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Abstract We revisit the mathematical models for wireless network jamming intro-
duced by Commander et al. (J Comb Optim 14:481–498 2007, Optim Lett 2(1):53–70
2008): we first point out the strong connections with classical wireless network design
and then we propose a new model based on the explicit use of signal-to-interference
quantities. Moreover, to address the uncertain nature of the jamming problem and
tackle the peculiar right-hand-side uncertainty of the corresponding model, we pro-
pose an original robust cutting-plane algorithm drawing inspiration from multiband
robust optimization. Finally, we assess the performance of the proposed cutting plane
algorithm by experiments on realistic network instances.

Keywords Wireless networks · Network jamming · Integer programming · RHS
uncertainty · Multiband robust optimization · Robustness cuts

1 Introduction

Wireless network jamming consists in compromising the functionality of a wireless
network by activating jamming devices (jammers) that disrupt network communica-
tions by emitting interfering signals on the same frequencies of the network. Jamming
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is commonly associated with military and security questions: it is immediate to think
about jamming hostile networks in war scenarios, to deny enemy communications, or
in high-risk events, such as visits of heads of State, during which it is imperative to
avoid bomb detonation by cellular phones. However, in recent times, jamming is also
increasingly found in peaceful everyday-life applications that are not related tomilitary
and security issues. Italy provides two examples of such applications: the Italian public
administration has evaluated the expediency of using jammers during large competi-
tive examinations to prevent cheating, while schools have started to deploy jammers
to avoid that students get distracted by smart phones during lectures.1 USA provides
another example: in some hotels, there is the suspicion that unscrupulous managers
have shrewdly placed jammers to deny cellular coverage and force businessmen to use
room phones, in an attempt to raise the final bill of stays.2

TheWireless Network Jamming Problem (NJP) can be described as the problem of
optimally placing and configuring a set of jammers in order to interdict communica-
tions of a wireless network. As pointed out by Commander et al. in [12,13], though
the problem is very relevant and there is a wide literature about preventing hostile
jamming, surprisingly the NJP has been practically neglected until their work. More-
over, together with the work [14], these seem to be the only papers that have directly
addressed the problem.

Our main original contributions in the present paper are:

1. revisiting the models for the NJP introduced by Commander et al. [12–14]. Specif-
ically, we highlight the strong connections of the NJP with classical wireless net-
work design and, as recommended by regulatory bodies, we adopt a testpoint
model and signal-to-interference (SIR) quantities to represent coverage and jam-
ming conditions, refining the models of [12–14];

2. addressing the uncertain nature of the NJP, considering amore realistic in-between
case w.r.t. [12] (complete information case) and [13] (complete uncertainty case),
where we suppose to have partial information about the network to be jammed.
In particular, we suppose to have an estimate of the SIR balance in each testpoint
of the network and we propose an original Robust Optimization (RO) approach to
provide protection against estimated deviations. Our RO approach also presents a
differentway of dealingwith uncertaintyw.r.t. the scenario-based approach of [14];

3. proposing an original robust cutting-plane algorithm to tackle the right-hand-side
(RHS) uncertainty coming from uncertain SIR quantities. Tackling RHS uncer-
tainty by a canonical row-wise uncertainty approach and cardinality-constrained
uncertainty sets like [6] leads to trivial and conservative robust counterparts. Our
new algorithm allows to overcome these conservatism and model rigidity and to
exploit in an innovativeway the potential of recentMultibandRobust Optimization
(see e.g., [3,7,8]).

The remainder of the paper is organized as follows. In Sect. 2, we introduce funda-
mentals of realistic wireless network design. These concepts are then used in Sect. 3

1 Panorama. Cellulari a scuola: la soluzione c’è ma la vietano (in Italian). http://italia.panorama.it/
Cellulari-a-scuola-la-soluzione-c-e-ma-la-vietano (2007).
2 C.Elliott: TheCellphoneThatDoesn’tWork at theHotel. http://www.nytimes.com/2004/09/07/business/
07jamming.html?_r=0. The New York Times 07.09.2004 (2004).
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to derive an optimization model for the NJP. In Sect. 4, we discuss data uncertainty
in jamming and present our original algorithm. Finally, in Sect. 5 we evaluate our
original algorithm on realistic wireless network instances, to then derive conclusions
in Sect. 6.

2 Classical wireless network design

To define our new model for network jamming, we first discuss closely related con-
cepts fromwireless network design. For modeling purposes, a wireless network can be
essentially described as a set S of transceivers stations (TRXs) that provide a telecom-
munication service to a set of users that are located in a target area. In line with rec-
ommendations by telecommunication regulatory bodies (e.g., [1,11]), we decompose
the target area into a set T of testpoints (TPs), namely elementary portions of territory
of identical and squared size. Each TP is assumed to correspond to a “superuser” that
is representative of all users within the corresponding elementary area.

TRXs and TPs are characterized by a location (geographical coordinates) and a
number of radio-electrical parameters (e.g., power emission, frequency channel, trans-
mission scheme). The Wireless Network Design Problem (WND) consists in estab-
lishing the location and suitable values for the parameters of the TRXs to optimize an
objective function that expresses the interest of the decision maker (e.g., maximizing
a service revenue function). For an exhaustive introduction to the WND, we refer the
reader to [15,18,20,25].

An optimization model for the WND typically focuses attention only on a subset
of the parameters characterizing a TRX. In particular, the majority of the models
considers the setting of power emission of TRXs and the assignment of served TPs
to TRXs as the main decision variables. These are indeed two critical decisions that
must be taken by a network administrator, as indicated in several real studies (e.g.,
[10,15,17,18,20,21,25]). Other parameters that are commonly considered are the
frequency and the transmission scheme used to serve a terminal (e.g., [16,17,23]). In
[15,21], several distinct versions of the WND are presented and a hierarchy of WND
problems is identified.

Let us now focus attention on a TP t ∈ T : when covered with service, t is served
by a single TRX s ∈ S, called server, that provides the telecommunication service to
it. Once the server of a TP is chosen, all the other TRXs are interferers and reduce the
quality of service obtained by t from its server s. Analytically, if we denote by ps > 0
the power emission of a TRX s ∈ S, a TP t ∈ T is covered with service (or served)
when the ratio of the received service power to the sum of the received interfering
powers (signal-to-interference ratio—SIR) is above a threshold δ > 0, which depends
on the desired quality of service [24]:

SI Rts(p) = ats(t) · ps(t)
N + ∑

s∈S\{s(t)} ats · ps ≥ δ. (1)

In this inequality: (1) s(t) ∈ S is the server of TP t ; (2) N > 0 represents the noise
of the system, which is commonly regarded as a constant whose value depends upon
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the frequency used for transmissions (see [18,24]); (3) the received power Ps(t) that
t gets from any TRX s ∈ S is the product of the power ps emitted by s multiplied
by the factor ats , i.e. Ps(t) = ats · ps . The factor ats is called fading coefficient, lies
in the range [0, 1] and summarizes the reduction in power that a signal experiences
while propagating from s to t [24].

Through simple algebra operations, inequality (1) can be transformed into the fol-
lowing linear inequality, commonly called SIR inequality:

ats(t) · ps(t) − δ
∑

s∈S\{s(t)}
ats · ps ≥ δ · N . (2)

Since assessing service coverage is a central question in the design of any wireless
network, the SIR inequality constitutes the core of any optimization problem used in
wireless network design. In a hierarchy ofWND problems, a particularly relevant case
is constituted by the Scheduling andPower Assignment Problem (SPAP) [15,17,18,21,
25]. In the SPAP, two decisions must be taken: (1) setting the power emission of each
TRX s ∈ S and (2) assigning served TPs to activated TRXs (note that this corresponds
to identify a subset of service links TRX-TP that can be scheduled simultaneously
without interference, so we use the term scheduling). To model these two decisions,
two types of decision variables are commonly introduced:

1. a non-negative continuous power variable ps ∈ [0, PT RX ] to represent the power
emission of each TRX s ∈ S;

2. a binary service assignment variable xts ∈ {0, 1}, ∀ t ∈ T, s ∈ S, that is equal to
1 if TP t ∈ T is served by TRX s ∈ S and 0 otherwise.

By exploiting these two families of variables, the SPAP can be naturally formulated
as the following Mixed-Integer Linear Program (SPAP-MILP):

max
∑

t∈T

∑

s∈S
rt · xts (SPAP − MILP)

ats · ps − δ
∑

s∈S\{σ }
atσ · pσ + M · (1 − xts) ≥ δ · N t ∈ T, s ∈ S (3)

∑

s∈S
xts ≤ 1 t ∈ T (4)

0 ≤ ps ≤ PT RX s ∈ S

xts ∈ {0, 1} t ∈ T, s ∈ S.

The objective function aims at maximizing the total revenue obtained by serving test-
points (the coverage of each TP generates a revenue equal to rt > 0). Each constraint
(3) corresponds with the SIR coverage condition (1) defined for a TP t served by
TRX s and includes a sufficiently large value M (so-called, big-M coefficient) to acti-
vate/deactivate the constraint. Finally, constraints (4) impose that each TP is served
by at most one TRX.
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3 The wireless network jamming problem

Consider a wireless network designed by solving SPAP-MILP. Our aim is now to com-
promise the functionality of the network by deploying jamming stations (jammers). A
jammer has the essential task of emitting a signal on the same frequency channel used
by the jammed network to interfere with the transmissions of the TRXs and destroy
their service.

Let J be the set of deployed jammers and denote by p j > 0 the power emission of
each jammer j ∈ J . The presence of the jammers in the wireless network has the effect
of creating an additional interfering summation in the SIR inequality (2) associated
with each testpoint t ∈ T , namely:

ats(t) · ps(t) − δ
∑

s∈S\{s(t)}
ats · ps − δ

∑

j∈J

at j · p j ≥ δ · N . (5)

Assume now that wewant to interdict the communications in the network by jamming.
To operate the jamming we are allowed to choose the subset J ′ ⊆ J of jammers that
are activated and the corresponding power emissions p j ∈ [0, PJ AM ], ∀ j ∈ J ′. We
stress that it is rational to set the power emission of each activated jammer to its highest
feasible value, since this provides the highest jamming effect. So we assume that if
j ∈ J is activated, then it emits at maximum power, i.e. p j = PJ AM .
Let us consider now a wireless network made up of a set of TRXs S providing the

service to a set of TPs T .Moreover, let us assume that this network has been configured
by solving problem SPAP-MILP. So we have at disposal a feasible solution (x̄, p̄) of
SPAP-MILP, which identifies the subset T ′ ⊆ T of served TPs (i.e., T ′ = {t ∈ T :
x̄ts = 1 for some s ∈ S} and the power emission p̄s of eachTRX s ∈ S. Given a served
TP t ∈ T ′, we know that the corresponding SIR inequality (5) without the jamming
terms is satisfied by the feasible power vector p̄, i.e.ats(t)· p̄s(t)−δ

∑
s∈S\{s(t)} ats · p̄s ≥

δ · N .

In order to compromise service in t by jamming, the SIR inequalitymust be violated
and we must activate a subset J ′ ⊆ J of jammers such that:

ats(t) · p̄s(t) − δ
∑

s∈S\{s(t)}
ats · p̄s − δ

∑

j∈J ′
at j · PJ AM < δ · N . (6)

If we introduce a binary jammer activation variable y j ∈ {0, 1} for each j ∈ J , which
is equal to 1 if jammer j is activated (at its maximum power PJ AM , as discussed
above) and 0 otherwise, and if we define the quantity:

�SI Rts(t)( p̄) = ats(t) · p̄s(t) − δ
∑

s∈S\{s(t)}
ats · p̄s − δ · N , (7)

which expresses the SIR balance in TP t when assigned to TRX s(t) for a power vector
p̄, then the violated SIR inequality (6) can be rewritten as:
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δ
∑

j∈J

at j · PJ AM · y j > �SI Rts(t)( p̄). (8)

This inequality expresses the jamming condition: to jam and deny service in a TP, we
must activate a subset of jammers whose total power received in the TP is greater than
the SIR balance granted by the TRXs of the wireless network. This inequality consti-
tutes the central element of the new jamming optimization model that we introduce in
the next paragraph.

3.1 A SIR-based model for the wireless network jamming problem

In our study, given an operating wireless network, we define the Wireless Network
Jamming Problem (NJP) as follows: we must select which jammers to activate to
maximize a profit function associated with jamming of served TPs, while respecting
a budget that we have at disposal for the activation. The budget is introduced to model
the fact that in real-world deployments we expect to have limited resources available,
thus restricting the possibility of deploying jammers in the target area.

Suppose now that for each potentially activable jammer j ∈ J , we have the pos-
sibility of choosing among m ∈ M = {1, . . . , |M |} typologies of jamming devices,
each associated with a distinct maximum power emission Pm

J AM and a distinct cost
of deployment cmj > 0. In particular, ∀ j ∈ J we assume that Pm

J AM < Pm+1
J AM and

cmj < cm+1
j , ∀m ∈ {1, . . . , |M | − 1}.

If we add an index m ∈ M to the jammer activation variables to consider the
presence of multiple jamming devices and we introduce binary jamming variables
zt ∈ {0, 1}, ∀ t ∈ T , that are equal to 1 if served TP t ∈ T ′ is jammed and 0 otherwise,
the NJP can be modeled as the following 0-1 linear program:

max
∑

t∈T ′
πt · zt (NJP − 01)

δ
∑

j∈J

∑

m∈M
at j · Pm

J AM · y jm + M · (1 − zt ) ≥ �SI Rt + ε t ∈ T ′ (9)

∑

j∈J

∑

m∈M
c jm · y jm ≤ C (10)

∑

m∈M
y jm ≤ 1 j ∈ J (11)

zt ∈ {0, 1} t ∈ T ′

y jm ∈ {0, 1} j ∈ J,m ∈ M

In this model, we maximize an objective function that includes profits πt > 0
deriving from jamming served TPs t ∈ T ′. Constraints (9) are derived from the SIR
jamming condition (8). Note that the constraints include a big-M term for activa-
tion/deactivation: this is necessary since, due to the budget constraint (10), it may
happen that not all served TPs can be jammed at the same time, thus requiring to
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choose those that are jammed. Constraint (10) expresses the budget condition: we can
activate a subset of jammers whose total cost does not exceed the total budget C > 0.
Finally, constraints (11) impose that we can install at most one jamming device in
each activated jammer.

Remark In constraints (9), we just show the dependence of the SIR balance �SI Rt

on the TP index t, omitting s(t) and p̄. We do this since, assuming the point of view
of the NJP decision maker, we are only interested in knowing the value of the SIR
balance in t and we can neglect the information about the serving TRX and the power
of the TRXs. We also highlight the presence of a very small value ε > 0 to overcome
the strict inequality of (8).

4 Multiband robust optimization in wireless network jamming

In the previous section, we have considered a deterministic version of the NJP, namely
we have assumed to know exactly the value of all data involved in the problem. How-
ever, in practice this assumption is likely to be not true, as also discussed in [13,14]:
assuming to possess a complete knowledge about the unfriendly network is unrealistic,
especially in defence and security applications, where it may be very difficult or even
dangerous to gather accurate information. Instead it is rational to assume that we can
just rely on estimates of the position and the radio-electrical configuration of the TRXs.
As a consequence, it is highly reasonable to assume that we just possess an estimate
of the value of the SIR balance �SI Rt in every TP t . Following a practice that we
have observed among wireless network design professionals dealing with uncertain
SIR quantities (see [15]), we use an estimate �SI Rt as a reference nominal value to
define an interval of variation of the quantity, whose bounds reflect the reliability of
the limited information that we have at disposal and our risk aversion. If we denote by
d−
t < 0 and d+

t > 0 the maximum negative and positive deviation from �SI Rt that
we have derived on the basis of our limited information, then the (unknown) actual
value �SI Rt belongs to the interval:

[
�SI Rt + d−

t , �SI Rt + d+
t

]
. We note that

the definition of the interval of variation of �SI Rt can also take into account the
intrinsic uncertainty of the fading coefficients at j of the jammers: propagation of
wireless signals in a real environment is affected by many distinct factors (e.g., dis-
tance between the TRX and the TP, presence of obstacles, weather) that are very hard
to assess precisely. Therefore the exact value of the fading coefficients is typically not
known (see [15,24] for an exhaustive discussion).

An example may help to clarify the negative effects of uncertainty in the NJP.
Note that, as common in the WND practice, we express fading and power quantities
according to a decibel (dB) scale.More specifically, sincewemeasure power quantities
in milliwatts (mW ), we express power in decibels by referring to decibel-milliwatts
(dBmW ).

Example 1 (Uncertainty in the NJP) Consider a TP that is part of a wireless network
subject to a noise of NdB = −114 dBmW and operating with a SIR threshold δdB =
10 dB and that receives a serving power of −48 dBmW and a total interfering power
(including noise) of −61 dBmW . By formula (1), the SIR in the TP is higher than
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δdB , being equal to about 13 dB. Therefore the TP is served. The corresponding SIR
balance �SI R can be computed by formula (7) and is equal to about −50 dBmW .

Suppose now that we want to jam the TP and that we can install a single jam-
mer in a site associated with a fading coefficient of −77 dB towards the considered
TP. Additionally, suppose that the jammer can accommodate either a device J1 with
P J1
J AM = 20 dBmW or a more powerful and costly device J2 with P J2

J AM = 27
dBmW . If we assume to know all the features of the jammed network, then we can
successfully jam the TP by generating an additional received interfering power of at
least about 17 dBmW . So installing the less powerful device J1 emitting at PJ AM is
sufficient to deny service.

However, as previously discussed, in real-world scenarios it is likely that we do
not know the exact value of �SI R, but we just possess an estimate �SI R and an
interval of deviation. Suppose then that our estimate is �SI R = −50 dBmW and
that we consider reasonable to experience deviations up to ±20 % of this value. So
the actual value �SI R lies in the interval [−60,−40] dBmW. This interval reflects
how trustable we consider the available information about the unfriendly network
and expresses also our personal risk aversion. If the worst deviation occurs, we have
�SI R = −40 dBmW and activating J1 would be no more sufficient to successfully
jam the TP: the jamming solution deploying J1 would be infeasible and thus useless.
So, if we want to be protected against this deviation, we should switch to the more
powerful jammer J2, at the price of a higher deploying cost.

As the example has shown, the presence of uncertain data in an optimization prob-
lem can lead to very bad consequences: as it is known from sensitivity analysis, even
small deviations in the value of input data may make an optimal solution heavily sub-
optimal, whereas feasible solutions may reveal to be infeasible and thus completely
useless in practice [4,5]. In our application, it is thus not possible to optimize just
referring to the nominal values �SI Rt , but we must take into account the possibility
of deviations in an interval.

Many methodologies have been proposed over the years to deal with data uncer-
tainty: Stochastic Programming is commonly considered the oldest, while in the last
decade Robust Optimization has known a wide success, especially in real-world appli-
cations thanks to its accessibility and computational tractability. We refer the reader
to [4,5] for a general discussion about the impact of data uncertainty in optimization
and for an overview of the main methodologies proposed in literature to deal with
uncertain data. The two references are in particular focused on theory and applica-
tions of Robust Optimization (RO), the methodology that we adopt in this paper to
tackle data uncertainty. RO is based on two main concepts: (1) the decision maker
defines an uncertainty set, which reflects his risk aversion and identifies the deviations
of coefficients against which he wants to be protected; (2) protection against devia-
tions specified by the uncertainty set is guaranteed under the form of hard constraints
that cut off all the feasible solutions that may become infeasible for some deviations
included the uncertainty set. Formally, suppose that we are given a generic 0-1 linear
program:

v = max c′x with x ∈ F = {Ax ≤ b, x ∈ {0, 1}n}
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and that the coefficient matrix A is uncertain, i.e. we do not know the exact value of
its entries. However, we are able to identify a family A of coefficient matrices that
represent possible valorizations of the uncertain matrix A, i.e. A ∈ A. This family
represents the uncertainty set of the robust problem. A robust optimal solution, i.e.
a solution protected against data deviations, can be computed by solving the robust
counterpart of the original problem:

vR = max c′x with x ∈ R = {Ax ≤ b ∀A ∈ A, x ∈ {0, 1}n},

which considers only the solutions that are feasible for all the coefficient matrices
in the uncertainty set A. Therefore, the robust feasible set is such that R ⊆ F . The
choice of the coefficient matrices included inA should reflect the risk aversion of the
decision maker.

Guaranteeing protection against data deviations entails the so-called price of robust-
ness [6]: the optimal value of the robust counterpart is in general worse than the optimal
value of the original problem, i.e., vR ≤ v, due to having restricted the feasible set
to only robust solutions. The price of robustness reflects the features of the uncer-
tainty set: uncertainty sets expressing higher risk aversion will take into account more
severe and unlikely deviations, leading to higher protection but also higher price of
robustness; conversely, uncertainty sets expressing risky attitudes will tend to neglect
improbable deviations, offering less protection but also a reduced price of robustness.

In the next paragraph, we fully describe the uncertainty model that we adopt.

4.1 RHS uncertainty in wireless network jamming

The data uncertainty affecting our problem needs a special discussion. As pointed out
in [4,5], most RO models considers so-called row-wise uncertainty. This means that
protection against data deviations is separately defined for each constraint subject to
uncertainty, by considering theworst total deviation that the constraint may experience
w.r.t. the uncertainty set. More formally, consider again a generic uncertain 0-1 linear
program:

max
∑

j∈J

c j · x j s.t.
∑

j∈J

ai j · x j ≤ bi i ∈ I, x j ∈ {0, 1} j ∈ J.

where w.l.o.g we assume that the uncertainty just regards the coefficients ai j (uncer-
tainty affecting cost coefficients or RHSs can be easily reformulated as coefficient
matrix uncertainty, see [6]). If we denote the uncertainty set by U , following a row-
wise uncertainty paradigm the robust counterpart is:

max
∑

j∈J

c j · x j s.t.
∑

j∈J

ai j · x j + DEVi (x,U ) ≤ bi i ∈ I, x j ∈ {0, 1} j ∈ J.

where each uncertain constraint i ∈ I (1) refers to the nominal value āi j of each
coefficient and (2) includes an additional term DEVi (x,U ) to represent the maximum
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total deviation that i may experience for the solution x and the uncertainty setU . This
problem is actually non-linear since DEVi (x,U ) hides amaximization problem based
on the uncertainty set definition (see [6–8]).

A central question in RO is how to model the uncertainty through a suitable
uncertainty set U . The majority of applied studies of RO model U as a cardinality-
constrained uncertainty set [5], primarily referring to the renowned Γ -robustness
model (Γ -Rob) by Bertsimas and Sim [6]. The main feature of these particular uncer-
tainty sets is to impose an upper bound on the number of coefficients that may deviate
to their worst value in each constraint. The non-linearity of the robust counterpart due
to the presence of DEVi (x,U ) is then solved by exploiting strong duality and defining
a larger but compact and linear robust counterpart, as explained in [6–8].

In relation to this general row-wise RO setting, the uncertain NJP that we con-
sider is a special type of uncertain problem: uncertainty just affects the RHS of each
SIR constraint of NJP-01. As a consequence, if we adopt row-wise uncertainty and a
cardinality-constrained uncertainty set, then the upper bound on the number of deviat-
ing coefficient in each constraint (9) is equal to either 0 or 1. In other words, either the
constraint is not subject to uncertainty and thus the actual value and the nominal value
coincide (i.e., �SI Rt = �SI Rt ) or the constraint is subject to uncertainty and thus
the actual value is equal to the highest deviating value (i.e., �SI Rt = �SI Rt + d+

t ).
Thus the robust counterpart simply reduces to a nominal problem with modified RHS
values. We stress that this is a very rigid representation of the uncertainty and we
would like to benefit from a richer representation.

A source of inspiration for a richer model can be represented byMultiband Robust
Optimization (MB) and related multiband uncertainty sets, introduced by Büsing and
D’Andreagiovanni in 2012 to generalize and refine classical Γ -Rob (see e.g., [7–9]
and [3]). In our case, we want to adopt a distinct but similar definition of multiband
uncertainty. To define this multiband-like uncertainty set for RHS uncertainty:

1. we partition the overall deviation range [d−
t , d+

t ] into K bands, defined on the
basis of K deviation values:

−∞ < d−
t = dK−

t < · · · < d−1
t < d0t = 0 < d1t < · · · < dK+

t = d+
t < +∞;

2. through these deviation values, K deviation bands are defined, namely: a set of
positive deviation bands k ∈ {1, . . . , K+} and a set of negative deviation bands
k ∈ {K− + 1, . . . ,−1, 0}, such that a band k ∈ {K− + 1, . . . , K+} corresponds
to the range (dk−1

t , dkt ], and band k = K− corresponds to the single value dK−
t .

Note that K = K+ + K−;
3. considering the RHS values �SI Rt of the entire set of constraint (9), we impose

a lower and upper bound on the number of values that may deviate in each band:
for each band k ∈ K , we introduce two bounds lk, uk ∈ Z+: 0 ≤ lk ≤ uk ≤ |T ′|.
As additional assumptions, we do not limit the number of coefficients that may
deviate in band k = 0 (i.e., u0 = |T ′|), and we impose that

∑
k∈K lk ≤ |T ′|, to

ensure the existence of a feasible realization of the uncertainty set.

We call this set RHS-Multiband Set (RHS-MB).
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Remark We stress that point 3 differs from the classical definition of multiband uncer-
tainty set, presented in [7,8], where a row-wise uncertainty perspective is assumed and
the system of bounds for the bands is defined separately for each uncertain constraint
of the problem.

An MB uncertainty set is particularly suitable to represent the past behaviour of
uncertainty represented by histograms, as explained in [3,7,8]. Moreover, such set has
the advantage of taking into account negative deviation bands, which are neglected in
classical cardinality-constrained sets: we want of course to be protected against posi-
tive deviations that lead to infeasibility, but in real-world applications we commonly
experience also negative deviations, which compensate the positive deviations and
reduce the conservatism of solutions.

A critical question is now: how can we solve the uncertain NJP when RHS uncer-
tainty is modeled by a RHS-Multiband Set? In the case of a purely linear program,
we could define the dual problem of our uncertain problem, thus transforming the
RHS uncertainty into objective function uncertainty and then adopt a standard RO
dualization approach and reach a compact robust counterpart, as in [22]. However,
due to the integrality constraints, the classical dualization approach in our case cannot
be operated.

As an alternative, we can adopt a robust cutting plane approach: we solve NJP-
01 obtaining an optimal solution, then we check whether the solution is also robust
and feasible w.r.t. a specified RHS-MB. If this is the case, we have found a robust
optimal solution and we have done. Otherwise we separate a robustness cut, namely
an inequality that cut off this non-robust solution, we add the cut to the problem and
we solve the new resulting problem. This basic step is then iterated as in a canonical
cutting-plane algorithm, until no new cut is separated and thus the generated solution
is robust and optimal.

Under canonical row-wise uncertainty, in Γ -Rob and MB, robustness cuts can be
efficiently separated. For Γ -Rob, the separation of a robustness cut is trivial and just
consists in sorting the deviations and choosing the worst Γ > 0 [19]. This simple
approach is not valid instead for MB, but in [7,8] we proved that the separation can
be done in polynomial time by solving a min-cost flow problem.

Aswe stressed above, RHS-MBposes a new challenge.More formally, suppose that
we have a feasible solution (z̄, ȳ) to NJP-01 and that we want to check its robustness.
Let us denote by T ′ the subset of TPs that are successfully jammed. A robustness
cut is generated by solving the following 0-1 linear program, that can be interpreted
as the problem of an adversarial that attempts to compromise the feasibility of our
optimal jamming solution by picking up the worst deviation for (z̄, ȳ) allowed by
RHS-MB.

V = max
∑

t∈T ′
vt (SEP)

∑

k∈K
dkt · wk

t + M · (1 − vt ) ≥ J AMt − �SI Rt t ∈ T ′ (12)

lk ≤
∑

j∈J

wk
t ≤ uk k ∈ K (13)
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∑

k∈K
wk
t ≤ 1 t ∈ T ′ (14)

wk
t ∈ {0, 1} t ∈ T ′, k ∈ K (15)

vt ∈ {0, 1} t ∈ T ′. (16)

The separation problem SEP uses (1) a binary variable vt , ∀t ∈ T ′ that is equal to 1
when the jamming of TP t is denied and 0 otherwise; (2) a binary variable wk

t that is
equal to 1 when the SIR balance �SI Rt of t deviates in band k and 0 otherwise. The
objective function aims at maximizing the number of TPs whose jamming is denied
by the adversarial. A constraint (12) expresses the violation of the corresponding
constraint (9) when the jamming of TP t is denied by feasible deviations of the SIR
balance according to RHS-MB, namely J AMt < �SI Rt + ∑

k∈K dkt · wk
t , where

J AMt = δ
∑

j∈J
∑

m∈M at j ·Pm
J AM · ȳ jm is the total jamming power that t receives for

jamming solution (z̄, ȳ). Constraints (13)–(14) enforce the structure of the uncertainty
set RHS-MB: the first family imposes the lower and upper bounds on the number of
RHS values �SI Rt that may deviate in each band k ∈ K , whereas the second family
imposes that each value�SI Rt deviates in at most one band (note that

∑
k∈K wk

t = 0
corresponds with no deviation and is equivalent to w0

t = 1).
It is easy to observe that if the optimal value V of SEP is equal to 0, then (z̄, ȳ)

is robust, since it is not possible to compromise the jamming of any TP for the given
uncertainty set RHS-MB. On the contrary, if V ≥ 1 and (v∗, w∗) is an optimal
solution of SEP, then (z̄, ȳ) is not robust, the jamming of V TPs may be compromised
and ∑

t∈T ′:v∗
t =1

zt ≤ V − 1 (17)

is evidently a robustness cut that we must add to the original problem. After this we
can iterate the basic robustness check step.

The general structure of the proposed robust cutting plane algorithm is described in
Algorithm 1. Assuming to use a solver like CPLEX implementing a branch-and-cut
solution algorithm, the separation problem is solved every time that the solver finds a
feasible solution to NJP-01. If a robustness cut is identified for the current solution,
then it is added as constraint to NJP-01.

5 Computational results

To evaluate the performance of our original robust cutting plane algorithm, we con-
sidered a set of 15 realistic instances, based on network data defined in collaboration
with network engineers of the Technical Strategy & Innovations Unit of British Tele-
com Italia. All the instances refer to a fixed WiMAX network (see [2,15,16] for
an introduction to WiMAX technology and modeling) and are based on real terrain
data model and population statistics of a residential urban area from the adminis-
trative district of Rome (Italy). The instances consider distinct networks with up
to |T | = 224 TPs and |S| = 20 TRXs, operating on one of the frequency chan-
nels reserved for WiMAX transmissions in Italy in the band [3.4÷3.6] GHz and
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Table 1 Experimental results
ID |T | |S| |T ∗| |J | #JAM

(Nom)
#JAM
(Rob)

PoR% #Cuts

I1 100 6 65 15 44 37 −15.90 29

I2 100 9 71 15 51 45 −11.76 41

I3 100 12 75 15 46 38 −17.93 37

I4 150 6 85 15 49 43 −12.24 32

I5 150 9 93 15 68 57 −16.17 31

I6 150 12 106 20 75 64 −14.66 35

I7 169 12 92 20 47 39 −17.02 49

I8 169 16 95 20 66 53 −19.69 58

I9 169 20 120 20 69 53 −23.18 75

I10 196 12 108 20 73 58 −20.54 68

I11 196 16 122 25 82 69 −15.85 54

I12 196 20 134 25 89 70 −21.34 92

I13 224 15 142 25 102 82 −19.60 87

I14 224 20 159 25 115 96 −16.52 101

I15 224 25 170 25 109 93 −14.67 103

using a QAM-16 modulation scheme. We used these data to build the MILP prob-
lem SPAP-MILP for each instance and obtain realistic wireless network configu-
rations to jam by solving the uncertain version of problem NJP-01. The revenue
rt associated with the service coverage of each TP was derived from population
statistics.

In order to build NJP-01 and set the robust cutting-plane algorithm, we assume
that we know the set T ′ of served TPs. However, we also assume that we do not
exactly the value of the SIR balance granted by the solution of SPAP-MILP, but
we just have at disposal an estimate �SI Rt (different from the actual value pro-
vided by the solution). On the basis of discussions on the topic with network pro-
fessionals, we decided to model deviations through an RHS multiband uncertainty
set including 5 deviation bands (2 negative and 2 positive, besides the null devi-
ation band) and with a basic deviation of each band equal to 20 % of the nomi-
nal value. Concerning the jammers, we supposed to have three typologies of jam-
mers (i.e., |M | = 3) with a cost of deployment reflecting the population in the
TPs and increasing as the population in the TP increases (we assume a higher
risk of deployment in more populated areas where the jammers could be discov-
ered). The profit πt of successfully jamming a TP was also based on population
data.

All experiments were made on a 2.70 GHz Intel Core i7 with 8 GB. The code
was written in the C/C++ programming language and the optimization problems were
solved by IBM ILOG CPLEX 12.5 with the support of Concert Technology. The
results of the experiments are reported in Table 1, in which the first column states the
instance ID, whereas the following four columns report: the number |T | of TPs and the
number |S| ofTRXs in the SPAP-MILP instance; the number |T ∗| of coveredTPs in the
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Algorithm 1 Robust Cutting Planes for NJP subject to RHS-MB uncertainty
Require: an instance of NJP-01 and of RHS-MB
Ensure: a robust optimal solution (z∗, y∗) to NJP-01 w.r.t. RHS-MB (if existent)
1: Solve NJP-01 by a branch-and-cut-based MIP solver (denoted by SOLVER)
2: while SOLVER has not find a robust optimal solution (z∗, y∗) to NJP-01 or has proved that (z∗, y∗)

does not exist do
3: Run SOLVER
4: if SOLVER finds a feasible solution (z̄, ȳ) to NJP-01 then
5: Solve SEP for (z̄, ȳ) and RHS-MB
6: if V > 0 then
7: Generate a robustness cut (17) and add it to NJP-01
8: end if
9: end if
10: end while

feasible solution of SPAP-MILP used for building the corresponding NJP-01 instance;
the number |J | of jammers in the NJP-01 instance. The following four columns report
instead: the optimal number #JAM(Nom) of jammed TPs for the nominal NJP-01
problem (no uncertainty considered); the optimal number #JAM(Rob) of jammed
TPs for the robust version of NJP-01 solved by Algorithm 1; the percentage price of
robustness PoR%; the number #Cuts of robust cuts generated during the execution of
Algorithm 1.

The main observations about the results are related to the comparison between
the optimal value of the nominal problem and that of its robust version. Concerning
this central point, we can observe that the price of robustness that we must face keep
contained, reaching an average value of −17.1 % and a peak of −23.1 % in the case
of instance I9. We consider this a reasonable price to pay to obtain the protection
against the deviations that the decision maker considers relevant. Furthermore, we
can notice that the number of robust cuts that are separated during the execution of
Algorithms 1 is limited, especially in the case of the smaller instances. Concerning
solution time, while solving the uncertain version of NJP-01 required a time ranging
from about 30 to about 70 min, depending upon the features of the wireless network
configuration to be jammed identified by a solution of SPAP-MILP, the execution
time of Algorithm 1 could reach approximately 3 h. We believe that this time could be
sensibly reduced by studying a stronger separationmodel andmore efficient separation
algorithms.

6 Conclusions

We considered the Wireless Network Jamming Problem, namely the problem of opti-
mally placing and configuring a set of jammers in order to interdict communications
of a wireless networks. We revisited the models proposed in the seminal works by
Commander et al., better highlighting the strong connections with classical wireless
network design formulations.Moreover, we addressed the uncertain nature of the prob-
lem by proposing an original robust cutting plane algorithm, inspired by Multiband
Robust Optimization, to deal with the RHS uncertainty of the problem and overcome
the rigidity of canonical row-wise uncertainty approaches. As future work, we plan
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to investigate stronger models for the problem, tackling in particular the presence of
big-M coefficients and devising more effective and efficient separation algorithms.
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