step length parameter. To simplify the analysis, we do not
distinguish between a primal and a dual step length. By applying the fraction to the
boundary rule, we get an αk,l such that the inner iterates satisfy

duk,l+1 ≥ (1 − τ)duk,l ,
dsk,l+1 ≥ (1 − τ)dsk,l ,

(12)

with, e.g., τ = 0.995.
However, the step length might be still too long and is reduced further to guarantee

the descent of a merit function

�̃μ,r
(
x, s, u, dx , ds, du

)
, (13)

where μ is a barrier parameter and r is a penalty parameter which must be carefully
chosen to guarantee a sufficient descent property, i.e., at least

�̃μk,l ,rk

(
xk, sk, uk, dxk,l+1, d

s
k,l+1, d

u
k,l+1

)

≤ �̃μk,l ,rk

(
xk, sk, uk, dxk,l , d

s
k,l , d

u
k,l

)
.

(14)

The merit function �̃μ,r is closely related to the merit function one has to apply
in the outer cycle. Here, the step length parameter αk is adapted such that a sufficient
descent property subject to a merit function �μ,r (x, s, u) is obtained, i.e., that we are
able to find a penalty parameter rk satisfying (14) and

�μk ,rk

(
xk + αkdxk , sk + αkdsk , uk + αkduk

)

≤ �μk ,rk (xk, sk, uk) + ν αk∇dk�μk ,rk (xk, sk, uk)
(15)

where 0 < αk ≤ 1 is a sufficiently small stepsize and ν > 0 is a given constant. Note
that the inner product on the right-hand side of the inequality is always negative. ∇dk
denotes the the directional derivative along (dxk , dsk , d

u
k ).

To give an example, we consider the the l2-merit function

�μ,r (x, s, u) := f (x) − μ

m∑

i=1

log si + r ‖g(x) + s‖2 (16)
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1276 B. Sachsenberg, K. Schittkowski

with μ, r ∈ IR, see, e.g., Chen and Golfarb [5], and neglect iteration indices for a
moment. By replacing f (x) by 1

2d
T Hd +∇ f (x)T d and g(x) by g(x)+∇g(x)d and

by using s + ds > 0 as slack variable for (3), we obtain

�̃μ,r
(
x, s, u, dx , ds, du

) = ∇ f (x)T dx + 1

2
dx T Hdx − μ

m∑

j=1

log
(
s j + dsj

)

+ r
∥
∥g(x) + ∇g(x)dx + s + ds

∥
∥
2 , (17)

i.e., its counterpart used for solving the quadratic programming subproblem. Another
possible merit function is the so-called flexible penalty function of Curtis and
Nocedal [6],

�μ,r (x, s, u) = f (x) − μ

m∑

i=1

log si + ρ1 + ρ2

2
ρ3 + min

{
ρ1(‖g(x) + s‖2 − ρ3)

ρ2(‖g(x) + s‖2 − ρ3)

}

,

(18)
with r = (ρ1, ρ2, ρ3), ρ1 ≤ ρ2, and ρ3 = ‖g(x + s)‖2.

For ρ1 = ρ2 = r , (18) and (16) are equivalent. Similar to (17), the counterpart
for solving the quadratic programming subproblem is derived. Note that both merit
functions do not depend on the multiplier vector u ∈ IRm in contrast to, e.g., the
augmented Lagrangian merit function used by Schittkowski [21,22], which has also
been implemented.

The algorithm is summarized now as follows:

Algorithm 1 Choose starting values x0, u0, and s0 with u0 > 0 and s0 > 0,μ0,0 > 0,
r0 > 0 and some internal constants. For k := 0, 1, 2, . . .

1. Evaluate function and gradient values at xk , i.e., f (xk), g(xk ,∇ f (xk), and∇g(xk),
2. Check stopping criteria based on the KKT conditions (7). If satisfied, then return.
3. Compute one ormore penalty parameters rk depending on themerit function under

consideration.
4. Choose starting values dxk,0, d

s
k,0 > 0, and duk,0 > 0.

5. For l := 0, 1, 2, . . . , lmax do.
(a) Determine a barrier parameterμk,l and suitable scaling matrices Bk,l andCk,l ,

e.g., by (10).
(b) Solve the primal-dual systemof linear equations (9) and determine a step length

parameter αk,l ∈ (0, 1] which satisfies (12) and (14).
(c) Compute new internal iterates dxk,l+1, d

s
k,l+1, and duk,l+1 by (11).

(d) If the termination criteria for the QP (8) are satisfied, i.e., either the norm of
the right-hand side of (9) is sufficiently small or l = lmax , let μk := μk,l ,
dxk := dxk,l+1, d

s
k := dsk,l+1, and duk := duk,l+1 and break the for-loop.

6. Find a step length αk such that the sufficient decrease property (15) is satisfied,
e.g., by successive reduction ofαk = 1. If necessary, compute new function values.

7. Set xk+1 := xk + αkdxk , sk+1 := sk + αkdsk , uk+1 := uk + αkduk and go to step 1.

Here, lmax > 0 is a given maximum number of iterations of the inner cycle. In
principal, lmax = 1 leads to an IPM and a very large lmax , say 100, to an SQP method.
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A combined SQP–IPM algorithm 1277

The larger the number of variables n is, the smaller lmax should be chosen. If, on the
other hand, function evaluations are very costly or highly nonlinear, is recommended
to use a higher number of sub-iterations.

The primal and dual stepsize parameters are always greater than zero and less
or equal to one. Note that the feasibility condition (12) and the sufficient descent
properties (14) and (15) are always satisfied for a sufficiently small stepsize due
to the specific choice of the merit function, the barrier and the penalty para-
meter, and especially the structure of the primal-dual system (9). This can be
achieved, e.g., by successive reduction of αk until the corresponding inequalities are
satisfied.

The size of the primal-dual system (9) can be reduced by eliminating �dsk,l to get
a smaller reduced KKT system

(
Hk ∇g(xk)T

∇g(xk) −Ds
k,l

(
Du
k,l

)−1 − Bk,l

) (
�dxk,l
�duk,l

)

+
(

Hkdxk,l + ∇ f (xk) + ∇g(xk)T duk,l

g(xk) + ∇g(xk)dxk,l + μk,l

(
Du
k,l

)−1
e − Ck,lduk,l

)

= 0 (19)

for determining �dxk,l and �duk,l . There are several strategies for updating the barrier
parameter μk,l , e.g., by the Mehrota predictor-corrector method developed originally
for linear programming, see Nocedal et al. [18] for the nonlinear programming formu-
las. In our tests however, we leave the barrier parameter constant in the inner iterations,
i.e. μk,l+1 = μk,l for all k, l ∈ IN . In the outer iterations, we set μk+1,0 = 0.1μk,0
whenever the error of the KKT conditions is less than 5μk,0.

The matrix Hk in (9) or (19), respectively, could be the Hessian matrix of the
Lagrangian function (2), if available. However, to satisfy the sufficient descent proper-
ties discussed before and to allow an efficient solution of the system of linear equations
(9), Hk = ∇xx L(xk, uk) is modified by adding positive values to all entries along the
diagonal, until Hk is positive definite.

Alternatively, it is possible to replace the Hessianmatrix of the Lagrangian function
by a quasi-Newton matrix. Since, however, standard update methods lead to a fill-in,
we apply a limited memory BFGS update, see e.g., Liu and Nocedal [8] or Waltz et
al. [27]. The idea is to store only the last p pairs of vectors ∇x L(xk+1−i , uk−i ) −
∇x L(xk−i , uk−i ) and xk+1−i − xk−i for i = 0, . . . , p − 1 with 0 < p � n. These
pairs of vectors are used to implicitly construct the matrix at xk+1 and uk+1. Instead
of storing O(n2) double precision numbers for a full update, one has to keep only
O(pn) numbers in memory.

To illustrate limited memory BFGS updates in short, we omit the iteration index
k for simplicity. Now, the matrix has the form H = ξ I + NMNT , where ξ > 0 is
a scaling factor, N is a n × 2p matrix, and M is a 2p × 2p matrix. M and N are
directly computed from the p stored pairs of vectors and ξ . To solve the linear system
of equations (19) efficiently for different right-hand sides, we write the inverse of the
matrix in (19) in a more tractable form
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1278 B. Sachsenberg, K. Schittkowski

[
A + BCT

]−1 =
[(

ξ I ∇g(x)T

∇g(x) −SU−1

)

+
(
N
0

)

( MNT 0 )

]−1

= A−1 − A−1B(I + CT A−1B︸ ︷︷ ︸
∈IR2p×2p

)−1CT A−1 (20)

by the Sherman-Morrison-Woodbury formula with

A :=
(

ξ I ∇g(x)T

∇g(x) −SU−1

)

, B :=
(
N
0

)

, C :=
(
MNT 0

)
.

Instead of solving (19), we only have to solve the system Cz = b several times
with different right hand sides. Matrix I + V TC−1U is only of size 2p × 2p and can
be inverted at negligible costs.

3 Numerical results

The combined IPM/SQP algorithm outlined in the previous section has been imple-
mented in form of a Fortran subroutine called NLPIP, see Sachsenberg and Schit-
tkowski [19]. The flexible merit function (16) is applied together with the regular-
ization matrices (10). We solve all test problems by the same set of tolerances and
parameters, which are internally stored as default values. The number of recursive
LM-Quasi-Newton updates is p = 7 unless defined separately. The KKT-system (5)
or any derived system of linear equations is solved either by LAPACK [1] in case of the
small test problems and by PARDISO otherwise, see e.g., Schenk and Gärtner [20].
The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 11.0,
64 bit, under Windows 7 and Intel(R) Core(TM) i7-2720QM CPU, 2.2 GHz, with 8
GB RAM.

3.1 Elliptic optimal control problems with control and state constraints

Maurer and Mittelmann [16,17] published numerical results to compare some large-
scale optimization codes on a certain class of test problems obtained by discretizing
semi-linear elliptic optimal control problems with control and state constraints. The
two-dimensional elliptic equations are discretized by a scalable rectangular grid of
size N = 100 in x- and y-direction, where the following abbreviations are used in
Table 1:

problem test problem identifier,
n number of optimization variables ,
me number of equality constraints,
n f unc number of function evaluations,
ngrad number of gradient evaluations,
f (x
) objective function value at termination point x


time total CPU time in seconds.
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A combined SQP–IPM algorithm 1279

Table 1 Test results for semilinear elliptic control problems

Problem n me n f unc ngrad f (x
) Time

EX 1 10,197 9801 13 13 0.19652520 0.38E−14 0.25E−08 8.1

EX 2 10,197 9801 21 20 0.09669524 0.38E−14 0.88E−08 10.4

EX 3 10,197 9801 12 12 0.32100999 0.33E−14 0.11E−08 7.3

EX 4 10,197 9801 12 12 0.24917886 0.38E−14 0.25E−08 6.7

EX 5 10,593 10,197 15 15 0.55224625 0.23E−09 0.11E−08 8.7

EX 6 10,593 10,197 21 21 0.01507906 0.29E−09 0.10E−08 11.5

EX 7 10,593 10,197 206 80 0.28462160 0.30E−14 0.70E−08 33.9

EX 8 10,593 10,197 208 84 0.21964514 0.31E−14 0.10E−08 30.4

EX 9 19,602 9801 15 15 0.06216417 0.95E−14 0.11E−08 11.0

EX 10 19,602 9801 16 16 0.05645717 0.23E−13 0.15E−08 16.5

EX 11 19,602 9801 15 15 0.11026724 0.66E−14 0.10E−08 9.0

EX 12 19,998 10,197 20 20 0.07806694 0.13E−12 0.13E−08 11.8

EX 13 19,998 10,197 24 24 0.05267357 0.75E−13 0.23E−08 22.0

Table 2 Average test results for
306 Hock-Schittkowski
problems

Code nsucc n f unc ngrad Time

NLPIP (p = 7) 301 81 28 1.4

NLPIP (p = 70) 303 22 17 2.3

NLPQLP 305 24 17 0.6

Problems EX1 to EX8 correspond to examples 5.1–5.8 of Maurer and Mittel-
mann [16] and problems EX9–EX13 to examples 1–5 ofMaurer andMittelmann [17].
All optimal objective function values shown in Table 1 coincide to those presented by
the authors of the papers mentioned, besides of some differences caused by different
discretization accuracy.

One function evaluation consists of the computation of one objective function value
and all constraint function values. Derivatives are available in analytical form and
termination accuracy is set to 10−8. The number of internal iterations is set to lmax = 1.
We observe rapid convergence within a quite low number of iterations which is not
effected by doubling the number of variables for EX9 to EX13.

3.2 Small and dense HS-problems

Moreover, we evaluate the performance of NLPIP on the set of 306 small-scale, but
highly nonlinear test problems of Hock and Schittkowski [15,23], and compare the
results to the SQP solver NLPQLP, a dense implementation of an SQP-method, see
Schittkowski [21,22,24]. The latter reference contains a detailed description of the
test environment.

Two-sided differences are used for approximating derivatives and termination accu-
racy is set to 10−5. In Table 2 we present some results for p = 7 and p = 70. nsucc
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1280 B. Sachsenberg, K. Schittkowski

Table 3 Test results for CUTEr-problems

Problem n me n f unc ngrad f (x
) g−(x
) Time

GILBERT 5000 1 65 32 0.2459468E+04 0.72E−07 2.4

BRAINPC0 6907 6900 159 57 0.3670417E+00 0.31E−09 12.4

BRAINPC1 6907 6900 267 73 0.4175864E−03 0.11E−07 34.0

BRAINPC2 13,807 13,800 128 50 0.4421012E+00 0.10E−07 33.6

BRAINPC3 6907 6900 452 155 0.3637082E+00 0.84E−10 36.4

BRAINPC4 6907 6900 309 82 0.4068723E+00 0.18E−08 17.9

BRAINPC5 6907 6900 209 61 0.3847010E+00 0.15E−09 13.0

BRAINPC6 6907 6900 214 79 0.3750098E+00 0.11E−09 19.2

BRAINPC7 6907 6900 210 70 0.3965791E+00 0.70E−10 14.7

BRAINPC8 6907 6900 549 170 0.7875434E−03 0.17E−07 37.5

BRAINPC9 6907 6900 287 94 0.3533461E+00 0.17E−07 20.2

CAR2 5999 3996 293 156 0.2666083E+01 0.76E−12 27.6

CLNLBEAM 60,003 40,000 27 14 0.3500000E+03 0.25E−19 12.6

CORKSCRW 45,006 30,000 277 263 0.9809597E+02 0.14E−12 132.7

COSHFUN 6001 0 1,943 500 -0.7732327E+00 0.00E+00 36.5

DRUGDIS 6004 4000 148 121 0.4277756E+01 0.44E−10 14.7

DTOC1NA 5998 3996 14 14 0.4138867E+01 0.25E−11 0.9

DTOC1NB 5998 3996 15 14 0.7138849E+01 0.58E−08 0.9

DTOC1NC 5998 3996 15 14 0.3519934E+02 0.53E−10 0.9

DTOC1ND 5998 3996 15 15 0.4760303E+02 0.15E−08 1.0

DTOC2 5998 3996 238 118 0.5086610E+00 0.72E−07 10.9

DTOC5 9999 4999 28 14 0.1535111E+01 0.72E−10 1.2

DTOC6 10,001 5000 63 49 0.1348480E+06 0.87E−07 5.3

JUNKTURN 10,010 7000 1,279 500 0.1719764E−02 0.11E−04 87.4

OPTMASS 60,010 40,004 51 22 -0.1853756E−02 0.15E−15 19.3

ORTHRDM2 8003 4000 29 15 0.3110153E+03 0.10E−08 2.2

ORTHRDS2 5003 2500 46 32 0.7624654E+03 0.83E−07 2.7

ORTHREGA 8197 4096 234 108 0.2264784E+05 0.16E−09 23.6

ORTHREGC 5005 2500 185 78 0.9481285E+02 0.19E−08 8.1

ORTHREGD 5003 2500 29 16 0.7620643E+03 0.33E−10 1.2

ORTHREGE 7506 5000 150 65 0.1087286E+04 0.79E−09 13.5

ORTHRGDM 10,003 5000 31 18 0.1513802E+04 0.34E−09 3.8

ORTHRGDS 5003 2500 55 33 0.7620643E+03 0.23E−08 2.7

READING5 5001 5000 46 28 0.0000000E+00 0.00E+00 1.6

SVANBERG 50,000 0 188 188 0.8362382E+05 0.90E−08 256.0

is the number of successful solutions satisfying KKT conditions subject to a prede-
termined tolerance of 10−8, and approaching the known optimal solution subject to a
relative error of one percent. n f unc is the number of function evaluations, and ngrad
is the number of derivative evaluations, in both cases of objective function and all
constraint functions simultaneously. Since many of the test problems are highly non-
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linear, the number of internal iterations is set to lmax = 100. In other words, we apply
an SQP method in this case.

Called with a larger number of BFGS-updates, NLPIP needs about the same num-
ber of iterations and function evaluations compared to NLPQLP. Since the quadratic
programming problem is iteratively solved, average computation times are higher than
those of NLPQLP, especially due to a large number of limited-memory updates.

3.3 CUTEr collection

A large number of test problems for nonlinear programming has been collected and
programmed by Gould, Orban, and Toint [13]. The library is widely used for devel-
oping and testing optimization programs, and consists of small- and large-scale prob-
lems. Derivatives are available in analytical form. For our purposes, we select 35 test
problems with 5000 or more variables. The problems are identified by their internal
name. They only possess equality constraints with five exceptions, CAR2 (m = 4996),
CORKSCRW (m = 35,000), COSHFUN (m = 2000), OPTMASS (m = 50,005),
and SVANBERG (m = 50,000).

Numerical results are listed in Table 3 for termination accuracy 10−8 and lmax = 1.
In two cases, the maximum number of iterations (500), is reached. g−(x
) shows the
constraint violation on termination. During two other test runs, the code stops because
of more than 20 feasible iterates without reducing the objective function value. Only
one iteration is allowed for the solving the quadratic subproblems, i.e., we apply an
interior point method.
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