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Abstract In this paper, we study 0–1 quadratic programs with joint probabilistic
constraints. The row vectors of the constraint matrix are assumed to be normally
distributed but are not supposed to be independent. We propose a mixed integer linear
reformulation and provide an efficient semidefinite relaxation of the original problem.
The dependence of the random vectors is handled by the means of copulas. Finally,
numerical experiments are conducted to show the strength of our approach.
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1 Introduction

In this paper, we study the following 0–1 quadratic program with joint probabilistic
(or chance) constraints, called (QCC) hereafter:

min xT Qx + cT x subject to Pr{T x ≤ d} ≥ p, Ax = b, x ∈ {0, 1}n (1)

where c ∈ R
n , d ∈ R

K , and b ∈ R
m are deterministic vectors, Q ∈ R

n×n and
A ∈ R

m×n are deterministic matrices, T ∈ R
K×n is a random matrix with rows
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T T
k , k = 1, . . . , K , and p ∈ (0; 1) is a prescribed probability level. Chance-

constrained problems of such form have been extensively studied in the literature
starting with [5]. Excellent surveys on the theory, algorithms and bibliography of
probabilistic programming are given by [9,17,18].

In this paper, we consider the nonconvex (QCC) with normally distributed depen-
dent rows. This is an extension of previous results where the row independence was
assumed [6–8]. Cheng et al. [8] reformulate a linear program with joint chance con-
straints as a convex completely positive problem, and solve its semidefinite relaxation.
A conic approximation is performed using the formulations proposed in [7]. Further-
more, our current approachmakes use of copula theory, i.e., we explore some favorable
properties of Gumbel-Hougaard copula to describe the dependence between rows of
the matrix T .

The rest of this paper is organized as follows. In Sect. 2, we present an SOCP
and MILP formulations, together with introducing copula theory describing the row
dependence. In Sect. 3, we present our semidefinite relaxation. In Sect. 4, we give our
computational experiments to illustrate the strength of our SDP relaxation. To simplify
the notation, we use indices k = 1, . . . , K , i, j = 1, . . . , n, and l = 1, . . . , N with
these ranges throughout the paper without mentioning it explicitly.

2 SOCP and LP formulations

We start our investigation with an equivalent description of (QCC) and its relaxed
and restriction (or conservative) approximations by linearizing second order cone
programming (SOCP) constraints. For the sequel we assume that T T

k are multivariate
normally distributed vectors with known mean vectors μk , and covariance matrices
�k which are assumed to be positive definite. We do not assume independence of the
rows; instead, we use the theory of copulas to represent inter-row dependence.

2.1 Row dependence

Copula theory was developed in the fields of probability theory and mathematical sta-
tistics to represent general dependence between random variables. To the best of our
knowledge, copulas are not commonly used in stochastic optimization. Recently, Hen-
rion et al. [12] used copulas to come up with convexity results for chance constrained
problems with dependent random right hand side.

The following notions were taken from the book [15].

Definition 1 A copula is the distribution function C : [0; 1]K → [0; 1] of some
K -dimensional random vector whose marginals are uniformly distributed on [0; 1].

The joint distribution function of a random vector and the dependence of its mar-
ginals are closely related by Sklar’s Theorem.

Proposition 1 (Sklar’s Theorem) For any K -dimensional distribution function F :
R

K → [0; 1] with marginals F1, . . . , FK , there exists a copula C such that

∀z ∈ R
K F(z) = C(F1(z1), . . . , FK (zK )). (2)
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If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F(F−1
1 (u1), . . . , F−1

K (uK )). (3)

Otherwise, C is uniquely determined on range F1 × · · · × range FK .

Sklar’s theorem ensures the existence and uniqueness of a copula for any distrib-
ution function and all its marginals. In our paper, we restrict the consideration to the
following two classes of copulas:

1. independent (product) copula, defined by

C�(u) =
K∏

k=1

uk .

Indeed, the independent copula represents the joint distribution of independent
random variables.

2. Gumbel-Hougaard family of copulas, given for a θ ≥ 1 by

Cθ (u) = exp

⎧
⎨

⎩−
[

K∑

k=1

(− ln uk)
θ

]1/θ
⎫
⎬

⎭

It is easy to see that the independent copula is a special case of the Gumbel-
Hougaard copula with θ = 1. The Gumbel-Hougaard copula is a member of strict
Archimedean copulas and shares of course the general properties of this class of
copulas. Nelsen [15] showed that Gumbel-Hougaard copula can be considered as
the representation of the bivariate extreme value distribution. This copula was used
for several applications amongst all multivariate hydrologic frequency analysis for
extreme hydrological events [19]. It was also used for trivariate rainfall frequency
analysis in the subhumid climate of Southern Louisiana [22].

For x �= 0 and for each k we introduce the transformation

ξk(x) := T T
k x − μT

k x

‖�1/2
k x‖

, gk(x) := dk − μT
k x

‖�1/2
k x‖

.

The random variable ξk(x) has one-dimensional standard normal distribution which
is independent of x . Therefore, the probabilistic constraint Pr{T x ≤ d} ≥ p can be
equivalently rewritten as

Pr
{
ξk(x) ≤ gk(x) ∀k

} ≥ p. (4)

Lemma 1 If the random vector (ξ1(x), . . . , ξK (x))T, where ξk(x) has one-
dimensional standard normal distribution, has a joint distribution driven by the
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Gumbel-Hougaard copula Cθ with some θ ≥ 1 then the constraint Pr{T x ≤ d} ≥ p
is equivalent to the set of constraints

μT
k x + �−1

(
pz1/θk

) ∥∥∥�
1/2
k x

∥∥∥ ≤ dk ∀k,

∑
k

zk = 1, zk ≥ 0 ∀k (5)

where �(·) is the inverse of the standard normal cumulative distribution function.

Proof Assume that there exists zk such that (5) holds and x �= 0. Then, the inequality
of (5) is equivalent to

�−1
(

pz1/θk

)
≤ dk − μT

k x

‖�1/2
k x‖

, i.e., �(gk(x)) ≥ pz1/θk .

Let us first show that a vector x feasible in (5) satisfies (4). Indeed, from the definition
of the Gumbel-Hougaard copula and Sklar’s theorem,

Pr
{
ξk(x) ≤ gk(x) ∀k

} = Cθ (�(g1(x)), . . . , �(gK (x)))

≥ Cθ

(
pz1/θ1 , . . . , pz1/θK

)
= exp

⎧
⎨

⎩−
[
∑

k

(
− ln pz1/θk

)θ
]1/θ

⎫
⎬

⎭

= exp

⎧
⎨

⎩−
[
∑

k

(
−z1/θk ln p

)θ
]1/θ

⎫
⎬

⎭ = exp

⎧
⎨

⎩ln p

[
∑

k

zk

]1/θ
⎫
⎬

⎭ = p.

For the opposite direction, we have to prove the existence of such zk . Let x be a feasible
solution for (4). Hence, assume p < 1 and define

z̃k :=
(
ln�(gk(x))

ln p

)θ

for k = 1, . . . , K , zk := z̃k∑K
k=1 z̃k

for k = 1, . . . , K .

It is easy to verify that such definition of zk satisfies
∑K

k=1 zk = 1, zk ≥ 0. Since

z̃k =
(
ln�(gk (x))

ln p

)θ

, then we have μT
k x + �−1

(
pz̃1/θk

) ∥∥∥�
1/2
k x

∥∥∥ = dk ∀k. Moreover,
as

p ≤ Pr
{
ξk(x) ≤ gk(x) ∀k

} = Cθ (�(g1(x)), . . . , �(gK (x)))

= Cθ

(
pz̃1/θ1 , . . . , pz̃1/θK

)
= exp

{
−

[∑

k

(
− ln pz̃1/θk

)θ
]1/θ}

= p

[∑K
k=1 z̃k

]1/θ

and p < 1, one has
[∑K

k=1 z̃k

]1/θ ≤ 1 and further
∑K

k=1 z̃k ≤ 1. Then we have

zk ≥ z̃k∀k. Therefore, it is attained μT
k x + �−1

(
pz1/θk

) ∥∥∥�
1/2
k x

∥∥∥ ≤ dk ∀k, which

means zk satisfies (5).
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The remaining case, x = 0, where (4) does not make sense but Pr{T x ≤ d} ≥ p is
equivalent to the constraint d ≥ 0.

Above all, the conclusion follows. 	

For the sequel, we will also need the following convexity lemma:

Lemma 2 If p ≥ 1
2 and θ ≥ 1 then H(z) := �−1

(
pz1/θ

)
is convex on [0; 1].

Proof H is convex if �−1(·) is convex, nondecreasing, and z �→ pz1/θ is convex. The
first assertion is true if pz1/θ ≥ 1

2 , that is if

z ≤
(

− ln 2

ln p

)θ

(6)

(excluding the case p = 1 which is trivial). If p ≥ 1
2 then − ln 2

ln p ≥ 1 hence (6) is

valid for z ∈ [0; 1]. The function z �→ pz1/θ is convex if z �→ z1/θ ln p is convex, i. e.,
z �→ z1/θ concave. But 1

θ
∈ (0; 1] hence the last assertion is true for all z ∈ [0; 1]. 	


Lemma 2 provides a condition which is crucial for the deduction of our subsequent
approximations. Hence, for the rest of the paper, we will assume that 1 > p ≥ 1

2 .

2.2 Mixed integer formulation

According to our assumptions and Lemma 1, we can derive a deterministic reformu-
lation of (QCC) as

min xT Qx + cT x subject to μT
k x + �−1

(
pz1/θk

)
‖�1/2

k x‖ ≤ dk ∀k,

∑K
k=1 zk = 1, zk ≥ 0 ∀k, Ax = b, x ∈ {0, 1}n .

(7)

The problem (7) is equivalent to

min xT Qx + cT x subject to
(
�−1

(
pz1/θk

))2
xT �k x ≤ (dk − μT

k x)2 ∀k,

μT
k x ≤ dk ∀k,

∑K
k=1 zk = 1, zk ≥ 0 ∀k, Ax = b, x ∈ {0, 1}n .

(8)

Using the Taylor approximation of H(z)2 at zk and linearizing the quadratic terms,
we provide its piecewise-tangent approximation, and obtain a mixed integer linear
program
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1288 J. Cheng et al.

min〈X, Q〉 + cT x (9)

subject to 〈�k, Zk〉 ≤ d2
k − 2dkμ

T
k x + 〈μkμ

T
k , X〉 ∀k (10)

μT
k x ≤ dk ∀k (11)

F̂k − (1 − Xi j )U+ ≤ Zk
i j ≤ F̂k ∀i, j, k (12)

0 ≤ Zk
i j ≤ Xi jU+ ∀i, j, k (13)

al + bl zk ≤ F̂k ∀k, l (14)

xi + x j − 1 ≤ Xi j ≤ min{xi , x j } ∀i, j, (15)

Xii = xi ∀i, Xi j ≥ 0 ∀i, j, (16)
∑K

k=1 zk = 1, zk ≥ 0 ∀k, Ax = b, x ∈ {0, 1}n (17)

where U+ is an upper bound of F̂k := maxl{al + bl zk}, al and bl are coefficients
of the piecewise-tangent approximation of H(zk)

2 at N selected tangent points z(l),
l = 1, . . . , N . Constraints (10) are obtained by replacing the function H(z)2xxT

by Zk . Constraints (12) and (13) are linearization constraints for the quadratic terms
Zk

i j = F̂k Xi j whilst constraints (15) are linearization constraints for the quadratic
terms Xi j = xi x j [10]. The model (9–17) is a relaxation of problem (7) as shown by
the following lemma:

Lemma 3 The optimal value φ∗
N of (9–17) is a lower bound of (7). Moreover if the

trivial solution x = 0 is not feasible to (7) and tangents points are uniformly selected
on the interval (0, 1], then lim

N→+∞ φ∗
N = φ∗ where φ∗ is the optimal value of (7).

Proof According to Lemma 2, H(z) is convex and so is H(z)2 as the square function
is non-decreasing and convex on the interval [0,∞). We approximate this function at
tangent points z(l), l = 1, . . . , N by the first-order Taylor polynomial. We obtain N
lines zk �→ al +bl zk . By applying the linearization technique and due to the convexity,
we obtain an outer approximation of the feasible set of (8). Hence, the optimal value
φ∗

N is a lower bound of φ∗. Further, as x = 0 is an infeasible solution, x ∈ {0, 1}n

and �k is positive definite, then xT �k x is lower bounded by a constant L > 0.

Thus,
(
dk−μT

k x
)2

xT �k x
is bounded above by

d2
k

L and further H(z)2 is bounded above by
d2

k
L .

Therefore, zk is bounded below by

(
ln�(

d2k
L )

ln p

)θ

, which implies that the derivative of

H(z)2 is bounded. Moreover the tangents points are uniformly selected on the interval
(0, 1], the convergence can be proved directly by applying the results of [21]. 	

Note that if x = 0 is a feasible solution to (7), we can add the constraint

∑
xi ≥ 1 to

the problem and solve it. We can then compare the optimal objective value of the new
problem with 0 to find the optimal solution of (7).

When we approximate H(z)2 by using the piecewise-linear technique, then we
have another mixed integer linear program which is a restriction of the problem (7) as
shown by the following lemma:
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Lemma 4 The optimal value φ∗
N of the restriction problem is an upper bound of (7).

Moreover if the trivial solution x = 0 is not feasible to (7) and the interpolation points
are uniformly selected on the interval (0, 1], then lim

N→+∞ φ∗
N = φ∗ where φ∗ is the

optimal value of (7).

Proof Similar to the proof of Lemma 3.

3 SDP relaxation

Semidefinite programming is a subfield of convex optimization which provides
strong modeling capabilities using polynomial solving methods. More precisely, a
semidefinite program is a linear program over the cone of positive semidefinite
matrices. We refer the reader to [2] for a various applications of semidefinite pro-
gramming. Since the seminal works of Lovász [14] and Goemans and Williamson
[11], several authors proposed approximation algorithms for NP-hard combinato-
rial problems based on the semidefinite relaxation. They show that SDP relax-
ation provides generally tightened bounds than LP relaxations. In this paper, we
use the inner approximations proposed by [16], namely the first cone (S+ ∩ N)

where S+ is the cone of positive semidefinite matrices and N is the cone of non-
negative matrices. Here, we give a semidefinite programming approximation by
using the piecewise tangent method [7] whose objective value is a lower bound of
(QCC).

By using a piecewise tangent approximation of H(zk), we have an approximation
of (7) as follows:

min xT Qx + cT x (18)

subject to μT
k x + ‖�1/2

k z̃k‖ ≤ dk ∀k (19)

z̃ki ≥ al xi + bl zki ∀i, l (20)
∑K

k=1 zki = xi , zki ≥ 0 ∀i, k (21)

F̃k − (1 − xi )M+ ≤ z̃ki ≤ M+xi ∀i, k (22)

0 ≤ z̃ki ≤ F̃k ∀k (23)

al + bl zk ≤ F̃k ∀k, l (24)
∑K

k=1 zk = 1, zk ≥ 0 ∀k, Ax = b, x ∈ {0, 1}n (25)

where z̃k = (z̃k1, . . . , z̃kn) and M+ is an upper bound of F̃k = maxl{al + bl zk},
the piecewise tangent approximation of H(zk).

Constraints (19) are obtained by approximating the term H(zk)xi by z̃ki = F̃k xi .
The variables zki are defined by zki = zk xi . Constraints (22) and (23) are linearization
constraints for the quadratic terms z̃ki = F̃k xi . Constraints (20) and (21) strengthen
our SDP relaxation though they are redundant when x is a binary variable. These
constraints are deduced from constraints (24) and (25). Further, as constraint zki =
zk xi are difficult to consider explicitly, they are not taken into account in our relaxed
model.
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Theorem 1 The optimal value of (18–25) is a lower bound of (QCC). Moreover, if the
trivial solution x = 0 is not feasible to (7), and the interpolation points are uniformly
selected on the interval (0; 1], then it converges to the optimal value of (QCC), as the
number of segments N goes to infinity.

Proof The proof is similar to Lemma 3 proof. 	

A semidefinite relaxation of (18–25) can be written as

min 〈X, Q〉 + cT x (26)

subject to

(
(dk − μT

k x)I �
1/2
k z̃k

z̃k
T (�

1/2
k )T dk − μT

k x

)
� 0 ∀k (27)

z̃ki ≥ al xi + bl zki ∀i, l (28)
∑K

k=1 zki = xi , zki ≥ 0 ∀i, k (29)

F̃k − (1 − xi )M+ ≤ z̃ki ≤ M+xi ∀i, k (30)

0 ≤ z̃ki ≤ F̃k (31)

al + bl zk ≤ F̃k ∀l (32)

AT
t x = bt , AT

t X At = b2t , ∀t = 1, . . . , m (33)
∑K

k=1 zk = 1, zk ≥ 0 ∀k (34)
(
1 xT

x X

)
� 0, X ≥ 0 (35)

where I is the identity matrix of appropriate dimension. Linear matrix inequal-
ity Constraints (27) are derived from constraints (19) using Schur complement [3].
Constraints (33) are used to strength our SDP relaxation; they were used by [4] for
copositive programs.Constraints (35) are a relaxationof constraints X = xT x obtained
using the Schur complement.

4 Computational study

We study two MILP approximations and one SDP relaxation on stochastic multi-
dimensional quadratic knapsack problems (SMQKP for short) from the OR-library
[1]. Three different instances are considered, their sizes are defined by (n, m, K ) =
(14, 5, 5), (28, 10, 5), (50, 5, 10) where n is number of variables, m number of deter-
ministic constraints and K denotes the number of rows of the joint chance constraints.
The parameters of the instances are generated as follows: the elements of Q are ran-
domly generated on the interval [10, 20], the means μk are drawn from the uniform
distribution on the interval [0, 5], the covariance matrices �k are generated by MAT-
LAB function gallery(’randcorr’,n)*2 and the capacity d is independently
chosen from the interval [10, 20]. The confidence parameter is set to p = 0.9.

We solve and compare four approximations. The first one is SDP relaxation (26–
35) whose solution objective value is designed hereafter by V SDP. The second and
third ones solve (9–17) and the restriction problem abovementioned which are mixed
integer linear problems designed by V M I L P (R) and V M I L P (C) respectively.
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We also implement a continuous linear relaxation of (9–17) called hereafter V LP.
For all the approximations, we choose N = 3 tangent points z(1) = 0.01, z(2) =
0.15 and z(3) = 0.45 in Table 1, and vary the number of tangent points from 3
up to 20 in Table 2 . The dependence parameter θ is set to 1 (independence), 2
(moderate dependence), and 5 (high dependence), respectively. All the considered
models are generated usingMATLAB environment and solved either by IBMCPLEX
v12 [13] on an Intel(R)D @ 2.00 GHz with 4.0 GB RAM, or by Sedumi [20] with
default parameters. The BigM number M+ used in the SDP relaxation is chosen as
the maximum of the parameters al ,∀l.

The numerical results for the three instances and for different values of θ are given
by Table 1 where column one gives the name of the instance, columns two and three
show theMILP optimal values and the corresponding CPU time respectively. Columns
four, five and six give the relaxed MILP objective values. Columns seven, eight and
nine show the LP relaxation objective value, the CPU time and the corresponding
gap respectively. The last three columns present the SDP relaxation objective value,
the CPU time and the corresponding gap respectively. The gap is defined by Gap =
UB−Opt

Opt · 100 % where UB is the upper bound and Opt is the optimal solution of the

restriction problem, i.e., V M I L P (C), which provides a feasible solution.
We observe that for all instances, the SDP relaxation of our formulation outperforms

the LP relaxation in terms of the quality of the solution. The SDP gaps range from 5
to 20% while the LP gaps range from 27 to 40 %. The CPU time for our approach is
within 100 s. However, both MILP formulations, i.e., the relaxation and the restriction
of the original problem (7), give better solutions than SDP but within a larger CPU
time.

Table 2 gives the same results as Table 1 for one instance (28, 10, 5) but for three
different values of p, namely p = 0.85; 0.9; 0.95, and for different number of tangent
points, i.e., N = 3, 10, 20. Table 2 shows the same performances as before for different
values of p and N . Our SDP approach outperforms LP approach for different values
of p. Moreover, the gaps decrease when the number of tangent points increase. In
addition, both tables show that our two MILP approximations provide good candidate
solutions for small size instances for two reasons: first, their CPU time is within 320s;
and their solutions are optimal when N = 20.
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