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Abstract Simplex gradients are widely used in derivative-free optimization. This
article clarifies some of the properties of simplex gradients and presents calculus rules
similar to that of an ordinary gradient. For example, the simplex gradient does not
depend on the order of sample points in the underdetermined and determined cases
but this property is not true in the overdetermined case. Moreover, although the sim-
plex gradient is the gradient of the corresponding linear model in the determined case,
this is not necessarily true in the underdetermined and overdetermined cases. How-
ever, the simplex gradient is the gradient of an alternative linear model that is required
to interpolate the reference data point. Also, the negative of the simplex gradient is a
descent direction for any interpolating linear function in the determined and underde-
termined cases but this is again not necessarily true for the linear regression model in
the overdetermined case. In addition, this article reviews a previously established error
bound for simplex gradients. Finally, this article treats the simplex gradient as a linear
operator and provides formulas for the simplex gradients of products and quotients of
two multivariable functions and a power rule for simplex gradients.

Keywords Simplex gradient · Derivative-free optimization · Black-box
optimization · Linear interpolation and regression · Minimum norm least squares
solution · Moore–Penrose pseudoinverse

1 Introduction

In the fully determined case, a simplex gradient of a function is the gradient of a linear
model that interpolates data points on the surface of the function that corresponds to a
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maximal set of affinely independent points (i.e., a set of points in a simplex). The notion
of a simplex gradient is widely used in derivative-free optimization. For example, it is
used in the analysis of optimization methods for noisy problems that utilize function
values on a sequence of simplices such as Nelder–Mead and implicit filtering (Bortz
and Kelley [2], Kelley [8], Conn et al. [5]). Moreover, Custódio et al. [6] analyzed
sequences of simplex gradients computed for nonsmooth functions in the context of
direct searchmethods of the directional type such as Generalized Pattern Search (GPS)
(Torczon [12]) and Mesh Adaptive Direct Search (MADS) (Audet and Dennis [1]).
Simplex gradients have also been used to enhance the performance of pattern search by
using them to reorder the objective function evaluations associatedwith the various poll
directions (Custódio and Vicente [7]). In addition, in the benchmarking of derivative-
free optimization algorithms, the data profile of a solver is defined as the percentage
of problems solved for a given number of simplex gradient estimates (Moré and Wild
[9]). More recently, Regis [10] used underdetermined simplex gradients to develop
an initialization strategy for surrogate-based, high-dimensional expensive black-box
optimization.

The purpose of this article is to clarify some of the properties of the simplex gradient
and present calculus rules similar to that of an ordinary gradient. In particular, the
simplex gradient does not depend on the order of sample points in the underdetermined
and determined cases but this property does not hold in the overdetermined case.
Moreover, as expected, the simplex gradient is the gradient of the corresponding linear
interpolation model in the determined case. However, it is not necessarily the gradient
of the linear model corresponding to the minimum norm least squares solution of
the associated linear system in both the underdetermined and overdetermined cases. It
turns out, though, that the simplex gradient is the gradient of an alternative linearmodel
that is required to interpolate the reference data point. Also, in the underdetermined
and determined cases, the negative of the simplex gradient with respect to a set of
data points is shown to be a descent direction for any linear model that interpolates
these data points. However, in the overdetermined case, the negative of the simplex
gradient is not necessarily a descent direction for the corresponding linear regression
model. Next, a previously established error bound for simplex gradients is reviewed.
Furthermore, a convenient notation for the simplex gradient is introduced that treats
it as a linear operator and some calculus rules such as product and quotient rules are
proved. Finally, although the simplex gradient does not seem to satisfy a general chain
rule, a power rule for simplex gradients is also proved.

2 Preliminaries

2.1 Definition of a simplex gradient

Throughout this article, f and g are functions fromR
d toR. LetX = 〈x0, x1, . . . , xk〉

be an ordered set of k + 1 points in R
d , where k ≥ 1. Define

S(X ) :=[x1 − x0 . . . xk − x0] ∈ R
d×k and δ f (X ) :=

⎡
⎢⎣

f (x1) − f (x0)
...

f (xk) − f (x0)

⎤
⎥⎦∈R

k .
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The calculus of simplex gradients 847

First, consider the case where X consists of k + 1 affinely independent points (and
so, k ≤ d). When k = d (the determined case), S(X ) is invertible and the simplex
gradient of f with respect to X , denoted by ∇s f (X ), is given by

∇s f (X ) = S(X )−T δ f (X ).

When k < d (the underdetermined case), the simplex gradient of f with respect to
X is the minimum 2-norm solution of the linear system

S(X )T∇s f (X ) = δ f (X ),

which is given by ∇s f (X ) = S(X )(S(X )T S(X ))−1δ f (X ). In this case, note that
S(X )T S(X ) is symmetric and positive definite (and hence nonsingular) since S(X )has
full (column) rank. Moreover,∇s f (X ) is a linear combination of x1− x0, . . . , xk − x0
since ∇s f (X ) = S(X )v, where v = (S(X )T S(X ))−1δ f (X ) ∈ R

k .
Next, let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 distinct points in R

d

that contains a proper subset of d + 1 affinely independent points, and so, k > d (the
overdetermined case). In this case, {[1, xT0 ], [1, xT1 ], . . . , [1, xTk ]} contains a subset
of d + 1 linearly independent points and it can be assumed that this subset contains
[1, xT0 ]. Hence, X is guaranteed to have a proper subset of d + 1 affinely independent
points that includes x0. This implies that S(X ) has full (row) rank, and so, S(X )S(X )T

is symmetric and positive definite. Now the simplex gradient of f with respect to X
is the least squares solution of the linear system

S(X )T∇s f (X ) = δ f (X ),

which is given by ∇s f (X ) = (S(X )S(X )T )−1S(X )δ f (X ).
Custódio et al. [6] notes that the definitions of the simplex gradient for the three

cases above can be combined into a single definition by considering a reduced SVD
of S(X )T as shown next.

Definition 1 Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points in Rd where
k ≥ 1. Suppose S(X ) has full rank so that rank(S(X )) = min{d, k}. Then the simplex
gradient of f with respect to X is given by

∇s f (X ) = V (X )�(X )−1U (X )T δ f (X ),

where U (X )�(X )V (X )T is a reduced SVD of S(X )T .

Note that V (X )�(X )−1U (X )T is a reduced SVD of theMoore-Penrose pseudoin-
verse of S(X )T , and so, the simplex gradient of f with respect to X can also be
expressed as:

∇s f (X ) = (S(X )T )†δ f (X ) = (S(X )†)T δ f (X ),

where A† denotes the Moore–Penrose pseudoinverse of the matrix A.
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848 R. G. Regis

2.2 Linear interpolation and regression

Consider a set X = {x0, x1, . . . , xk} of k + 1 points in R
d . If the points in X are

affinely independent (which implies k ≤ d), then there exists a linear function (an
infinite number if k < d) that interpolates the data points {(x0, f (x0)), (x1, f (x1)),
. . . , (xk, f (xk))}. More precisely, if m(x) = c0 + cT x , where c = [c1, . . . , cd ]T , is a
linear polynomial in d variables that interpolates these data points, then

⎡
⎢⎢⎢⎣

1 xT0
1 xT1
...

...

1 xTk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c0
c1
...

cd

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f (x0)
f (x1)

...

f (xk)

⎤
⎥⎥⎥⎦ . (1)

For convenience, define the (k + 1) × (d + 1) interpolation matrix L(X ) and the
column vector F(X ) as follows:

L(X ) :=

⎡
⎢⎢⎢⎣

1 xT0
1 xT1
...

...

1 xTk

⎤
⎥⎥⎥⎦ and F(X ) :=

⎡
⎢⎢⎢⎣

f (x0)
f (x1)

...

f (xk)

⎤
⎥⎥⎥⎦

Equation (1) then becomes

L(X )

[
c0
c

]
= F(X ). (2)

When k > d and L(X ) has full (column) rank, Eq. (2) can be solved in a least
squares sense. For convenience, the following definition from Conn, Scheinberg and
Vicente [5] is used below.

Definition 2 Let X = {x0, x1, . . . , xk} be a set of k + 1 points in R
d . When k = d

(determined case), the setX is said to be poised for linear interpolation inRd if L(X )

is nonsingular. When k > d (overdetermined case), the set X is said to be poised for
linear regression in R

d if L(X ) has full (column) rank.

If X consists of exactly d + 1 affinely independent points (determined case),
then L(X ) is nonsingular (and so X is poised for linear interpolation in R

d ) and

the coefficients of the linear model are given by

[
c0
c

]
= L(X )−1F(X ). If X con-

sists of k + 1 affinely independent points, where k < d (underdetermined case), then
L(X ) has full row rank and the minimum 2-norm solution to Eq. (1) is given by[
c0
c

]
= L(X )T (L(X )L(X )T )−1F(X ). If k > d and X contains d + 1 affinely inde-

pendent points (overdetermined case), then L(X ) has full column rank (and so X is
poised for linear regression in R

d ) and the least squares solution to Eq. (1) is given
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The calculus of simplex gradients 849

by

[
c0
c

]
= (L(X )T L(X ))−1L(X )T F(X ). As before,

[
c0
c

]
= L(X )†F(X ) in all

these cases. For a comprehensive treatment of the geometry of sample sets of points
for interpolation (determined and underdetermined cases) and regression (overdeter-
mined case) in the context of derivative-free optimization, the reader is referred to the
papers by Conn, Scheinberg and Vicente ([3,4]) and Scheinberg and Toint [11].

The first proposition below relates poisedness for linear interpolation or regression
with the existence of the simplex gradient in the determined and overdetermined cases.

Proposition 1 Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points in Rd with
k ≥ d. Then L(X ) has full (column) rank if and only if S(X ) has full (row) rank.

Proof Note that rank(L(X )) = d+1 if and only if L(X ) has d+1 linearly independent
rows. Since the first nonzero row of any matrix can be extended to a maximal set of
linearly independent rows of that matrix, it follows that L(X ) has full (column) rank
if and only if L(X ) has d + 1 linearly independent rows that include [1, xT0 ], and this
is true if and only if X has a subset of d + 1 affinely independent points that include
x0. This implies that L(X ) has full (column) rank if and only if S(X ) has d linearly
independent columns, or equivalently, rank(S(X )) = d. �	

The above proposition says thatX is poised for linear interpolation or linear regres-
sion (dependingonwhether k = d or k > d) if andonly if the simplexgradient∇s f (X )

is defined.

3 Basic properties of simplex gradients

When k ≤ d (the determined and underdetermined cases), the following proposition,
which was proved in Regis [10], shows that the simplex gradient ∇s f (X ) does not
depend on the order of the points inX . A slightly different proof from the one in Regis
[10] is included below to make this article self-contained.

Proposition 2 Suppose X = 〈x0, x1, . . . , xk〉 is an ordered set of k + 1 affinely
independent points in R

d , where 1 ≤ k ≤ d. Let α be a permutation of the indices
{0, 1, . . . , k} and let Xα = 〈xα(0), xα(1), . . . , xα(k)〉. Then ∇s f (Xα) = ∇s f (X ).

Proof First, consider the case where α(0) = 0. Then

S(Xα) = [xα(1) − x0 . . . xα(k) − x0] = S(X )P and δ f (Xα)T = δ f (X )T P,

for some permutation matrix P . Now

∇s f (Xα) = S(Xα)(S(Xα)T S(Xα))−1δ f (Xα)

= S(X )P((S(X )P)T S(X )P)−1(PT δ f (X ))

= S(X )P(PT S(X )T S(X )P)−1PT δ f (X ))

= S(X )PP−1(S(X )T S(X ))−1(PT )−1PT δ f (X ))

= S(X )(S(X )T S(X ))−1δ f (X ) = ∇s f (X ).
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850 R. G. Regis

The previous argument shows that if the points in X = 〈x0, x1, . . . , xk〉 are per-
muted except for the reference point x0, then the simplex gradient remains the same.
Next, observe that any permutation of {0, 1, . . . , k} that maps 0 to another element
can be obtained from a permutation that fixes 0 by means of a single transposition.
Hence, it only remains to show that the simplex gradient is preserved by a permutation
of {0, 1, . . . , k} that switches 0 and another element while holding the other elements
fixed.

Let α be a permutation of {0, 1, . . . , k} such that α(0) = j 
= 0, α( j) = 0, and that
fixes all other elements. Note that S(Xα) = [xα(1) − xα(0) . . . xα(k) − xα(0)] can be
transformed to S(X ) = [x1 − x0 . . . xk − x0] by applying a series of elementary
column operations to S(Xα). To see this, begin bymultiplying the j th column of S(Xα)

by−1. The result is also given by S(Xα)M , whereM is the elementarymatrix obtained
by replacing the j th diagonal entry of Ik by −1. Next, for each i = 1, . . . , k, i 
= j ,
perform an elementary column operation that consist of adding the j th column of
S(Xα)M to the i th column and storing the result in the latter column. The result is
some permutation of the columns of S(X ), and so,

S(Xα)ME1E2 . . . Ek−1P = S(X ),

where P is a permutation matrix and E1, E2, . . . , Ek−1 are the elementary matrices
obtained by adding the j th column of Ik to the other columns and storing the results
in those columns.

Let F = ME1E2 . . . Ek−1P . Then S(Xα)F = S(X ) and F is nonsingular because
it is the product of nonsingular matrices. Observe that

FT δ f (Xα)=(ME1E2 . . . Ek−1P)T δ f (Xα)= PT ET
k−1 . . . ET

2 ET
1 MT δ f (Xα)=δ f (X ).

Hence,

∇s f (X )= S(X )(S(X )T S(X ))−1δ f (X )= S(Xα)F ( (S(Xα)F)T (S(Xα)F) )−1δ f (X )

= S(Xα)F ( FT S(Xα)T S(Xα)F )−1δ f (X )

= S(Xα)FF−1 ( S(Xα)T S(Xα) )−1(FT )−1δ f (X )

= S(Xα)(S(Xα)T S(Xα))−1δ f (Xα) = ∇s f (Xα).

�	
When k > d (the overdetermined case),∇s f (X ) depends on the order of the points

in X as can be seen from the following examples in R and R
2.

Example 1 Consider x0 = −1, x1 = 0, x2 = 1 and suppose f (x0) = 2, f (x1) =
1, f (x2) = 3. Let X = 〈x0, x1, x2〉 and consider the permutation of {0, 1, 2} given by
α =

(
0 1 2
1 2 0

)
. Then Xα = 〈x1, x2, x0〉. Note that S(X ) and S(Xα) have full rank

and

∇s f (X ) = (S(X )S(X )T )−1S(X )δ f (X )

=
([

1 2
] [

1 2
]T )−1 [

1 2
] [−1

1

]
= [

1/5
]
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The calculus of simplex gradients 851

and

∇s f (Xα) =
([

1 −1
] [

1 −1
]T )−1 [

1 −1
] [ 2

1

]
= [

1/2
]
,

and so, ∇s f (X ) 
= ∇s f (Xα).

Example 2 Consider x0 = [0, 0]T , x1 = [1, 0]T , x2 = [0, 1]T , x3 = [1, 2]T and
suppose f (x0) = 1, f (x1) = 2, f (x2) = 0, f (x3) = 1. Let X = 〈x0, x1, x2, x3〉
and consider the permutation of {0, 1, 2, 3} given by α =

(
0 1 2 3
3 2 0 1

)
. Then Xα =

〈x3, x2, x0, x1〉. Note that S(X ) and S(Xα) have full rank and

∇s f (X ) = (S(X )S(X )T )−1S(X )δ f (X )

=
([

1 0 1
0 1 2

] [
1 0 1
0 1 2

]T)−1 [
1 0 1
0 1 2

]⎡
⎣

1
−1
0

⎤
⎦ =

[
7/6

−2/3

]

and

∇s f (Xα) =
([−1 −1 0

−1 −2 −2

] [−1 −1 0
−1 −2 −2

]T)−1 [−1 −1 0
−1 −2 −2

]⎡
⎣

−1
0
1

⎤
⎦

=
[

4/3
−5/9

]
,

and so, ∇s f (X ) 
= ∇s f (Xα).

For convenience, call the first point in the ordered set X the reference point. The
next proposition shows that, when k > d (the overdetermined case), the simplex
gradient is not affected by changing the order of the sample points that are not the
reference point. That is, ∇s f (X ) depends only on which point in X is used as the
reference point and not on the order of the other sample points. Note that although the
DFO book by Conn et al. [5] and other papers (e.g., Custódio and Vicente [7]) did not
explicitly mention the dependence of the simplex gradient on the reference point, the
notation ∇s f (x0) in the book and in these other papers suggests that the authors were
aware of this dependence.

Proposition 3 Suppose X = 〈x0, x1, . . . , xk〉 is an ordered set of k + 1 points in Rd ,
with k > d, that contains a proper subset of d + 1 affinely independent points. Let
α be a permutation of the indices {0, 1, . . . , k} such that α(0) = 0 and let Xα =
〈xα(0), xα(1), . . . , xα(k)〉. Then ∇s f (Xα) = ∇s f (X ).

Proof Since α(0) = 0, it follows that

S(Xα) = [xα(1) − x0 . . . xα(k) − x0] = S(X )P and δ f (Xα)T = δ f (X )T P,
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for some permutation matrix P . Now

∇s f (Xα) = (S(Xα)S(Xα)T )−1S(Xα)δ f (Xα)

= (S(X )P(S(X )P)T )−1S(X )P(PT δ f (X ))

= (S(X )(PPT )S(X )T )−1S(X )(PPT )δ f (X ))

= (S(X )S(X )T )−1S(X )δ f (X ) = ∇s f (X ).
�	

4 Simplex gradients and linear interpolation and regression models

Next, this section analyzes the relationship between the simplex gradient and the
gradient of the corresponding linear model. WhenX consists of exactly d +1 affinely
independent points, the following result mentioned in Conn et al. [5] shows that the
simplex gradient∇s f (X ) is the gradient of the unique linear function that interpolates
the points in X and their function values.

Proposition 4 Let X = {x0, x1, . . . , xd} be a set of d + 1 affinely independent points
inRd (and soX is poised for linear interpolation inRd ).Then∇s f (X ) is the gradient
of the unique linear function that interpolates the data points {(x0, f (x0)), (x1, f (x1)),
. . . , (xd , f (xd))}.
Proof Let m(x) = c0 + cT x , where c0 ∈ R and c ∈ R

d , be the unique linear function
that interpolates the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xd , f (xd))}. Then

c0 + cT xi = f (xi ) for i = 0, 1, . . . , d. (3)

Subtracting c0 + cT x0 = f (x0) from each of the equations in (3) for i = 1, . . . , d
gives

cT (xi − x0) = f (xi ) − f (x0) for i = 1, . . . , d.

Hence, c satisfies

cT S(X ) = δ f (X )T , or equivalently, S(X )T c = δ f (X ).

Since X consists of d + 1 affinely independent points, S(X )T is nonsingular and

∇m(x) = c = S(X )−T δ f (X ) = ∇s f (X ).

�	
Next, consider the overdetermined case. LetX = 〈x0, x1, . . . , xk〉 be an ordered set

of k+1 distinct points inRd that contains a proper subset of d+1 affinely independent
points (and so k > d) and let m(x) = c0 + cT x be the linear regression model for
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The calculus of simplex gradients 853

the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xk, f (xk))}. Recall that the gradient
∇m(x) = c is obtained from the least squares solution of

⎡
⎢⎢⎢⎣

1 xT0
1 xT1
...

...

1 xTk

⎤
⎥⎥⎥⎦
[
c0
c

]
=

⎡
⎢⎢⎢⎣

f (x0)
f (x1)

...

f (xk)

⎤
⎥⎥⎥⎦ (4)

while the simplex gradient ∇s f (X ) is the least squares solution of

⎡
⎢⎢⎢⎣

(x1 − x0)T

(x2 − x0)T

...

(xk − x0)T

⎤
⎥⎥⎥⎦∇s f (X ) =

⎡
⎢⎢⎢⎣

f (x1) − f (x0)
f (x2) − f (x0)

...

f (xk) − f (x0)

⎤
⎥⎥⎥⎦ . (5)

The examples below show that ∇s f (X ) is not necessarily equal to ∇m(x) = c in
the overdetermined case. In fact, Example 4 below shows that none of the simplex
gradients ∇s f (X ) using all possible reference points have to equal ∇m(x) = c.

Example 3 Consider X and F(X ) from Example 1: x0 = −1, x1 = 0, x2 = 1 and
f (x0) = 2, f (x1) = 1, f (x2) = 3. Then ∇s f (X ) = [1/5]. Now the coefficients of
the linear regression model m(x) = c0 + cT x are given by

[
c0
c

]
= (L(X )T L(X ))−1L(X )T F(X )

=
⎛
⎜⎝
⎡
⎣
1 −1
1 0
1 1

⎤
⎦
T ⎡
⎣
1 −1
1 0
1 1

⎤
⎦
⎞
⎟⎠

−1⎡
⎣
1 −1
1 0
1 1

⎤
⎦
T ⎡
⎣
2
1
3

⎤
⎦ =

[
2
1/2

]

Hence, ∇m(x) = c = [1/2] 
= ∇s f (X ).

Example 4 ConsiderX and F(X ) from Example 2: x0 = [0, 0]T , x1 = [1, 0]T , x2 =
[0, 1]T , x3 = [1, 2]T and f (x0) = 1, f (x1) = 2, f (x2) = 0, f (x3) = 1. Then

∇s f (X ) =
[

7/6
−2/3

]
. Now the coefficients of the linear regression model m(x) =

c0 + cT x are given by

[
c0
c

]
= (L(X )T L(X ))−1L(X )T F(X )

=

⎛
⎜⎜⎝

⎡
⎢⎢⎣
1 0 0
1 1 0
1 0 1
1 1 2

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣
1 0 0
1 1 0
1 0 1
1 1 2

⎤
⎥⎥⎦

⎞
⎟⎟⎠

−1⎡
⎢⎢⎣
1 0 0
1 1 0
1 0 1
1 1 2

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣
1
2
0
1

⎤
⎥⎥⎦ =

⎡
⎣

4/5
13/10
−3/5

⎤
⎦
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854 R. G. Regis

Hence, ∇m(x) = c = [13/10,−3/5]T 
= ∇s f (X ).
By similar calculations, the simplex gradients obtained by using x1, x2 and x3

as reference points are [11/9,−5/9]T , [3/2,−2/3]T and [4/3,−5/9]T , respectively.
Note that none of these simplex gradients are equal to∇m(x) = c = [13/10,−3/5]T .

The fact that Proposition 4 does not hold for the overdetermined case is not really
surprising considering that Examples 1 and 2 and Proposition 3 showed that ∇s f (X )

depends on which point in X is chosen as the reference point whereas the linear
regression model and its gradient are fixed for a given X containing a subset of d + 1
affinely independent points.

Finally, in the underdetermined case (k < d), ∇s f (X ) is also not the gradient of
the linear model whose coefficients are the minimum 2-norm solution to Eq. (1) as
can be seen from the following counterexample.

Example 5 Consider x0 = [1, 0, 0]T , x1 = [0, 1, 0]T , x2 = [0, 0, 1]T and suppose
f (x0) = 2, f (x1) = 0, f (x2) = 1. Let X = 〈x0, x1, x2〉. Then

∇s f (X ) = S(X )(S(X )T S(X ))−1δ f (X )

=
⎡
⎣

−1 −1
1 0
0 1

⎤
⎦
⎛
⎜⎝
⎡
⎣

−1 −1
1 0
0 1

⎤
⎦
T ⎡
⎣

−1 −1
1 0
0 1

⎤
⎦
⎞
⎟⎠

−1 [−2
−1

]
=
⎡
⎣

1
−1
0

⎤
⎦ .

On the other hand, the minimum 2-norm solution to Eq. (1) is given by

[
c0
c

]
= L(X )T (L(X )L(X )T )−1F(X )

=
⎡
⎣
1 1 0 0
1 0 1 0
1 0 0 1

⎤
⎦
T
⎛
⎜⎝
⎡
⎣
1 1 0 0
1 0 1 0
1 0 0 1

⎤
⎦
⎡
⎣
1 1 0 0
1 0 1 0
1 0 0 1

⎤
⎦
T
⎞
⎟⎠

−1⎡
⎣
2
0
1

⎤
⎦ =

⎡
⎢⎢⎣

3/4
5/4

−3/4
1/4

⎤
⎥⎥⎦ .

Again, c = [5/4,−3/4, 1/4]T 
= ∇s f (X ).

The next proposition shows that, in the underdetermined and determined cases,
−∇s f (X ) is a descent direction for any linear function that interpolates the points in
X and their function values. In particular, although ∇s f (X ) is not necessarily equal
to the gradient of the linear model corresponding to the minimum 2-norm solution to
Eq. (1) in the underdetermined case, this proposition says that −∇s f (X ) is always a
descent direction for this linear model.

Proposition 5 Suppose X = {x0, x1, . . . , xk} (k ≤ d) is a set of k + 1 affinely inde-
pendent points in R

d . If f (x0), f (x1), . . . , f (xk) are not all equal, then −∇s f (X )

is a descent direction for any linear function that interpolates the data points
(x0, f (x0)), (x1, f (x1)), . . . , (xk, f (xk)).

Proof Let g(x) = c0 + cT x be any linear function that interpolates the data points
(x0, f (x0)), (x1, f (x1)), . . . , (xk, f (xk)), where c0 ∈ R and c ∈ R

d . Then c0 +
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cT xi = f (xi ) for i = 0, 1, . . . , k, and so, cT (xi − x0) = f (xi ) − f (x0) for i =
1, . . . , k. Hence, cT S(X ) = δ f (X )T . Now for any x ∈ R

d ,

∇g(x)T (−∇s f (X )) = −cT S(X )(S(X )T S(X ))−1δ f (X )

= −δ f (X )T (S(X )T S(X ))−1δ f (X ).

Since S(X ) has full column rank, it follows that S(X )T S(X ) and its inverse are
both symmetric and positive definite. Moreover, since not all the f (xi )’s are equal,
it follows that δ f (X ) is not the zero vector. Hence, ∇g(x)T (−∇s f (X )) < 0 for any
x ∈ R

d , and so, −∇s f (X ) is a descent direction for g(x) = c0 + cT x from any point
x ∈ R

d . �
On the other hand, in the overdetermined case, the following example shows that

−∇s f (X ) is not always a descent direction for the corresponding linear regression
model.

Example 6 Consider the ordered set of sample points and their function values:
X = 〈x0, x1, x2〉 = 〈0, 1, 2〉 and f (x0) = 2, f (x1) = 1, f (x2) = 9/4. Then the
coefficients of the linear regression model m(x) = c0 + cT x are given by

[
c0
c

]
= (L(X )T L(X ))−1L(X )T F(X )

=
⎛
⎜⎝
⎡
⎣
1 0
1 1
1 2

⎤
⎦
T ⎡
⎣
1 0
1 1
1 2

⎤
⎦
⎞
⎟⎠

−1⎡
⎣
1 0
1 1
1 2

⎤
⎦
T ⎡
⎣

2
1
9/4

⎤
⎦ =

[
13/8
1/8

]

Hence, ∇m(x) = c = [1/8]. The simplex gradient is given by

∇s f (X ) = (S(X )S(X )T )−1S(X )δ f (X )

=
([

1 2
] [

1 2
]T )−1 [

1 2
] [ −1

1/4

]
= [−1/10

]

Note that ∇m(x)T (−∇s f (X )) = [1/8]T [1/10] = 1/80 > 0 for any x ∈ R, and
so, −∇s f (X ) is not a descent direction for m(x) from any x ∈ R.

Examples 3, 4 and5 above showed that the simplexgradient∇s f (X ) is not necessar-
ily the gradient of the corresponding linear modelm(x) = c0+cT x for the data points
X = 〈x0, x1, . . . , xk〉 in the underdetermined and overdetermined cases. In particular,
Examples 3 and 4 correct the statement on page 33 of the DFO book by Conn et al. [5]
where it is stated that, in the overdetermined case, ∇s f (X ) is also the gradient of the
linear regressionmodel for the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xk, f (xk))}.
That statement in the DFO book [5] has also been rephrased in the errata for Theo-
rem 2.13 of the book where it is stated that the simplex gradient is the gradient of the
following alternative linear model:

m(x) = f (x0) + cT (x − x0) = f (x0) + (x − x0)
T c, (6)
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where c = [c1, . . . , cd ]T are the coefficients to be determined. One main difference
between the original linear model m(x) = c0 + cT x and the above alternative linear
model is that the original model has d + 1 coefficients to be determined (c0 and the
components of c) while the alternative model has only d coefficients. Moreover, the
alternative linear model is required to interpolate the reference data point (x0, f (x0)).
The coefficients of the linear model (6) are obtained by finding a minimum norm least
squares solution to the following linear system:

⎧⎪⎨
⎪⎩

f (x0) + (x1 − x0)T c = f (x1)
...

...

f (x0) + (xk − x0)T c = f (xk)

This linear system is equivalent to:

⎡
⎢⎢⎢⎣

(x1 − x0)T

(x2 − x0)T

...

(xk − x0)T

⎤
⎥⎥⎥⎦ c =

⎡
⎢⎢⎢⎣

f (x1) − f (x0)
f (x2) − f (x0)

...

f (xk) − f (x0)

⎤
⎥⎥⎥⎦ ,

which is precisely the linear system that yields the simplex gradient ∇s f (X ). Thus,
the gradient of the alternative linear model m(x) = f (x0) + cT (x − x0) is indeed the
simplex gradient ∇s f (X ).

5 Error bounds for linear interpolation and regression models

Throughout this section, let X = {x0, x1, . . . , xk} be a set of sample points in R
d

and assume that f is continuously differentiable in an open domain � containing the
closed ball B(x0,�) = {x ∈ R

d : ‖x − x0‖ ≤ �}, where � = max1≤i≤k ‖xi − x0‖.
Further, assume that ∇ f is Lipschitz continuous in � with constant ν > 0.

The following result from Conn et al. [5] (Theorem 2.11 in [5]) provides an error
bound for the gradient of the linear interpolation model m(x) = c0 + cT x in the
determined case. Since ∇m(x) is identical to the simplex gradient ∇s f (X ) in the
determined case, Proposition 6 also provides an error bound for the simplex gradient.

Proposition 6 Assume that the set X = 〈x0, x1, . . . , xd〉 ⊂ R
d is poised for linear

interpolation in R
d and suppose that the conditions mentioned above hold. Then the

gradient of the linear interpolation model satisfies, for all points x ∈ B(x0,�), an
error bound of the form

‖∇ f (x) − ∇m(x)‖ ≤ κeg�,

where κeg = ν(1 + d1/2‖Ŝ(X )−T ‖/2) and Ŝ(X ) = S(X )/�.

The following proposition extends Theorems 2.11 and 2.13 in Conn et al. [5] (with
the correction from the errata for the book). This result was essentially established in
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[3], [4], and [8] but the statement of the proposition was derived from Custódio and
Vicente [7] and Custódio et al. [6]. This proposition provides an error bound for the
gradient of the alternative linear modelm(x) = f (x0)+ cT (x − x0), which is also the
simplex gradient ∇s f (X ). While Theorems 2.11 and 2.13 in [5] cover the determined
and overdetermined cases, respectively, this proposition covers all three cases. The
proof uses the same arguments as in the proofs of Theorems 2.11 and 2.13 in [5] and
is included for completeness.

Proposition 7 Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points in Rd such
that S(X )has full rank andassume that the conditionsmentioned above hold.Consider
the alternative minimum norm least squares linear model m(x) = f (x0)+cT (x− x0)
for the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xk, f (xk))} so that ∇m(x) = c =
∇s f (X ). Then

‖Ŝ(X )T (∇ f (x0) − ∇m(x))‖ ≤ k1/2
ν

2
�,

where Ŝ(X ) = S(X )/�. Moreover, when k ≥ d (determined and overdetermined
cases),

‖∇ f (x0) − ∇m(x)‖ ≤ k1/2
ν

2
‖(Ŝ(X )T )†‖�,

and the gradient of this alternative linear model satisfies, for all points x ∈ B(x0,�),
an error bound of the form

‖∇ f (x) − ∇m(x)‖ ≤ κeg�,

where κeg = ν(1 + k1/2‖(Ŝ(X )T )†‖/2).

Proof Define the vector r(X ) = [r1(X ), . . . , rk(X )]T ∈ R
k by

r(X ) : = S(X )T (∇ f (x0) − c) = S(X )T∇ f (x0) − δ f (X )

=
⎡
⎢⎣

(x1 − x0)T∇ f (x0) − ( f (x1) − f (x0))
...

(xk − x0)T∇ f (x0) − ( f (xk) − f (x0))

⎤
⎥⎦ .

By the integral form of the mean value theorem,

f (xi ) − f (x0) =
∫ 1

0
(xi − x0)

T∇ f (x0 + t (xi − x0)) dt, i = 1, . . . , k.
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From this equation, it follows that for i = 1, . . . , k,

|ri (X )| = |(xi − x0)
T∇ f (x0) − ( f (xi ) − f (x0))|

=
∣∣∣∣
∫ 1

0
(xi − x0)

T∇ f (x0)dt −
∫ 1

0
(xi − x0)

T∇ f (x0 + t (xi − x0)) dt

∣∣∣∣

=
∣∣∣∣
∫ 1

0
(xi − x0)

T [∇ f (x0) − ∇ f (x0 + t (xi − x0))] dt

∣∣∣∣

≤
∫ 1

0

∣∣∣(xi − x0)
T [∇ f (x0) − ∇ f (x0 + t (xi − x0))]

∣∣∣ dt

≤
∫ 1

0
‖xi − x0‖‖∇ f (x0) − ∇ f (x0 + t (xi − x0))‖ dt

≤
∫ 1

0
‖xi − x0‖ν‖t (xi − x0)‖ dt = ν‖xi − x0‖2

∫ 1

0
t dt

= ν

2
‖xi − x0‖2 ≤ ν

2
�2.

Hence,

‖r(X )‖ =
(

k∑
i=1

ri (X )2

)1/2

≤
(

k∑
i=1

(ν

2
�2
)2)1/2

=
(
k
(ν

2
�2
)2)1/2

= k1/2
ν

2
�2.

Now

‖S(X )T (∇ f (x0) − c)‖ = ‖r(X )‖ ≤ k1/2
ν

2
�2,

and so,

‖Ŝ(X )T (∇ f (x0) − c)‖ ≤ k1/2
ν

2
�.

When k ≥ d, Ŝ(X )T has full column rank, and so, (Ŝ(X )T )† is a left inverse of Ŝ(X )T .
In this case,

‖∇ f (x0) − c‖ = ‖(Ŝ(X )T )† Ŝ(X )T (∇ f (x0) − c)‖
≤ ‖(Ŝ(X )T )†‖‖Ŝ(X )T (∇ f (x0) − c)‖ ≤ k1/2

ν

2
‖(Ŝ(X )T )†‖�.

Finally, when k ≥ d, note that for all x ∈ B(x0,�),

‖∇ f (x) − c‖ ≤ ‖∇ f (x) − ∇ f (x0)‖ + ‖∇ f (x0) − c‖
≤ ν‖x − x0‖ + k1/2

ν

2
‖(Ŝ(X )T )†‖� ≤

(
ν + k1/2‖(Ŝ(X )T )†‖ν

2

)
�.

�	
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The corollary below provides the error bound for the simplex gradient as stated
in Custódio and Vicente [7] and Custódio et al. [6]. Note that this is essentially the
first part of Proposition 7 stated in terms of the reduced SVD of Ŝ(X )T = S(X )T/�.
Moreover, as in the first part of Proposition 7, the gradient ∇ f is evaluated at x0 and
not just at any x ∈ B(x0,�). An error bound involving ∇ f (x) for all x ∈ B(x0,�)

that is similar to the one in Proposition 7 can be obtained when k ≥ d.

Corollary 1 Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points in R
d such

that S(X ) has full rank. Moreover, assume that the conditions mentioned above hold.
Further, let Û (X )�̂(X )V̂ (X )T be a reduced SVD of Ŝ(X )T = S(X )T /�. Then

‖Ṽ (X )T [∇ f (x0) − ∇s f (X )]‖ ≤
(
k1/2

ν

2
‖�̂(X )−1‖

)
�,

where Ṽ (X ) = Id if k ≥ d and Ṽ (X ) = V̂ (X ) if k < d.

Proof From the previous proposition,

‖Û (X )�̂(X )V̂ (X )T (∇ f (x0) − ∇s f (X ))‖ ≤ k1/2
ν

2
�.

Since the columns of Û (X ) are orthonormal, it follows that

‖�̂(X )V̂ (X )T (∇ f (x0) − ∇s f (X ))‖ ≤ k1/2
ν

2
�.

Moreover, since S(X ) has full rank, it follows that �̂(X ) is nonsingular, and so,

‖V̂ (X )T (∇ f (x0) − ∇s f (X ))‖ = ‖�̂(X )−1�̂(X )V̂ (X )T (∇ f (x0) − ∇s f (X ))‖
≤ ‖�̂(X )−1‖‖�̂(X )V̂ (X )T (∇ f (x0) − ∇s f (X ))‖
≤ k1/2

ν

2
‖�̂(X )−1‖�.

When k ≥ d, V̂ (X )T is an orthogonal matrix, and so,

‖∇ f (x0) − ∇s f (X )‖ ≤ k1/2
ν

2
‖�̂(X )−1‖�.

�	

6 The simplex gradient as a linear operator and calculus rules

The purpose of this section is to explore what calculus rules for ordinary gradients also
hold for simplex gradients. It begins with a convenient way of defining the simplex
gradients of a function. As before, f and g are functions from R

d to R.
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Definition 3 Let x0 ∈ R
d and let Y ∈ R

d×k be a matrix with full rank, i.e., rank(Y ) =
min{d, k}. The simplex gradient of f at x0 with respect to the matrix Y , denoted by
∇Y f (x0), is the minimum 2-norm least-squares solution to the system:

Y T∇Y f (x0) = δ f,Y (x0) :=
⎡
⎢⎣

f (x0 + y1) − f (x0)
...

f (x0 + yk) − f (x0)

⎤
⎥⎦ ,

where y1, . . . , yk are the columns of Y , which can also be expressed as:

∇Y f (x0) = (Y †)T δ f,Y (x0),

where Y † is the Moore–Penrose pseudoinverse of Y .

In the previous definition, ∇Y f (x0) = Y−T δ f,Y (x0) when k = d, ∇Y f (x0) =
Y (Y T Y )−1δ f,Y (x0) when k < d, and ∇Y f (x0) = (YY T )−1Y δ f,Y (x0) when k > d.
Note that ∇Y f (x0) = ∇s f (〈x0, x0 + y1, . . . , x0 + yk〉), where y1, . . . , yk are
the columns of Y . Moreover, if Y = hId , where h is a positive constant, then

∇Y f (x0) = 1

h
δ f,Y (x0) is simply the finite-difference gradient of f at x0 with fixed

step size h.

Example 7 Suppose f (x) is a linear function, say f (x) = c0 + cT x , where c0 ∈ R

and c ∈ R
d , and Y ∈ R

d×k has full rank. Then, for any x ∈ R
d , ∇Y f (x) =

(Y †)T δ f,Y (x) = (Y †)T Y T c = (YY †)T c. Furthermore, if Y is nonsingular, then
∇Y f (x) = c for any x ∈ R

d .

The following proposition is an immediate consequence of Propositions 2 and 3.

Proposition 8 Let Y ∈ R
d×k be a matrix with full rank. Then for any permutation

matrix P ∈ R
k×k ,

∇Y f (x) = ∇(Y P) f (x).

Next, let y0 = 0 and let y1, . . . , yk be the columns of Y . Furthermore, let α be a
permutation of the indices {0, 1, . . . , k} and define Yα ∈ R

d×k to be the matrix whose
columns are yα(1) − yα(0), . . . , yα(k) − yα(0). When k ≤ d (underdetermined and
determined cases only), the simplex gradient has the more general property that for
any x ∈ R

d ,

∇Y f (x) = ∇Yα f (x + yα(0)).

The next proposition shows that the simplex gradient is a linear operator on the
space of functions from R

d to R.

Proposition 9 Let Y ∈ R
d×k be a matrix with full rank. Then for any x ∈ R

d and for
any constant c,

(a) ∇Y ( f + g)(x) = ∇Y f (x) + ∇Y g(x), and
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(b) ∇Y (c f )(x) = c∇Y f (x).

Proof For any x ∈ R
d ,

∇Y ( f + g)(x) = (Y †)T δ f+g,Y (x) = (Y †)T

⎡
⎢⎣

( f + g)(x + y1) − ( f + g)(x)
...

( f + g)(x + yk) − ( f + g)(x)

⎤
⎥⎦

= (Y †)T

⎛
⎜⎝

⎡
⎢⎣

f (x + y1) − f (x)
...

f (x + yk) − f (x)

⎤
⎥⎦+

⎡
⎢⎣
g(x + y1) − g(x)

...

g(x + yk) − g(x)

⎤
⎥⎦

⎞
⎟⎠

= (Y †)T δ f,Y (x) + (Y †)T δg,Y (x) = ∇Y f (x) + ∇Y g(x)

Moreover, for any x ∈ R
d and any constant c,

∇Y (c f )(x) = (Y †)T δc f,Y (x) = (Y †)T

⎡
⎢⎣

(c f )(x + y1) − (c f )(x)
...

(c f )(x + yk) − (c f )(x)

⎤
⎥⎦

= c(Y †)T

⎡
⎢⎣

f (x + y1) − f (x)
...

f (x + yk) − f (x)

⎤
⎥⎦ = c∇Y f (x).

�	
Thenext proposition provides a product rule for simplex gradients. For convenience,

diag(a1, . . . , ak) denotes a diagonal matrix whose diagonal entries are a1, . . . , ak .

Proposition 10 Let Y ∈ R
d×k be a matrix with full rank. Then for any x ∈ R

d ,

∇Y ( f g)(x) = f (x)∇Y g(x) + diag(g(x + y1), . . . , g(x + yk))∇Y f (x).

Proof For any x ∈ R
d ,

∇Y ( f g)(x) = (Y †)T δ f g,Y (x) = (Y †)T

⎡
⎢⎣

f (x + y1)g(x + y1) − f (x)g(x)
...

f (x + yk)g(x + yk) − f (x)g(x)

⎤
⎥⎦

= (Y †)T

⎛
⎜⎝diag(g(x + y1), . . . , g(x + yk))

⎡
⎢⎣

f (x + y1) − f (x)
...

f (x + yk) − f (x)

⎤
⎥⎦

+ f (x)

⎡
⎢⎣
g(x + y1) − g(x)

...

g(x + yk) − g(x)

⎤
⎥⎦

⎞
⎟⎠
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Since a diagonal matrix commutes with any other matrix (assuming the products
are defined), it follows that

∇Y ( f g)(x) = diag(g(x + y1), . . . , g(x + yk))(Y
†)T

⎡
⎢⎣

f (x + y1) − f (x)
...

f (x + yk) − f (x)

⎤
⎥⎦

+ f (x)(Y †)T

⎡
⎢⎣
g(x + y1) − g(x)

...

g(x + yk) − g(x)

⎤
⎥⎦

= diag(g(x + y1), . . . , g(x + yk))∇Y f (x) + f (x)∇Y g(x).

�

The next proposition provides a quotient rule for simplex gradients.

Proposition 11 Let Y ∈ R
d×k be a matrix with full rank. Then for any x ∈ R

d for
which g(x), g(x + y1), . . . , g(x + yk) are all nonzero,

∇Y

(
f

g

)
(x) = diag

(
1

g(x + y1)
, . . . ,

1

g(x + yk)

)[
g(x)∇Y f (x) − f (x)∇Y g(x)

g(x)

]
.

Proof By the previous proposition,

∇Y f (x) = ∇Y

(
f

g
· g
)

= diag(g(x + y1), . . . , g(x + yk))∇Y

(
f

g

)
(x) +

(
f

g

)
(x)∇Y g(x).

Solving for ∇Y

(
f
g

)
(x) gives

∇Y

(
f

g

)
(x) = diag(g(x + y1), . . . , g(x + yk))

−1
[
∇Y f (x) −

(
f (x)

g(x)

)
∇Y g(x)

]

= diag

(
1

g(x + y1)
, . . . ,

1

g(x + yk)

)[
g(x)∇Y f (x) − f (x)∇Y g(x)

g(x)

]
.

�	
Corollary 2 Let Y ∈ R

d×k be a matrix with full rank. Then for any x ∈ R
d for which

f (x), f (x + y1), . . . , f (x + yk) are all nonzero,

∇Y

(
1

f

)
(x) = −1

f (x)
diag

(
1

f (x + y1)
, . . . ,

1

f (x + yk)

)
∇Y f (x).

There does not seem to be a general chain rule for simplex gradients. However, it
is possible to derive a version of the power rule for simplex gradients as shown next.
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Proposition 12 Let Y ∈ R
d×k be a matrix with full rank. Then for any x ∈ R

d and
for any positive integer n,

∇Y [ f (x)]n =
[

n∑
i=1

[ f (x)]n−i diag( f (x + y1), . . . , f (x + yk))
i−1

]
∇Y f (x).

Proof Proceed by induction on n. The equation is obviously true for n = 1. Next,
assume that the equation is true for n = 	 for some integer 	 ≥ 1, i.e.,

∇Y [ f (x)]	 =
[

	∑
i=1

[ f (x)]	−idiag( f (x + y1), . . . , f (x + yk))
i−1

]
∇Y f (x).

Now

∇Y [ f (x)]	+1 = ∇Y ([ f (x)]	 f (x))
= [ f (x)]	∇Y f (x) + diag( f (x + y1), . . . , f (x + yk))∇Y [ f (x)]	
= [ f (x)]	∇Y f (x) + diag( f (x + y1), . . . , f (x + yk))⎡

⎣
	∑

i=1

[ f (x)]	−idiag( f (x + y1), . . . , f (x + yk))
i−1

⎤
⎦∇Y f (x)

=
⎡
⎣[ f (x)]	 Ik +

	∑
i=1

[ f (x)]	−idiag( f (x + y1), . . . , f (x + yk))
i

⎤
⎦∇Y f (x)

Replacing i by i − 1 in the previous sum gives

∇Y [ f (x)]	+1 =
[
[ f (x)]	 Ik +

	+1∑
i=2

[ f (x)]	+1−idiag( f (x + y1), . . . , f (x

+yk))
i−1
]
∇Y f (x)

=
[

	+1∑
i=1

[ f (x)]	+1−idiag( f (x + y1), . . . , f (x + yk))
i−1

]
∇Y f (x)

Hence, the equation is also true for n = 	 + 1 and the induction is complete. �	
Corollary 3 Let Y ∈ R

d×k be a matrix with full rank. Then for any x ∈ R
d and any

positive integer n,

∇Y [ f (x)]−n = −
[

n∑
i=1

[ f (x)]−i diag( f (x + y1), . . . , f (x + yk))
i−n−1

]
∇Y f (x).
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Proof By Corollary 2 and Proposition 12,

∇Y

(
1

[ f (x)]n
)

= −1

[ f (x)]n diag
(

1

f (x + y1)n
, . . . ,

1

f (x + yk)n

)
∇Y [ f (x)]n

= −[ f (x)]−ndiag( f (x + y1), . . . , f (x + yk))
−n

[
n∑

i=1

[ f (x)]n−idiag( f (x + y1), . . . , f (x + yk))
i−1

]
∇Y f (x)

= −
[

n∑
i=1

[ f (x)]−idiag( f (x + y1), . . . , f (x + yk))
i−n−1

]
∇Y f (x)

�	
Also, there does not seem to be a chain rule for function composition involving

exponential functions. However, the following proposition gives a rule for the simplex
gradient of an exponential function.

Proposition 13 Let Y ∈ R
d×k be a matrix with full rank. Then for any x ∈ R

d and
for any positive integer n,

∇Y e
f (x) = e f (x)(Y †)T (eδ f,Y (x) − 1k×1),

where 1k×1 is a vector of all 1’s and the exponentiation is taken componentwise.

Proof

∇Y e
f (x) = (Y †)T

⎡
⎢⎣
e f (x+y1) − e f (x)

...

e f (x+yk ) − e f (x)

⎤
⎥⎦ = e f (x)(Y †)T

⎡
⎢⎣
e f (x+y1)− f (x) − 1

...

e f (x+yk )− f (x) − 1

⎤
⎥⎦

= e f (x)(Y †)T (eδ f,Y (x) − 1k×1).

�	

7 Summary and conclusions

This article clarified some of the properties of simplex gradients that were previously
not explicitlymentioned in the literature. In particular, the simplex gradient was shown
to be independent of the order of the points in the underdetermined and determined
cases but it depends only on which point is used as the reference point in the overde-
termined case. Moreover, although the simplex gradient and the gradient of the cor-
responding linear model are equal in the determined case, this property is not true for
the underdetermined and overdetermined cases. However, the simplex gradient turns
out to be the gradient of an alternative linear model that has one less coefficient than
the original model and that requires interpolation at the reference point. The negative
of the simplex gradient was also shown to be a descent direction for any interpolating
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linear function in the determined and underdetermined cases but this property does not
hold for the overdetermined case. In addition, a previously established error bound for
simplex gradients was reviewed. Finally, calculus rules for simplex gradients (similar
to those for ordinary gradients) were also proved.
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