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Abstract One of the basic and difficult tasks in interval linear programming (IvLP)
problems is to checkwhether a given point isweak optimal. In this paper,we investigate
IvLPproblem in the general form, inwhich the constraints containmixed interval linear
equations and inequalities with both non-negative and free variables. Necessary and
sufficient conditions for checking weak optimality of a given vector are established,
based on the KKT conditions of linear programming and the newly established weak
solvability characterizations of mixed interval linear systems by Hladík. The result
solves one of the open problems proposed by Hladík (Linear Programming New
Frontiers. Nova Science Publishers, Inc 2012).

Keywords Interval linear programming · Weak feasible solution · Weak optimal
solution · KKT conditions

1 Introduction

The interval linear programming (IvLP) problems are of perennial interest, because of
their direct relevance to practical modeling and optimization of real-world processes
[1–7]. An interval matrix is defined as

A = [A, A] = {A ∈ R
m×n : A ≤ A ≤ A},
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where A, A ∈ R
m×n are given matrices and matrix inequalities A ≤ A are understood

componentwise. Similarly, an interval vector is defined as a one column intervalmatrix

b = [b, b] = {b ∈ R
m : b ≤ b ≤ b},

where b, b ∈ R
m , and b ≤ b. The set of all m-by-n interval matrices will be denoted

by IRm×n and the set of all m-dimensional interval vectors by IR
m .

In 2012, Hladík [4] proposed an open problem: Given x∗ ∈ R
n , is it optimal for

some realization? Some special cases have been discussed. Steuer, Hladík, Ishibuchi
and Tanaka discussed the LP problems with interval objective function coefficients
[4,8,9]. Li and Wang [10], Gabrel et al. [11] discussed the LP problems with interval
right hand side. Optimal solutions of IvLP are also discussed in the recent papers
[12,13]. Methods for checking weak optimality of the solution to three types LP with
interval right-hand side, with equality constraint and with inequality constraint, are
investigated separately in [14].

Recently, Hladík [15] studied the interval linear systems consisting of mixed equa-
tions and inequalities with mixed free and sign-restricted variables. He generalizes
the well known weak solvability characterizations by Oettli–Prager (for equations)
and Gerlach (for inequalities) to a unified framework. By virtue of the result in [15],
in this paper, we consider the IvLP problems in the general form (see details in next
section) and propose necessary and sufficient conditions for checking weak optimal-
ity of a given vector, based on the KKT conditions of linear programming and weak
solvability characterizations of mixed interval systems by Hladík.

The remainder of this paper is organized as follows: Sect. 2 provides some prelim-
inary results used in our proofs. Section 3 deals with the problem of checking weak
optimality of the IvLP in the general form. Some corollaries are given in Sect. 4.

2 Preliminary

Let us introduce some notations. The i th row of a matrix A ∈ R
m×n is denoted by

Ai,·, the j th column by A·, j . By

Ac = 1

2
(A + A), A� = 1

2
(A − A),

we denote the center and the radius matrices of A, respectively. Similarly, the center
and radius vectors of b are defined as

bc = 1

2
(b + b), b� = 1

2
(b − b),

respectively. Let e = (1, . . . , 1)T be the m-dimensional vector of all 1′s and for a
given y ∈ Rm , let

Ty = diag(y1, . . . , ym)
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Checking weak optimality of the solution to interval linear program in the general form 79

denote the corresponding diagonal matrix.
Let A ∈ IR

m1×n1 , B ∈ IR
m1×n2 , C ∈ IR

m2×n1 , D ∈ IR
m2×n2 , b ∈ IR

m1 , d ∈
IR

m2 , c1 ∈ IR
n1 , c2 ∈ IR

n2 and c1, c2 are rowvectors, andm1+m2 = m, n1+n2 = n.
Consider the IvLP problem in the general form

min c1x1 + c2x2 (1a)
⎧
⎪⎨

⎪⎩

s.t. Ax1 + Bx2 = b,

Cx1 + Dx2 ≤ d,

x1 ≥ 0

(1b)

we understand the family of all LP problems

min c1x1 + c2x2 (2a)
⎧
⎪⎨

⎪⎩

s.t. Ax1 + Bx2 = b,

Cx1 + Dx2 ≤ d,

x1 ≥ 0

(2b)

with data satisfying A ∈ A, B ∈ B, C ∈ C, D ∈ D, b ∈ b, d ∈ d, c1 ∈ c1, and
c2 ∈ c2. A scenario means a concrete setting of (2).

Definition 2.1 A vector x is called a weak feasible solution of the IvLP problem (1)
if it satisfies (2b), for some A ∈ A, B ∈ B, C ∈ C, D ∈ D, b ∈ b and d ∈ d.

Definition 2.2 Let x be a weak feasible solution to (1). It is called weakly optimal if
it is optimal for a concrete setting of (2) (x is called a weak optimal solution to (1)).

For interval systems of equations Ax = b, the set of all weak feasible solutions
is described by the Oettli–Prager theorem |Acx − bc| ≤ A�|x | + b�. For interval
inequalitiesAx ≤ b,Gerlach’s theoremdoes the jobby the description Acx ≤ A�|x |+
b. The following results by Hladík [15] characterizes weak solvability of systems of
mixed interval linear systems.

Theorem 2.1 Hladík [15]. A vector x =
(
x1

x2

)

∈ R
n is a weak feasible solution of

(1) if and only if it satisfies

Ax1 + Bcx
2 ≤ B�|x2| + b,

−Ax1 − Bcx
2 ≤ B�|x2| − b,

Cx1 + Dcx
2 ≤ D�|x2| + d,

x1 ≥ 0, (3)

where x1 ∈ R
n1 , x2 ∈ R

n2 , and n1 + n2 = n.
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80 W. Li et al.

Theorem 2.2 Hladík [15]. Let x =
(
x1

x2

)

be a weak feasible solution to (1). Then x

solves a realization of (1b) with

A = Ac − Tu A�, B = Bc − Tu B�Ts, b = bc + Tub�,

C = C, D = Dc − D�Ts, d = d,
(4)

where s = sgn(x2), and |u| ≤ e, u ∈ R
m1 is defined as

ui =
⎧
⎨

⎩

(
Acx1+Bcx2−bc

)

i

(A�x1+B�|x2|+b�)i
if (A�x1 + B�|x2| + b�)i > 0

1 otherwise
, i = 1, . . . ,m1.

In the next section, we propose a polynomial timemethod to check weak optimality
of a given vector.

3 Main results

Theorem 3.1 Let x̄ =
(
x̄1

x̄2

)

∈ R
n be a weak feasible solution of (1), that is, a

realization of the interval system (1b) having x̄ as a feasible solution, where x̄1 =
(x̄11 , . . . , x̄

1
n1)

T , x̄2 = (x̄21 , . . . , x̄
2
n2)

T , and A, B,C, D, b, d are given by (4). Assume
that

{
x̄1ki > 0 i = 1, . . . , p
x̄1ki = 0 i = p + 1, . . . , n1.

Denote by

F =
{
r j | j = 1, . . . , q,Cr j ,· x̄1 + Dr j ,· x̄2 < dr j

}
. (5)

Then x̄ =
(
x̄1

x̄2

)

is a weak optimal solution to (1) if and only if the linear system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1A·,ki + y2C·,ki = c1ki
, i = 1, . . . , p (6a)

y1A·,ki + y2C·,ki ≤ c1ki
, i = p+ 1, . . . , n1 (6b)

y1B + y2D = c2 (6c)
y2rj = 0, j = 1, . . . , q (6d)

y2rj ≤ 0, j = q + 1, . . . ,m2 (6e)

c1 ≤ c1 ≤ c1 (6f)
c2 ≤ c2 ≤ c2 (6g)
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Checking weak optimality of the solution to interval linear program in the general form 81

is solvable, where ck and ck are the lower and upper bounds of interval vector ck,
respectively. Here cki is the i-th element of vector ck , and y1 = (y11 , . . . , y

1
m1

) ∈
R
m1 , y2 = (y21 , . . . , y

2
m2

) ∈ R
m2 are row vectors.

Proof “If”: Assume that the linear system (6) is solvable, let ȳ = (ȳ1, ȳ2), c1 ∈ c1

and c2 ∈ c2 be a solution to (6) , we show that x̄ =
(
x̄1

x̄2

)

is a weak optimal solution

to (1). From (6a) we have

ȳ1(A·,k1 , A·,k2 , . . . , A·,kp ) + ȳ2(C·,k1 ,C·,k2 , . . . ,C·,kp ) =
(
c1k1 , c

1
k2 , . . . , c

1
kp

)
.

and consequently

ȳ1(A·,k1 , A·,k2 , . . . , A·,kp )

⎛

⎜
⎜
⎜
⎜
⎝

x̄1k1
x̄1k2
...

x̄1kp

⎞

⎟
⎟
⎟
⎟
⎠

+ y2(C·,k1 ,C·,k2 , . . . ,C·,kp )

⎛

⎜
⎜
⎜
⎜
⎝

x̄1k1
x̄1k2
...

x̄1kp

⎞

⎟
⎟
⎟
⎟
⎠

= (c1k1 , c
1
k2 , . . . , c

1
kp )

⎛

⎜
⎜
⎜
⎜
⎝

x̄1k1
x̄1k2
...

x̄1kp

⎞

⎟
⎟
⎟
⎟
⎠

or

ȳ1
p∑

i=1

A·,ki x̄1ki + ȳ2
p∑

i=1

C·,ki x̄1ki =
p∑

i=1

c1ki x̄
1
ki . (7)

Note that x̄1kp+1
= x̄1kp+2

= · · · = x̄1kn1
= 0, we get

Ax̄1 =
n1∑

i=1

A·,ki x̄1ki =
p∑

i=1

A·,ki x̄1ki , Cx̄1 =
n1∑

i=1

C·,ki x̄1ki =
p∑

i=1

C·,ki x̄1ki . (8)

Hence from (7), (8), we obtain

ȳ1Ax̄1 + ȳ2Cx̄1 = c1 x̄1. (9)

From (6c) we have

ȳ1B + ȳ2D = c2.

So
ȳ1Bx̄2 + ȳ2Dx̄2 = c2 x̄2. (10)
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82 W. Li et al.

Then (9) adds (10), we get

ȳ1(Ax̄1 + Bx̄2) + ȳ2(Cx̄1 + Dx̄2) = c1 x̄1 + c2 x̄2. (11)

(a) If the set F defined by (5) is empty, i.e., F = {r j | j = 1, . . . , q,Cr j ,· x̄1 +
Dr j ,· x̄2 < dr j } = ∅, so we get

Cx̄1 + Dx̄2 = d. (12)

(a.1) Then x̄1, x̄2 solve the system

Cx1 + Dx2 ≤ d, x1 ≥ 0 (13)

(a.2) Clearly x̄1, x̄2 solve the system

Ax1 + Bx2 = b, x1 ≥ 0 (14)

since x̄1, x̄2 is a weak feasible solution to (1).
(a.3) Obviously, ȳ = (ȳ1, ȳ2) solves the system

y1A + y2C ≤ c1,

y1B + y2D = c2,

y2 ≤ 0, (15)

since ȳ = (ȳ1, ȳ2) satisfies the system (6).

From (11), (12) and (14) we have

ȳ1b + ȳ2d = c1 x̄1 + c2 x̄2. (16)

Conditions (13)–(15) and (16) imply the KKT conditions for LP problem (2). Thus

x̄ =
(
x̄1

x̄2

)

is an optimal solution to (2) and hence x̄ =
(
x̄1

x̄2

)

is a weak optimal

solution to (1).

(b) If F = {r j | j = 1, . . . , q,Cr j ,· x̄1 + Dr j ,· x̄2 < dr j } �= ∅, we get ȳ2r j = 0, j =
1, . . . , q from (6d). So

Cr j ,· x̄1 + Dr j ,· x̄2 = dr j , j = q + 1, . . . ,m2.

(b.1) Note that (Cx̄1 + Dx̄2)k = Ck,· x̄1 + Dk,· x̄2, k = 1, . . . ,m2. Thus for k ∈ F ,
we have

(Cx̄1 + Dx̄2)k = Ck,· x̄1 + Dk,· x̄2 < dk .
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Checking weak optimality of the solution to interval linear program in the general form 83

For k /∈ F , we have

(Cx̄1 + Dx̄2)k = Ck,· x̄1 + Dk,· x̄2 = dk .

Clearly x̄1, x̄2 solves the system

Cx1 + Dx2 ≤ d, x1 ≥ 0. (17)

Now we prove that
ȳ2(Cx̄1 + Dx̄2) = ȳ2d (18)

In fact,

ȳ2(Cx̄1 + Dx̄2) =
(
ȳ2r1 , . . . , ȳ

2
rq , ȳ

2
rq+1

, . . . , ȳ2rm2

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Cr1,· x̄1 + Dr1,· x̄2
...

Crq ,· x̄1 + Drq ,· x̄2
Crq+1,· x̄1 + Drq+1,· x̄2

...

Cm2,· x̄1 + Dm2,· x̄2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
0, . . . , 0, ȳ2rq+1

, . . . , ȳ2rm2

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d1
...

dq
dq+1

...

dm2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= ȳ2d

(b.2) Clearly, x̄1, x̄2 solves the system

Ax1 + Bx2 = b, x1 ≥ 0, (19)

since x̄ =
(
x̄1

x̄2

)

is a weak feasible solution to (1).

(b.3) Obviously, ȳ = (ȳ1, ȳ2) solves the system (15), since ȳ = (ȳ1, ȳ2) satisfies the
system (6).

From (11), (18) and (19) we know that (16) holds. Clearly, conditions (15)–(17)

and (19) imply the KKT conditions for LP problem (2). Thus x =
(
x̄1

x̄2

)

is an optimal

solution to (2) and hence x =
(
x̄1

x̄2

)

is a weak optimal solution to (1).

“Only if”: Assume that x =
(
x̄1

x̄2

)

is a weak optimal solution to (1), thus there exist

coefficients matrices A, B,C, D, b, d, c1 and c2 defined by (4), such that x =
(
x̄1

x̄2

)

solves the LP problem (2).
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84 W. Li et al.

Due to the dual theory of linear programming, there exists a solution ȳ = (ȳ1, ȳ2)
which solves LP problem

max y1b + y2d

s.t. y1A + y2C ≤ c1

y1B + y2D = c2

y2 ≤ 0. (20)

and it holds that

(c1 − y1A − y2C)x1 = 0 (21)

y2(Cx1 + Dx2 − d) = 0 (22)

Thus, (21) leads to (6a), (20) leads to (6b), (6c) and (6e), (22) leads to (6d). The
conditions (6f) and (6g) are apparently satisfied. So ȳ = (ȳ1, ȳ2) solves system (6).

This completes the proof of the theorem. 	

Remark Obviously, Theorem 3.1 can be slightly strengthened as the condition (6) is
equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c1ki
≤ y1A·,ki + y2C·,ki ≤ c1ki

, i = 1, . . . , p (23a)

y1A·,ki + y2C·,ki ≤ c1ki
, i = p+ 1, . . . , n1 (23b)

c2 ≤ y1B + y2D ≤ c2 (23c)
y2rj = 0, j = 1, . . . , q (23d)

y2rj ≤ 0, j = q + 1, . . . ,m2, (23e)

where the variables c1, c2 in (6) are eliminated.

Theorem 3.1 presents the necessary and sufficient conditions for checking weak
optimality of given weak feasible solutions. The method is simple, easy to implement
and very efficient, since it runs in polynomial time. Thus, the open problem proposed
by Hladík [4] is completely solved. Given x∗ ∈ R

n , we can first check the weak
feasibility by conditions (3) in Theorem 2.1 and then check the weak optimality by
conditions (6) in Theorem 3.1.

4 Some corollaries

For convenience, the IvLP problems are normally divided into three canonical forms:
Type A, B and C [1,3]. Several important corollaries which are suited for IvLP of
Type A, B and C respectively can be obtained when we let some of the constraints or
coefficients interval matrices (vectors) in problem (1) be zeros.
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Checking weak optimality of the solution to interval linear program in the general form 85

4.1 Type A

Consider the IvLP problem in the form of Type A:

min cx

s.t. Ax = b,

x ≥ 0. (24)

Method for checking weak optimality of a given vector for problem (24) can be
obtainedwhenwe letB,C,D,d, c2 be zeros, andA ∈ IR

m×n,b ∈ IR
m, c1 = c ∈ IR

n

in the problem (1). In fact, for a givenvector x ∈ R
n ,wefirst checkwhether it is feasible

by the condition Ax ≤ b̄,− Ā ≤ −b. Then from (4) we know that if x is weak feasible,
then it solves a realization of Ax = b, x ≥ 0 with

A = Ac − Tu A�, b = bc + Tub�, (25)

where |u| ≤ e, u ∈ R
m , and ui =

{
(Acx−bc)i
(A�x+b�)i

, if (A�x + b�)i > 0,

1, otherwise.
i = 1, . . . ,m.

Theorem 3.1 yields the following statement.

Corollary 4.1 Let x ∈ R
n be a weak feasible solution to (24), A, b are obtained from

(25), assume that

{
x̄1ki > 0 i = 1, . . . , p,
x̄1ki = 0 i = p + 1, . . . , n.

Then x̄ is a weak optimal solution to (24) if and only if the linear system

yA·,ki = cki , i = 1, . . . , p

yA·,ki ≤ cki , i = p + 1, . . . , n

c ≤ c ≤ c̄, (26)

is solvable, where c, c̄ are the lower and upper bounds of interval vector c, respectively.
Here ck is the k-th element of vector c, and y = (y1, . . . , ym) ∈ R

m is a row vector.
Similar results can be obtained for Type B and C IvLP.

4.2 Type B

Consider the IvLP problem in the form of Type B:

min cx

s.t. Ax ≤ b, (27)
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For a given vector x ∈ R
n , we first check whether it is a weak solution to Ax ≤ b by

the condition Acx − A�|x | ≤ b̄. Then from (4) we know that if x is a weak solution
to Ax ≤ b , then it solves a realization of Ax ≤ b with

A = Ac − A�Tsgn(x), b = b̄. (28)

Theorem 3.1 yields the following statement.

Corollary 4.2 Let x ∈ R
n be a weak feasible solution to (27), A, b are obtained from

(28). Denote by

F = {r j | j = 1, . . . , q, Ar j ,·x < br j }.

Then x̄ is a weak optimal solution of (27) if and only if the linear system

yA = c,

yr j = 0, j = 1, . . . , q

yr j ≤ 0, j = q + 1, . . . ,m

c ≤ c ≤ c̄, (29)

is solvable, where c, c̄ are the lower and upper bounds of interval vector c respectively.
Here ck is the k-th element of vector c and y = (y1, . . . , ym) ∈ R

m is a row vector.

4.3 Type C

Consider the IvLP problem in the form of Type C:

min cx

s.t. Ax ≤ b,

x ≥ 0. (30)

For a given vector x ∈ R
n , we first check whether it is a weak feasible solution to

Ax ≤ b, x ≤ 0 by condition Ax ≤ b̄, x ≥ 0. From (4) we know that if x is weakly
feasible, then it solves a realization of Ax ≤ b, x ≥ 0 with

A = A, b = b̄. (31)

Theorem 3.1 yields the following statement.

Corollary 4.3 Let x ∈ R
n be a weak feasible solution to (30), A, b are obtained from

(31), assume that

{
x̄1ki > 0 i = 1, . . . , p,
x̄1ki = 0 i = p + 1, . . . , n.
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Checking weak optimality of the solution to interval linear program in the general form 87

Denote by

F = {r j | j = 1, . . . , q, Ar j ,·x < br j }.

Then x̄ is a weak optimal solution of (30) if and only if the linear system

yA·,ki = cki , i = 1, . . . , p

yA·,ki ≤ cki , i = p + 1, . . . , n

yr j = 0, j = 1, . . . , q

yr j ≤ 0, j = q + 1, . . . ,m

c ≤ c ≤ c̄, (32)

is solvable, where c and c̄ are the lower and upper bounds of interval vector c, respec-
tively. Here ck is the kth element of vector c, and y = (y1, . . . , ym) ∈ R

m is a row
vector.

Repeating the remark at the end in Sect. 3, the conditions given by (26), (29) and
(32) can be transformed to their equivalent forms respectively in a similar method.

5 Conclusion

We presented efficient methods for checking weak optimality of IvLP problem in the
general form. It is known that there are different kinds of optimal solution concepts of
IvLP. Recently, methods to check (b∃,A∀, c∃)-optimality, (A∀,b∃, c∃)-optimality and
(b∃,A∀, c∀)-optimality of given vectors for type A IvLP are developed [16], based
on the tangent cone characterization of the feasible region of TvLP. Clearly, how to
describe characterizations of solutions to interval linear systems is an important step to
investigate the optimality of IvLP problem. Some new formulation of solvability and
feasibility of interval linear systems are discussed in [17].Mixed integer programming
approaches for checking strong solvability and feasibility of linear interval equation
are discussed in [18]. These results are helpful to develop newmethods for studding the
optimality of IvLp. On this issue, other useful tools are interval Farkas type theorems.
For new developments on interval Farkas type theorems, we refer the reader to [19,20],
among others.
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