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Abstract Recently, Liu et al. (J Combin Optim 21:138–149, 2011) studied the semi-
online scheduling problem on two machines under a grade of service provision. As
the sum of jobs’ processing timesΣ is known in advance and the processing times are
bounded by an interval [1, α] where 1 < α < 2, they presented an algorithm which is
1+α
2 -competitive when Σ ≥ 2α

α−1 . In this paper, we give a modified algorithm which
is shown to be optimal for arbitrary α and Σ .

Keywords Online scheduling · Grade of service · Bounded processing times · Total
processing time · Algorithms

1 Introduction

Scheduling problem under a grade of service (GoS) provision can be described as
follows. We are given n independent jobs and m identical machines. Each job has a
processing time and is labeled with a GoS level. Each machine is also labeled with a
GoS level and a machine is allowed to process a job only when the GoS level of the
machine is not greater than that of the job. The objective is to find a schedule which
minimizes the makespan. This problem was first proposed by Hwang et al. [2] and
they presented an lg- lpt algorithm which has a tight bound of 5

4 for two machines
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and a tight bound of 2 − 1
m−1 for m (m ≥ 3) machines. Ji and Cheng [4] proposed

a fully polynomial-time approximation scheme (fptas) for this problem. Woeginger
[8] gave two fptass which are simpler compared with the fptas in [4]. For the online
version of the scheduling problem under GoS levels, Park et al. [5] and Jiang et al.
[3] independently presented an optimal algorithm with a competitive ratio of 5

3 for the
case of two machines.

For the case with unit processing time, Luo et al. [6] considered two semi-online
models with two GoS levels on m parallel machines. The first model is a lookahead
version where an online algorithm is able to foresee the information of the next k jobs.
The second model is a buffer version where a buffer is available for storing at most g
jobs. For the both models, The authors presented an optimal online algorithm with a
competitive ratio of m2

m(m−s)+s2
for k = m2−1

s + s−m and an optimal online algorithm

with a competitive radio of m2

m(m−s)+s2
for g = m − m

m(m−s)+s2
. s is the number of

machines with high GoS level. Moreover, for the case where m = 2, they proved that
the two algorithms can get their best possible competitive ratio of 4

3 when k = 1 and
g = 1, respectively.

However, for the semi-online version of the scheduling problem under GoS levels,
most researches focus on the case of two machines. Park et al. [7] gave an optimal
algorithm with a competitive ratio of 3

2 when the total processing time of all jobs is

known. Wu et al. [9] presented an optimal algorithm with a competitive ratio of
√
5+1
2

when the largest processing time of all jobs is known. And when the optimal value of
the instance is known, they gave an optimal algorithm with a competitive ratio of 3

2 in
the same paper. Chen et al. [1] considered a semi-online scheduling on two machines
under GoS levels with buffer or rearrangements and presented two optimal algorithms
with a competitive ratio of 3

2 . Liu et al. studied two semi-online scheduling problems
under GoS levels in [5]. The first problem is concerned with bounded processing
time constraints, i.e., the processing time pi is bounded by an interval [1, α] where
α > 1. The second problem assumes that, in addition to the bounded processing time
constraints, the total processing time of all jobs is known in advance. For these two
problems, they showed some lower bounds of the competitive ratio for different values
of α. They also proposed two algorithms which are shown to be competitive for some
situations. For the first problem studied by Liu et al. [5], Zhang et al. [10] improved
the result and gave an optimal algorithm for arbitrary α ≥ 1.

In this paper, we focus on the second semi-online scheduling problem studied by
Liu et al. [5]. For the case α = 1, an online algorithm can reach the optimal makespan
if it always schedules the job with GoS = 2 on the second machine until the total
processing time of the jobs scheduled on the second machine is equal to �Σ

2 �. As
Park et al. [7] proved a lower bound of 3

2 for the semi-online scheduling problem
with known total processing time by using an example where the processing times
are bounded in interval [1,2], the lower bound of competitive ratio is 3

2 for the case
α ≥ 2, and an optimal algorithm was presented by Park et al. [7]. For the case
1 < α < 2, a lower bound of 1+α

2 was proved by Liu et al. [5], and they also presented
an algorithm b- sum- online which is 1+α

2 -competitive when Σ ≥ 2α
α−1 . This paper
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modifies algorithm b- sum- online and gets a new algorithm which is shown to be
optimal for arbitrary α and Σ .

2 Definitions

We are given two machines and a series of jobs arriving online which are to be sched-
uled irrevocably at the time of their arrivals. The first machine can process all the
jobs while the second one can process only part of the jobs. The arrival of a new job
occurs only after the current job is scheduled. Let σ = {J1, . . . , Jn} be the set of all
jobs arranged in the order of arrival. We denote each job by Ji = (pi , gi ), where pi
is the processing time of job Ji and gi ∈ {1, 2} is the GoS level of job Ji . gi = 1 if
job Ji must be processed by the first machine, and gi = 2 if it can be processed by
either of the two machines. pi and gi are not known until the arrival of job Ji . Each
pi is bounded by an interval [1, α] where α ≥ 1 is a constant number, and the total
processing time of all jobs Σ is known in advance.

The schedule can be seen as a partition of σ into two subsets, denoted by 〈S1, S2〉,
where S1 and S2 contain job indices assigned to the first and the second machine,
respectively. Let t (S1) = ΣJi∈S1 pi and t (S2) = ΣJi∈S2 pi denote the load of the
first machine and the load of the second machine. Note that t (S1) + t (S2) = Σ . The
maximum value of t (S1) and t (S2), i.e.max{t (S1), t (S2)}, is defined as the makespan
of the schedule 〈S1, S2〉. The objective is to find a schedule 〈S1, S2〉 that minimizes
the makespan.

Let Copt be the minimum makespan obtained by an optimal off-line algorithm and
CA be themakespan generated by algorithm A. Then the competitive ratio of algorithm
A is defined to be the supremum of the fraction CA

Copt
. Let L = Σ

2 . According to the
definition, we have Copt ≥ L .

3 An optimal online algorithm

In this section, we present a modified algorithm which is shown to be not only optimal
for the case 1 ≤ α < 2 but also optimal for the case α ≥ 2 based on b- sum- online.
For convenience, we define Si1 and Si2 as S1 and S2 that we get immediately after
scheduling job Ji . According to the lower bounds of competitive ratio, we define
various values of parameter β as follows: (1) β = 1+α

2 when 1 ≤ α < 2; (2) β = 3
2

when α ≥ 2. First, we describe our algorithm as follows.

Algorithm M:
Step 1. Let S01 = ∅, S02 = ∅, i = 1;
Step 2. Receive job Ji = (pi , gi );
Step 3. If gi = 1, let Si1 = Si−1

1

⋃{Ji }. Go to Step 5;
Step 4. If gi = 2,
4.1. If t (Si−1

2 ) + pi ≤ βL , let Si2 = Si−1
2

⋃{Ji }. Go to Step 5;
4.2. (Stopping criterion 1). If t (Si−1

2 )+ pi > βL and Σ − t (Si−1
2 ) ≤ βL , assign

job Ji and all the remaining jobs to S1. Stop and output S1 and S2.
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4.3. (Stopping criterion 2). If t (Si−1
2 ) + pi > βL , Σ − t (Si−1

2 ) > βL and
Σ − t (Si−1

2 ) − pi < t (Si−1
2 ), assign job Ji and all the remaining jobs to S1. Stop

and output S1 and S2.
4.4. (Stopping criterion 3). If t (Si−1

2 ) + pi > βL , Σ − t (Si−1
2 ) > βL and

Σ − t (Si−1
2 )− pi ≥ t (Si−1

2 ), assign job Ji to S2 and assign all the remaining jobs
to S1. Stop and output S1 and S2.
Step 5. If no more jobs arrive, stop and output S1 and S2; Else, let i = i + 1 and
go to Step 2.

Before proving algorithm M is optimal, we give a lemma first.

Lemma 1 Suppose that 1 ≤ α < 2. For an arbitrary job sequence σ , if the number
of the jobs in σ , denoted by n, is an even number, then the total processing time of
arbitrary n

2 jobs in σ is at most 1+α
2 L.

Proof Let Sh be a set of arbitrary n
2 jobs in σ , and Sl be the set of the other n

2 jobs.
Define t (Sh) = ΣJi∈Sh pi and t (Sl) = ΣJi∈Sl pi . As t (Sh) + t (Sl) = Σ , we have

t (Sh)− 1 + α

2
L = t (Sh)− 1 + α

2
· t (Sh) + t (Sl)

2
= 3 − α

4
t (Sh)− 1 + α

2
· t (Sl)

2
. (1)

As α < 2, we have 3−α
4 > 0. Combined with t (Sh) ≤ n

2α and t (Sl) ≥ n
2 , we get

t (Sh) − 1 + α

2
L ≤ 3 − α

4
· n
2

· α − 1 + α

2
· n
4

= −n

8
· (α − 1)2 ≤ 0, (2)

which means that the total processing time of arbitrary n
2 jobs in σ is at most 1+α

2 L .
The proof is completed. ��

Straightforwardly, we have the following corollary.

Corollary 1 Suppose that 1 ≤ α < 2. For an arbitrary job sequence σ which contains
n jobs, the total processing time of arbitrary n′ jobs in σ is at most 1+α

2 L when
n′ ≤ � n

2 �.
To prove that algorithm M is optimal for arbitrary α, we prove algorithm M is

1+α
2 -competitive when 1 ≤ α < 2 and is 3

2 -competitive when α ≥ 2, respectively.

Lemma 2 Algorithm M is 1+α
2 -competitive when 1 ≤ α < 2.

Proof Suppose that the lemma is false, then there must exist at least one instance I
which makes CM

Copt
> 1+α

2 . Let n be the number of the jobs in I . We distinguish the
following two cases according to the value of n.

Case 1: n is an even number.
In this case, we have two subcases. The first subcase is that no jobs with GoS = 2

are assigned to S1. If no jobs with GoS = 2 are assigned to S1, according to the
rules of algorithm M , we have t (S2) ≤ 1+α

2 L ≤ 1+α
2 Copt . And Copt ≥ t (S1) holds

since all the jobs assigned to S1 are with GoS = 1. Hence, in this case, CM =
max{t (S1), t (S2)} ≤ 1+α

2 Copt .
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The other subcase is that there is at least one job with GoS = 2 assigned to
S1. Let Ji denote the first job with GoS = 2 assigned to S1 by algorithm M , then
we have t (Si−1

2 ) + pi > βL . Based on Lemma 1, algorithm M assigns at least n
2

jobs of I to S2 before scheduling job Ji , otherwise t (S
i−1
2 ) + pi ≤ βL holds since

the total processing time of arbitrary n
2 jobs is at most 1+α

2 L . As the number of the
jobs in I is n and more than half of the jobs were assigned to S2 before scheduling
job Ji , the number of the jobs that didn’t assigned to Si−1

2 is also at most n
2 , which

implies that Σ − t (Si−1
2 ) ≤ βL . So algorithm M will stop at Step 4.2. Again, we get

CM = max{t (S1), t (S2)} ≤ βL ≤ 1+α
2 Copt .

Case 2: n is an odd number.
Divide I into two subsets I1 and I2 where I1 contains n+1

2 jobs and I2 contains
n−1
2 jobs. The processing time of any job in I1 is not greater than the processing time

of any job in I2. Let t (I1) and t (I2) denote the total processing time of the jobs in
I1 and I2, respectively. Note that t (I1) + t (I2) = Σ . As the processing times are
bounded in the interval [1, α], we have t (I1) ≥ n+1

2 and t (I2) ≤ n−1
2 α. According to

the definition of I1, I1 contains n+1
2 jobs which have themost shortest processing time.

Since the optimal algorithm must assign at least n+1
2 jobs to one of the two machines,

Copt ≥ t (I1) holds.
If algorithm M stops at Step 4.2 or Step 5, we can directly get that CM =

max{t (S1), t (S2)} ≤ 1+α
2 Copt . Therefore, it stops at Step 4.3 or Step 4.4.

Suppose that algorithmM stops at Step 4.3, and Ji is the jobwhichmakes t (Si−1
2 )+

pi > 1+α
2 L ,Σ − t (Si−1

2 ) > 1+α
2 L andΣ − t (Si−1

2 )− pi < t (Si−1
2 ) hold. In this case,

we have t (S2) = t (Si−1
2 ) and t (S1) = Σ − t (Si−1

2 ). If CM = max{t (S1), t (S2)} =
t (S2), we get CM ≤ 1+α

2 L ≤ 1+α
2 Copt since t (S2) ≤ 1+α

2 L . Otherwise, CM =
max{t (S1), t (S2)} = t (S1) > 1+α

2 Copt . As Σ − t (S2) − pi < t (S2) and t (S1) =
Σ − t (S2), we get t (S2)+ pi > t (S1), which means t (S2)+ pi > 1+α

2 Copt . Then we
have t (S1) + t (S2) + pi > (1+ α)Copt . As t (S1) + t (S2) + pi = t (I1) + t (I2) + pi
and (1 + α)Copt ≥ (1 + α)t (I1), we have

t (S1) + t (S2) + pi = t (I1) + t (I2) + pi > (1 + α)t (I1) (3)

which means

t (I2) + pi > αt (I1) ≥ n + 1

2
α. (4)

Since t (I2) ≤ n−1
2 α and pi ≤ α, we have t (I2) + pi ≤ n+1

2 α which contradicts with
t (I2) + pi > n+1

2 α.
If algorithm M stops at Step 4.4, then algorithm M assigns at least n+1

2 jobs to S2,
and assigns at most n−1

2 ≤ � n
2 � jobs to S1. Based on Corollary 1, we have t (S1) ≤

1+α
2 L ≤ 1+α

2 Copt . Hence, CM = t (S2) = t (Si−1
2 ) + pi > 1+α

2 Copt . In this case,
according to algorithm M , we have t (Si−1

2 ) ≤ Σ − t (Si−1
2 )− pi = t (S1), which leads

to t (S1)+pi ≥ t (S2) > 1+α
2 Copt . Therefore,wehave t (S1)+t (S2)+pi > (1+α)Copt .

Again, this leads to t (I2) + pi ≤ n+1
2 α which contradicts with t (I2) + pi > n+1

2 α.
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Hence, we know that such an example which makes CM
Copt

> 1+α
2 does not exist.

The proof is completed. ��
Lemma 3 Algorithm M is 3

2 -competitive when α ≥ 2.

Proof Suppose that this lemma is false, then there must exist at least one instance I
which makes CM

Copt
> 3

2 .
If algorithm M stops at Step 4.2 or Step 5, according to the algorithm, we have

CM = max{t (S1), t (S2)} ≤ 3
2Copt directly. Therefore, it must stop at Step 4.3 or Step

4.4.
Suppose that algorithmM stops at Step 4.3, and Ji is the jobwhichmakes t (Si−1

2 )+
pi > 3

2 L ,Σ−t (Si−1
2 ) > 3

2 L andΣ−t (Si−1
2 )−pi < t (Si−1

2 )hold. In this case,we also
have t (S2) = t (Si−1

2 ) and t (S1) = Σ − t (Si−1
2 ). According to the rules of algorithm

M , if CM = max{t (S1), t (S2)} = t (S2), we have CM = t (S2) ≤ 3
2 L ≤ 3

2Copt .
Therefore, CM = max{t (S1), t (S2)} = t (S1) > 3

2Copt . As Σ − t (S2) − pi < t (S2)
and t (S1) = Σ − t (S2), we have t (S2) + pi > t (S1) > 3

2Copt . Then we have t (S1) +
t (S2)+ pi > 3Copt ≥ 3L . Combined with t (S1)+ t (S2) = Σ = 2L , we have pi > L
and t (S1)+t (S2)− pi < Σ−L = L . Therefore, we get min{t (S1)− pi , t (S2)} < 1

2 L ,
otherwise t (S1) − pi + t (S2) ≥ 1

2 L + 1
2 L = L . Since Ji is assigned to S1, we have

min{t (S1) − pi , t (S2)} = t (S1) − pi <
1

2
L <

1

2
pi , (5)

which leads to t (S1) < 3
2 pi . Combined with Copt ≥ pi , we have t (S1) < 3

2Copt

which contradicts with t (S1) > 3
2Copt .

Suppose that algorithm M stops at step 4.4. If there are no jobs with GoS = 2
assigned to S1, then we have Copt ≥ t (S1). Otherwise, we have t (S1) ≤ 3

2 L ≤ 3
2Copt .

Then CM = max{t (S1), t (S2)} = t (S2) > 3
2Copt . We can get the same contradiction

in the same way just as algorithm M stops at step 4.3.
Hence, we know that such an example which makes CM

Copt
> 3

2 does not exist. The
proof is completed. ��

Note that we prove Lemmas 1–3 with arbitrary Σ . Therefore, based on Lemmas 2
and 3, we obtain the following theorem.

Theorem 1 Algorithm M is optimal for arbitrary α and Σ .
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