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Abstract The genetic algorithm (GA) is a quite efficient paradigm to solve several
optimization problems. It is substantially a search technique that uses an ever-changing
neighborhood structure related to a population which evolves according to a number
of genetic operators. In the GA framework many techniques have been devised to
escape from a local optimum when the algorithm fails in locating the global one. To
this aim we present a variant of the GA which we call OMEGA (One Multi Ethnic
Genetic Approach). The main difference is that, starting from an initial population, k
different sub-populations are produced at each iteration and they independently evolve
in k different environments. The resulting sub–populations are then recombined and
the process is iterated. Our basic algorithmic scheme is tested on a recent and well-
studied variant of the classic problem of the minimum spanning tree: the Minimum
Labeling Spanning Tree problem. We compare our algorithm with several approaches
drawn from the literature. The results are encouraging in view of future application of
OMEGA to other classes of problems.
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310 C. Cerrone et al.

1 Introduction

The idea that population evolution models can be fruitfully used to devise effec-
tive algorithms for solving numerical optimization problems is now widely accepted.
The available methods let a population of candidate solutions to a given problem
evolve, using operators inspired by natural genetic variation and natural selection. The
approach was firstly introduced in 1954 in the seminal papers [2,19] and computer
simulation of evolution of biological systems has been intensively studied since the
early 1960s [10,11]. Genetic algorithms (GA), in particular, became popular thanks to
thework of JohnHolland in the early 1970s [14], stemming from his studies on cellular
automata. In particular Holland introduced a formal framework known as Holland’s
Schema Theorem.

In more recent years the interest of scientists coming from different fields for
various evolutionary computation methods has grown dramatically, and it is quite
hard to retrace the boundaries between GAs, evolution strategy, evolution program-
ming, and other evolutionary approaches. Nowadays the term “Genetic Algorithm”
describes something very far from Holland’s original concept. Among the most
famous GA variants, the Lemarcking evolution [13] and Memetic algorithms [9,16]
play a crucial role. There are several variants of the basic GA models, and in
most cases they are problem dependent (see [17] for a survey on several applica-
tions).

GA is a population-based search metaheuristic based on population evolution and
genetic operators. Many methods have been developed to escape from local optima
whenever the genetic algorithms fail to detect the global one. In general it appears quite
hard to skip local optima while keeping the natural evolution scheme of a genetic
algorithm. In this paper we introduce yet another variant of the GA which we call
OMEGA (One Multi Ethnic Genetic Algorithm).

The approach is aimed at reducing the probability of remaining trapped at a local
minimum. The main difference with standard methods is that, starting from any ini-
tial population, we produce in turn k different populations and we define k different
evolution environments where the k-sub-population evolve independently. We pro-
pose several merging schemes to allow, from time to time, both communication and
interaction among the different populations. The idea of letting k different populations
simultaneously evolve is not new. In fact it is adopted in parallel GA schemes such as,
e.g., the “Island Model” [23] (see also [22]). In our method, however, each population
is characterized by its own fitness function.

In stating our method, we take into account some other characteristics of the evo-
lutionary process, aimed at improving the flexibility of the classic genetic algorithm.
We translate the biologic concepts of genetic isolation (a characteristic of populations
with scarce genetic interchange) and genetic convergence (the process of acquisition
of the same biological trait in unrelated populations) into an algorithmic approach.
As for genetic isolation, we resort to the concept of speciation [1], the evolutionary
process which gives rise to new biological species in connection with geographic
isolation.

More specifically, speciation tells us that if a population is branched into two or
more sub–populations which are forced to adapt to new environments, then the rise
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of new species will probably occur. On the other hand we must take into account that
genetic convergence suggests that simple parallel evolution (which in the optimization
parlance can be interpreted as a kind of multi–start process) probably leads to obtain
fairly similar results.

To summarize, we modify three different components of classic GA: (i) the pop-
ulation (ii) the fitness function (iii) the chromosome representation. In particular, as
previously mentioned, we generate several populations instead of just one. As for
fitness function, we allow diversification of the fitness whenever a new population is
considered (this is, in fact, the main difference between our approach and the “Island
Model”). Finally the chromosome representation we adopt is conceived to obtain
sound results even from the application of genetic operators to individuals coming
from different populations.

The sequel of the paper is organized as follows. In Sect. 2 we introduce the basic
elements of our approach. In Sect. 3 the characteristics of the chromosome we adopt
are discussed, while in Sect. 4 we apply our algorithm OMEGA to the Minimum
Labeling Spanning Tree (MLST) problem. Finally, in Sect. 5 we presents some final
remarks.

2 The approach

The OMEGA approach takes inspiration from the biological concepts of genetic iso-
lation and speciation; moreover it leans on the building-block hypothesis [12,14].

At the t − th iteration of our scheme a population Pt is available. This population is
considered as a biological species and we encourage speciation through appropriately
splitting it into a fixed number of sub-populations.

They are in turn exposed to different environments in order to prevent convergent
evolution. Differentiation of the environments is induced by slightly modifying the
fitness function for each sub-population. Such process promotes generation of possibly
different species.

Population Pt+1 is then the union of the independently evolved sub-populations.
We present now the basic scheme of Omega. The proposed scheme is quite general

and different implementations are possible for several steps, thus giving rise to a family
of implementable algorithms.

By G(x, P, f ) we indicate any evolutionary scheme, where x is the input instance,
P is a population of solutions and f is the fitness function. Let f0 be a given fitness
function (the ”main fitness” in the following), and let F = { f1, f2, . . . , fn} be a set of
n fitness functions closely related to f0. The basic scheme of the algorithm considers
a unique population Pt at time t = 0 which evolves according to a given G with
f = f0. After this evolutionary step, the obtained evolved population P̂t is split into
k different sub-populations and each of them, in turn, evolves according to the given
evolutionary scheme and to a fitness function f j randomly selected from the set F .
The evolved populations are finally merged into a unique population Pt+1 and the
process is iterated until a given stopping criterion is fulfilled (see Fig. 1).

The following algorithm will be referred to as the “Main Iteration”, to emphasize
that it embeds the basic GA iterative schema.
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312 C. Cerrone et al.

Fig. 1 Block diagram of OMEGA’s Basic version

Input: problem instance x .
Output: a feasible solution of the given problem.

1. Initialization: Create P0, the starting population for the problem. Set t = 0.
2. Repeat until a given stopping criterion is satisfied:

(a) Execute G(x, Pt , f0) to obtain the evolved population P̂t .
(b) Split Operation: Split P̂t in P(t,1), . . . , P(t,k) populations
(c) For each population P(t, j)

– Select a fitness function f j ∈ F .
– Execute G(x, P(t, j), f j ) to obtain the evolved population P̂(t, j)

(d) Merge Operation: Merge populations P̂(t, j), j = 1, . . . k, to obtain P(t+1).
(e) t := t + 1

Now we discuss in details the issues related to the implementation of the various
steps, dropping the subscript t for simplicity of notation. The Split Operation takes
as input a given population P and returns a set of k sub-populations representing a
partition of P .

The integer number k ≥ 2 is given and, to get sub-populations of balanced size, the

cardinality of each of them is set as follows. Letting |P| =
⌊ |P|

k

⌋
k+q, the cardinality

of (k − q) populations is set equal to
⌊ |P|

k

⌋
and the cardinality of the remaining q

populations is set equal to
⌊ |P|

k

⌋
+ 1.

The population P is an input of the algorithm and G, after a fixed number of
iterations, returns the evolved population P̂ .

To fully exploit the characteristics of OMEGA, in selecting the “sub-routine” G
it is important to pay attention to the fact that crossover takes place on couples of
chromosomes that are possibly extracted from populations that have followed fairly
different evolution processes. Thus the choice of the chromosome structure and the
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design of the crossover operator are to be devised so that a sound structure of the
chromosomes is preserved. This aspect will be treated in the next sections.

3 The chromosome

The ability of the Genetic Algorithms to produce high quality solutions is often related
to the fact that they implicitly and efficiently implement the building block hypothesis
(BBH): an abstract adaptive mechanism that performs adaptation by recombining
“building blocks”. A description of this mechanism is given in [12]. Although the
debate on the building block hypothesis is still ongoing, our approach relies on it.

3.1 OMEGA chromosome definition

The presence of different populations that evolve together does not imply any differ-
ence between OMEGA and any GA as far as the life cycle of a single population is
concerned. On the other hand, when elements of different populations (species) are
mixed up into a unique population, it is crucial to resort to a strategy that ensures
compatibility among individuals coming from different populations.

The selection of the chromosome structure has to be made aiming at improving the
crossover compatibility between two individuals. A possible approach to achieve it is
to define a structure that it is likely to be imported into the new generation. Using this
approach the chromosome is no longer a representative of the solution set, instead it
is a data set containing information useful to generate a solution.

Consider, for example, the problem of finding a degree constrained spanning tree
[4,5] of a graphG(V, E) (refer to figure 3.1). The vertex set V has cardinality |V | and,
once all edges have been numerated, we can use as chromosome c any integer vector
of size greater than or equal to |V |−1, whose entries are edge identifiers, with possible
repetitions. Obviously any chromosome c does not necessarily represent a spanning
tree of G but it is possible to devise a procedure that, starting from c, provides, in
a non-ambiguous way, a feasible solution (a spanning tree). Hence the chromosome
represents a “suggestion” for the spanning tree creation procedure. Obviously by
mixing different populations with elements very far from each other, we are sure that
the “suggestions” arriving from both the parents are taken into account in the child.
The above ideas will be put in action in the sequel.

3.2 OMEGA and blocks

We have previously introduced a possible definition of the OMEGA chromosome. The
structure is motivated by the need of improving the crossover compatibility between
chromosomes coming from different sub-populations.

Now, taking inspiration from the building block theory [14], we describe a possible
way to modify the chromosome structure, aiming at preserving some substructure
information after the crossover operation. In fact we propose to split the chromosome
into sub-components, called blocks, characterized as follows:
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– The size of the block is not necessarily constant.
– The crossover operator is not enabled to modify a block, it can just recombine
parents’ blocks.

– Mutation is the only operator enabled to modify a block by adding/removing
elements [single component (gene) of the block].

Our aim is to represent, bymeans of blocks, promising “solution slices” to be possi-
bly kept in view of crossover. In Fig. 3 we show three possible OMEGA chromosomes,
with the related block structure, for the graph in Fig. 2 (in Fig. 3, a block corresponds
to a “column” of elements).

In next section we apply OMEGA to solve the Minimum Labeling Spanning Tree
(MLST) problem.

4 The Minimum Labeling Spanning Tree (MLST) problem

Given a connected, undirected graph whose edges are labeled, MLST problem looks
for a spanning tree with the minimum number of distinct labels. We chose MLST as a
sample problem both because it is a widely studied one (and thus comparison to other
methods is viable) and because it is particularly suitable for a plain description of how
our approach works in practice.

4.1 Problem definition

We are given an undirected labeled graph G = (V, E, L), where V is the set of
vertices and E is the set of edges, each of them being labeled by exactly one label
extracted from the set of distinct labels L . In the following we denote by l(e) ∈ L the

Fig. 2 G(V, E)
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Fig. 3 OMEGA’s chromosome examples
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(unique) label associated with the edge e, e ∈ E . We look for a spanning tree whose
edges exhibit the minimum number of distinct labels. The problem was introduced
by Chang and Leu [7], who proved its NP-hardness by reduction from the minimum
cover problem. Since then, several researchers have introduced heuristics for MLST
problem. Some references are [3,6,15,18,20,21]. In particular Genetic Algorithms
for MLST problem are presented in [18,20,21].

4.2 Omega for MLST problem

To describe OMEGA as applied to theMLST problemwe need to introduce the appro-
priate chromosome definition and to specify the crossover, mutation and population
splitting operators, together with the set of different fitness functions.

4.2.1 Chromosome definition

We introduce first two parametersW andH, aimed at bounding the chromosome size.
In particularW represents the width of the chromosome, that is the maximum number
of blocks, while H represents its height, corresponding to the maximum number of
elements for each block. The value of the parameters W and H is related to |V |. In
the numerical experiments section we will define a possible choice.

Each element (cell) of the chromosome is associated with an edge, characterized
by a specific label. In Fig. 4 a chromosome composed of W blocks, with block size
ranging between one and H is presented. The procedure in Fig. 5 takes as input a
chromosome and returns a spanning tree, which is obtained by solving a standard
Minimum Weight Spanning Tree (MST) problem on the given graph G, where each
edge is assigned a weight w(e) depending on the chromosome structure.

In particular the algorithm builds the integer vector Cost of size |L|. Cost (l),
l = 1, . . . , L , represent the opposite of the total number of occurrences of label l in
the chromosome. Then, a weight w(e) equal to Cost (l(e)) is associated with each
edge e ∈ E . The weights w(e), e ∈ E , are grouped into set W .

Fig. 4 OMEGA’s chromosome
structure
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Fig. 5 Spanning tree generator TreeCreator
INPUT: G(V, E, L) , chromosome c
OUTPUT: Sol ∈ E Spanning tree of G

1: Cost ← 0
2: for all edge e ∈ c do
3: Cost(l(e)) ← Cost(l(e)) − 1
4: end for
5: for all edge e ∈ E do
6: w(e) ← Cost(l(e))
7: end for
8: Sol ← MST (G(V, E, W ))
9: return Sol

Fig. 6 Input graph

Fig. 7 Chromosome
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chromosome

In the following we present an example to show how the procedure produces a
spanning tree starting from the input chromosome. We use as input the graph of
Fig. 6, where a label is associated with each edge.

G(V, E, L), |V | = 7, E = {A, B,C, D, E, F,G, H, I }, L = {0, 1, 2}.

We remark that the label set L is composed of three different labels. The set of
couples edge-label is:

{(A, 0), (B, 0), (C, 1), (D, 2), (E, 2), (F, 1), (G, 2), (H, 0), (I, 1)}

and the chromosome represented in Fig. 7 is

c = {{A,C, F}, {B,C}, {F, H}}
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The procedure TreeCreator assigns the weights w(e) as follows:

{(A,−3), (B,−3), (C,−4), (D, 0), (E, 0), (F,−4), (G, 0), (H,−3), (I,−4)}

and the resulting graph is shown in Figs. 8 and 9. The MST procedure generates the
spanning tree of Fig. 10, where two different labels are present.

4.2.2 The crossover

The crossover operator takes as input two chromosomes c1, c2 and produces as output
the chromosome c3.

The procedure randomly selects half of the blocks, respectively, of c1 and c2, and
inserts them into the new chromosome c3. In Fig. 11 an example referred to problem
previously considered is shown.

Fig. 8 Labels

Fig. 9 MST graph

Fig. 10 Spanning tree
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Fig. 11 Crossover

4.2.3 The mutation

OMEGA embeds three different mutation schemes referred as, respectively, MUT-
ADD, MUT-DEL and MUT-CHANGE. They work as follows.

– MUT-ADD randomly selects a block in the chromosome and if its size is not equal
to H, a new element (an edge in the MLST example) is added into block in the
last position. The choice of the element to be added is problem-dependent. For the
MLST problem, such choice has been restricted to a randomly selected edge among
those sharing a vertex with any of the edges of the block.

– MUT-DEL first randomly selects a block in the chromosome, then, if the size is
non-zero, a randomly selected cell is removed from the block.

– MUT-CHANGE randomly selects both a block and an element in it. For the MLST
problem the selected edge is replaced by a new one, also in this case it is randomly
picked from among those sharing a vertex with any of the edges of the block.

In our implementation the mutation operator selects one of the above described
schemes according to given probabilities. MUT-CHANGE is used whenever it is
impossible to use either MUT-ADD or MUT-DEL.
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4.2.4 Population splitting

The Splitting Population Function (SPF) is used to partition the original population
into k sub-populations of (possibly) equal size. This procedure is totally random, and
the cardinalities of the resulting sub–populations differ at most of 1.

4.2.5 The fitness functions

A fitness function f associates a value with each chromosome and it is strongly
problem-dependent. In the considered MLST problem, the natural fitness function is
the number of different labels present in the spanning tree generated by the TreeGen-
erator procedure.

More formally, once the tree is associated with any chromosome c, we can define
the binary vector z(c), whose components zl(c), l = 1, . . . , |L| are defined as follows,

zl(c) =
{
1 if there exists in the spanning tree at least one edge with label l
0 otherwise,

and we define the main fitness function f0 as follows

f0(c) =
∑
l∈L

zl(c).

On the other hand OMEGA is characterized by population splitting, accompanied
by diversification of the fitness function, which leads to the definition of specific fitness
functions, one for each sub–population. In our approach we define a weight vector
β( j) ∈ R|L| for each sub–population Pj , 1 ≤ j ≤ k and the corresponding fitness
function f j (c) for the chromosomes belonging to population Pj is:

f (c, β( j)) =
∑
l∈L

β
( j)
l zl(c)

4.3 Pseudocode

The pseudocode in Fig.12 describes, with reference to the MLST problem, the
basic genetic algorithm which is called by OMEGA whenever a population or sub–
population evolution is implemented (the sub–population index j is dropped for sake
of readability).

4.4 Computational results

As previously mentioned we have tested our method on several instances of MLST
problem. The following parameters have been adopted.

– Chromosome width W = |V |
10 ;

– Block height H = 3;
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BASIC-GA
INPUT: G(V, E, L) , Population P and weight vector β

OUTPUT: Evolved Population P̂

1: for fixed number of iteration do
2: for all c in P do
3: select any c ∈ P such that f(c , β) ≤ f(c, β)
4: P ← (P \ {c}) ∪ {crossover(c, c )}
5: end for
6: for all c in P do
7: P ← (P \ {c}) ∪ {mutation(c)}
8: end for
9: end for
10: return P

Fig. 12 Basic genetic algorithm

Table 1 OMEGA’s computational results

n l d MVCA VNS SA RTS PILOT OMEGA

20 20 0.8 2.6 2.4 2.4 2.4 2.4 2.4

20 20 0.5 3.5 3.2 3.1 3.1 3.2 3.1

20 20 0.2 7.1 6.9 6.7 6.7 6.7 6.7

30 30 0.8 2.8 2.8 2.8 2.8 2.8 2.8

30 30 0.5 3.7 3.7 3.7 3.7 3.7 3.7

30 30 0.2 8 7.8 7.4 7.4 7.5 7.4

40 40 0.8 2.9 2.9 2.9 2.9 2.9 2.9

40 40 0.5 3.9 3.9 3.9 4 3.7 3.7

40 40 0.2 8.6 8.3 7.4 7.9 7.7 7.4

50 50 0.8 3 3 3 3 3 3

50 50 0.5 4.4 4.1 4.2 4.2 4 4.1

50 50 0.2 9.2 9.1 8.7 8.8 8.6 8.6

100 100 0.8 3.3 3.1 4 3.4 3 3

100 100 0.5 5.1 5 5.2 5.1 4.7 4.6

100 100 0.2 11 10.7 10.7 10.9 10.3 10.1

– Population cardinality |P| = 100;
– Mutation probabilities: MUT-ADD = 0.50, MUT-DEL = 0.30, MUT-CHANGE

= 0.20;
– Number of iterations for each execution of Basic GA = 100;
– The weight β( j), 1 ≤ j ≤ k is randomly selected in the set {1, 2, . . . , 10}.

The overall procedure stops whenever no improvement in the objective function is
achieved after 20 executions of “Main Iteration”. Comparison has been made with
the results obtained by several other heuristics and metaheuristics methods, such as
MVCA [15], Variable Neighborhood Search (VNS) [8], Simulated Annealing (SA),
Reactive Tabu Search (RTS), and the Pilot Method (PILOT) [6]. We have used the
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same parameters setting as in the cited articles. The benchmark test problems, together
with the numerical results of the above mentioned algorithms are taken from [6].

In Table 1 the first three columns show the parameters characterizing the differ-
ent instances (n, number of vertices, l, number of labels and d, graph density). The
remaining columns give the results of the tested algorithms.

All the reported values are average values over 10 different instances of the objec-
tive function (number of distinct labels) at the stop. The instances set is composed of
150 instances. In each row of the table in the figure it is reported in bold the best result
obtained. In Fig. 13 we report the number of times (in percentage) each algorithm
has performed best. Table 2 presents comparison of the (average) computation time,
which, in turn, is expressed as a function of the size of the input instance in Fig. 14.

Fig. 13 Best solution percentage

Table 2 Computational times (s)

n l d MVCA VNS SA RTS PILOT OMEGA

20 20 0.8 0.01 1.67 0.69 10.00 0.11 1.95

20 20 0.5 0.01 1.92 0.79 10.00 0.13 1.50

20 20 0.2 0.02 1.69 0.91 10.00 0.26 0.93

30 30 0.8 0.03 5.58 2.44 10.00 0.46 4.02

30 30 0.5 0.04 7.22 1.67 10.00 0.59 2.92

30 30 0.2 0.07 8.55 2.15 10.00 1.24 1.78

40 40 0.8 0.07 14.04 3.37 10.00 1.32 7.02

40 40 0.5 0.09 19.14 3.14 10.00 1.60 4.97

40 40 0.2 0.19 26.76 2.59 10.00 3.56 3.00

50 50 0.8 0.14 28.52 6.63 10.00 2.95 10.48

50 50 0.5 0.20 41.81 5.04 10.00 3.80 7.71

50 50 0.2 0.39 64.52 5.25 10.00 9.11 4.14

100 100 0.8 1.25 258.93 53.29 50.00 37.19 45.95

100 100 0.5 1.76 381.55 27.66 50.00 50.86 30.27

100 100 0.2 3.24 710.55 19.36 50.00 122.42 16.08
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The good behavior of OMEGA on the large instances is apparent. The Table 3 reports
more details on the computational results of OMEGA; in particular, for each scenario,
the minimum and the maximum value of the objective function is reported, together
with the average value (also in Table 1). In Table 3 we compare OMEGAwith GA, that
is the OMEGAwith only one population, is reported in bold the worst result obtained.
In the experiments we have given to GA a maximum execution time equal to the
one provided to OMEGA, multiplied by the number of populations. Such comparison
helps to assess the impact of our multi-ethnic schema on a standard algorithm. In fact
OMEGA improves the quality of the solution for several of the larger instances.

5 Conclusions

In this paper we introduced a variant of the GA which we called OMEGA. This new
approach is aimed at reducing the probability of remaining trapped at a localminimum.
The main difference with standard methods is that we produce k different popula-
tions and we define k different evolution environments where the k-sub-population
evolve independently using its own fitness function. We report some preliminary
test of our approach on a recent and well-studied variant of the classic problem of

Fig. 14 Computational time (s) vs. instance size. (Averaged values over the three different densities)
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Table 3 OMEGA vs. GA
n l d OMEGA GA

Min Avg Max Min Avg Max

20 20 0.8 2 2.40 3 2 2.40 3

20 20 0.5 3 3.10 4 3 3.10 4

20 20 0.2 5 6.70 8 5 6.70 8

30 30 0.8 2 2.80 3 2 2.80 3

30 30 0.5 3 3.70 4 3 3.70 4

30 30 0.2 6 7.40 8 6 7.40 8

40 40 0.8 2 2.90 3 2 2.90 3

40 40 0.5 3 3.70 4 3 3.70 4

40 40 0.2 7 7.40 8 7 7.80 9

50 50 0.8 3 3.00 3 3 3.00 3

50 50 0.5 4 4.10 5 4 4.20 5

50 50 0.2 8 8.60 10 8 8.90 10

100 100 0.8 3 3.00 3 3 3.10 4

100 100 0.5 3 4.60 5 3 4.80 6

100 100 0.2 8 10.10 12 9 10.80 13

the minimum spanning tree: the Minimum Labeling Spanning Tree problem. Future
researchwill be aimed at testing our approach on different classical combinatorial opti-
mization problems to highlight the advantages of our approach compared to standard
techniques.
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