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Abstract An infinite programming problem consists in minimizing a functional
defined on a real Banach space under an infinite number of constraints. The main
purpose of this article is to provide sufficient conditions of optimality under gen-
eralized convexity assumptions. Such conditions are necessarily satisfied when the
problem possesses the property that every stationary point is a global minimizer.

Keywords Nonlinear programming · Infinite programming · Sufficient conditions ·
Generalized convexity

V. A. de Oliveira (B)
Instituto de Biociências, Letras e Ciências Exatas, UNESP - Univ. Estadual Paulista,
Rua Cristóvão Colombo, N. 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
e-mail: antunes@ibilce.unesp.br

L. B. dos Santos
Departamento de Matemática, Universidade Federal do Paraná, Setor de Ciências Exatas,
Centro Politécnico, CP 019081, Jd. das Américas, Curitiba, PR, CEP 81531-990, Brazil
e-mail: lucelina@ufpr.br

R. Osuna-Gómez
Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas,
Universidad de Sevilla, C/ Tarfia s/n, 41012, Sevilla, Spain
e-mail: rafaela@us.es

M. A. Rojas-Medar
GMA, Departamento de Ciencias Básicas, Facultad de Ciencias,
Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán, Chile
e-mail: marko@ubiobio.cl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-014-0808-9&domain=pdf


1132 V. A. de Oliveira et al.

1 Introduction

The following infinite programming problem is regarded:

minimize f (x)
subject to gα(x) ≤ 0, α ∈ A,

hβ(x) = 0, β ∈ B,

(IP)

where f, gα, hβ : X → R for α ∈ A and β ∈ B, X is a real Banach space and A and
B are the index sets (which, usually, are subsets of Euclidean spaces).

We are able to cite only some few works where the infinite programming problem
was studied exactly in the formulation above. See, for instance, Cánovas et al. [4], Dinh
et al. [6], Fang et al. [8], Schirotzek [24] and Tapia and Trosset [26], where first order
necessary conditions of optimality can be found. In Cánovas et al. [4] the authors
regard an infinite programming problem with linear inequalities, but the objective
function may be nonsmooth and nonconvex. They illustrate the results with an appli-
cation on water resource management. Dinh et al. [6] study an infinite programming
problem posed in locally convex topological spaces such that the defining functions
are lower semicontinuous and convex. They obtain optimality conditions and duality
and stability theorems. Fang et al. [8] deal with the problem defined on locally convex
Hausdorff topological spaces where the involved functions are assumed to be proper
convex, but not necessarily lower semicontinuous. They focus on constraint qualifica-
tions. Schirotzek [24] considered X as a locally convex Hausdorff topological space,
but he regarded the problem with inequalities constraints only. Tapia and Trosset [26]
considered X as a Hilbert space, and their results are applied to obtain necessity condi-
tions for a problem on probability density estimation. In de Oliveira and Rojas-Medar
[20], first and second order necessary conditions of optimality are provided for amulti-
objective infinite programming problem. Sufficient conditions are also given bymeans
of generalized convexity assumptions. In de Oliveira and Rojas-Medar [21], the same
multiobjective problem is tackled and some results on the scalarization method are
presented.

However, (IP) can be formulated in a different way as follows. We assume that
the functions α �→ gα and β �→ hβ are continuous and define G : X → C(A) and
H : X → C(B) respectively by G(x)(α) = gα(x) and H(x)(β) = hβ(x), where
C(A) denotes the space of all real continuous functions defined on A. Similarly for
C(B). So (IP) can be reformulated as

minimize f (x)
subject to G(x) ≤ θ1, H(x) = θ2,

where θ1 and θ2 denote the zeros ofC(A) andC(B), respectively. In this new formula-
tion, the infinite problem can be viewed as an optimization problem between Banach
spaces and for this kind of problem there is a wide bibliography. We cite, for example,
Ben-Tal and Zowe [2], Gfrerer [10], Girsanov [11], Guignard [12], Luenberger [17],
Mordukhovich and Mou [19], Robinson [22], and Varaiya [27].

123



Nonlinear infinite programming problems 1133

We should mention that semi-infinite programming is subsumed by infinite pro-
gramming. For the reader who are interested specifically in mathematical program-
ming defined in finite dimensional spaces with an infinite number of constraints (i.e.,
semi-infinite programming) we refer the papers by Hettich and Kortanek [14] and
Stein [25] and references therein.

The necessary optimality conditions obtained in de Oliveira and Rojas-Medar [20]
and reproduced here, were established through the unified theory for extremum prob-
lems in topological vector spaces. This theory was first developed in Girsanov [11],
where first order necessary optimality conditions for an abstract optimization problem
are provided. Girsanov’s approach was based on the original ideas of Dubovickiı̆ and
Miljutin [7], who were the first ones to suggest that general extremum problems can
be dealt with a unified functional-analytic approach. This theory was generalized to
include second order conditions in Ben-Tal and Zowe [2], and was the basis of the
necessary optimality conditions furnished in [20].

In this work we provide sufficient conditions for global optimality. The results
on sufficient conditions are obtained by making use of the notion of invexity. Invex
functions were introduced by Hanson [13].

It is well known that a differentiable real-valued function is invex if and only if every
stationary point is a global minimizer. See Craven and Glover [5]. It is also well known
that every stationary point is a global minimizer when a mathematical programming
problem is invex (a problem is said to be invex if the defining functions are invex
with the same invexity kernel). See Hanson [13]. Nevertheless, the converse result is
not valid. Martin [18] weakened the invexity assumption and was able to show that if
a mathematical programming problem is such that every stationary point is a global
minimizer, necessarily it satisfies this weakened invexity condition, while keeping the
sufficiency property of the new generalized convexity notion. Summarizing, Martin
showed that every stationary point is a global minimizer if and only if the problem
satisfies the weakened notion of invexity, called KT-invexity. We believe that it is
more appropriated to call it as KKT-invexity. KKT-invexity for infinite programming
problems was introduced in de Oliveira and Rojas-Medar [20].

In the same spirit, Ivanov [15] defined the second order KKT-invexity (for mathe-
matical programming problems). He proved that every point which satisfies the second
order optimality conditions is a global minimizer if and only if the problem fulfills the
second order KKT-invexity conditions. Similar results were obtained by Santos et al.
[23] for multiobjective mathematical programming problems. Here, we set this gen-
eralized invexity concept for infinite programming problems and establish a similar
result.

Ivanov continued his work on optimality conditions formathematical programming
problems in [16], where higher order necessary conditions of Fritz John and Karush–
Kuhn–Tucker types were proved bymeans of higher order Dini directional derivatives.
He also provided sufficient conditions through higher order pseudoinvexity of the
objective function and prequasiinvexity of the constraint functions.

This work is organized as follows. In the next section we have some preliminary
assumptions and definitions. In Sect. 3 we present first and second order necessary
conditions of Fritz John and Karush-Kuhn-Tucker types. Some constraint qualifica-
tions are given. Sufficient conditions are exhibited in Sect. 4, where in Sect. 4.1 we
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1134 V. A. de Oliveira et al.

define first order KKT-invexity for infinite programming problems and show that this
concept is a sufficient optimality condition which is necessarily satisfied for any prob-
lem with the property that every stationary solution is a global minimizer; in Sect. 4.2
we define second order KKT-invexity and show that an infinite programming problem
obeys it if, and only if, every second order stationary solution is an optimal solution.

2 Preliminaries

Here we introduce some useful assumptions and notations.
Let us present the following hypotheses:

(H1) f, gα, α ∈ A, and hβ, β ∈ B, are Fréchet differentiable;
(H2) f and gα, α ∈ A, are Fréchet differentiable and hβ, β ∈ B, are continuously

Fréchet differentiable;
(H3) f, gα, α ∈ A, and hβ, β ∈ B, are twice Fréchet differentiable;
(H4) α �→ gα(x), α �→ g′

α(x)d, β �→ hβ(x) and β �→ h′
β(x)d are continuous for

all x, d ∈ X ;
(H5) α �→ gα(x), α �→ g′

α(x)d, α �→ g′′
α(x)(d, z), β �→ hβ(x), β �→ h′

β(x)d and
β �→ h′′

β(x)(d, z) are continuous for all x, d, z ∈ X .

We assume throughout this paper that A and B are compact Hausdorff spaces. We
denote byM(A) andM(B) the sets of all realRadonmeasures on A and B, respectively.
We denote by F the set of all feasible solutions of (IP):

F = {x ∈ X : gα(x) ≤ 0, α ∈ A, hβ(x) = 0, β ∈ B},

by A(x̄) the index set of the active constraints at x̄ ∈ F :

A(x̄) = {α ∈ A : gα(x̄) = 0},

and when (H1) holds, by D(x̄) the set of critical directions at x̄ :

D(x̄) = {d ∈ X : f ′(x̄)d ≤ 0, g′
α(x̄)d ≤ 0, α ∈ A, h′

β(x̄)d = 0, β ∈ B}.

If hβ is Fréchet differentiable at x̄ and β �→ h′
β(x̄)z is continuous for every z ∈ X ,

we denote

R(x̄) = {ϕ ∈ C(B), ϕ : β �→ h′
β(x̄)z, z ∈ X}.

Observe that R(x̄) is the range of H ′(x̄), where H : X → C(B) is given by H(x)(β) =
hβ(x) for β ∈ B.

3 First and second order necessary conditions

In this section, we state necessary optimality conditions of Fritz John and Karush–
Kuhn–Tucker types. The omitted proofs can be found in de Oliveira and Rojas-Medar
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Nonlinear infinite programming problems 1135

[20], where these conditions were established for a multiobjective infinite program-
ming problem. Indeed, the results below follow from de Oliveira and Rojas-Medar
[20] as a particular case by taking the number of objective functions p = 1.

Theorem 1 Suppose that assumptions (H3) and (H5) are valid. Let x̄ ∈ F be an
optimal solution of (IP). Assume that R(x̄) is closed. Then for every d ∈ D(x̄) there
correspond a real number λ ≥ 0, a positive Radon measure μ ∈ M(A) and a signed
Radon measure ν ∈ M(B), not all zero, such that

λ f ′(x̄)z +
∫
A
g′
α(x̄)zμ(dα) +

∫
B
h′

β(x̄)zν(dβ) = 0 ∀ z ∈ X, (1)
∫
A
gα(x̄)μ(dα) = 0, (2)

λ f ′′(x̄)(d, d) +
∫
A
g′′
α(x̄)(d, d)μ(dα) +

∫
B
h′′

β(x̄)(d, d)ν(dβ) ≥ 0, (3)

λ f ′(x̄)d = 0, (4)∫
A
g′
α(x̄)dμ(dα) = 0. (5)

Proof See Theorem 4.2 in [20]. 	

Remark 1 In the theorem above one sees that the Lagrange multipliers for infinite
programming problems are represented by Radon measures. Radon measures, by def-
inition, are outer regular on Borel sets and inner regular on open sets. Moreover, it is
possible to identify L1(E), E = A or E = B, as a subspace of M(E). In fact, if �

denotes the Lebesgue measure on E , the measure dρφ = φ d�, φ ∈ L1(E), is a Radon
measure such that ‖ρφ‖ = ‖φ‖, so that φ �→ ρφ is an isometric embedding from
L1(E) into M(E). From the Radon–Nikodym Theorem1 one finds that the range of
such an isometry is exactly the set of all measures which are absolutely continuous
with respect to �. Therefore, if both the measures μ and ν in Theorem 1 happen to be
absolutely continuous with respect to �, then they can be represented by functions in
L1(E), namely, their Radon–Nikodym derivative with respect to �. In this case, the
integrals above can be calculated as Lebesgue integrals. For instance,

λ f ′(x̄)z +
∫
A
g′
α(x̄)zμ(dα) +

∫
B
h′

β(x̄)zν(dβ)

= λ f ′(x̄)z +
∫
A
g′
α(x̄)z

dμ

d�
(α) dα +

∫
B
h′

β(x̄)z
dν

d�
(β) dβ.

Investigating what would be the additional conditions we should impose on the data
of the problem in order to obtain in advance the absolutely continuity of measures μ

and ν with respect to � is going to be a topic for future work. Another interesting topic
we will study in the future is the sensitivity analysis of the multipliers.

1 See Folland [9].

123



1136 V. A. de Oliveira et al.

In the last theorem we have Fritz John type optimality conditions. In the absence
of further assumptions, conditions (1)–(5) may degenerate, that is, they may be valid
with λ = 0. In such a case the information about the objective function is missed, so
that the conditions become useless. In order to guarantee that λ > 0, we need to ask
to the so called constraints qualifications.

Definition 1 We say that x̄ ∈ F is a second order Karush–Kuhn–Tucker solution
of (IP) if, given d ∈ D(x̄), there exist a scalar λ > 0, a positive Radon measure
μ ∈ M(A) and a signed Radon measure ν ∈ M(B) such that (1)–(5) hold.

Definition 2 Suppose that (H3) is satisfied. We say that the constraints of (IP) satisfy
the CQ(d) condition for d ∈ X at x̄ ∈ F if

(i) R(x̄) = C(B);
(ii) there exists ẑ ∈ X such that

g′
α(x̄)ẑ + g′′

α(x̄)(d, d) < 0, α ∈ A,

h′
β(x̄)ẑ + h′′

β(x̄)(d, d) = 0, β ∈ B.

Corollary 1 If condition CQ(d) is satisfied for every d ∈ D(x̄) at x̄ , then x̄ is a second
order Karush–Kuhn–Tucker solution.

Proof It follows directly from Theorem 1 and Corollary 8.3 in Ben-Tal and Zowe [2].
	


Definition 3 We say that x̄ ∈ F is a first order Karush–Kuhn–Tucker solution (or
simply a Karush–Kuhn–Tucker solution) of (IP) if there exist a scalar λ > 0, a positive
Radon measure μ ∈ M(A) and a signed Radon measure ν ∈ M(B) such that (1)–(2)
hold.

We now analyze the first order conditions separately. Let us present an additional
constraint qualification. Namely, we introduce the Mangasarian–Fromovitz type con-
straint qualifications for (IP).

Definition 4 Suppose that (H1) is satisfied. We say that the constraints of (IP) satisfy
the Mangasarian–Fromovitz type constraint qualification at x̄ ∈ F if

(i) there does not exist a nonzero signed measure ν ∈ M(B) such that

∫
B
h′

β(x̄)zν(dβ) = 0 ∀ z ∈ X;

(ii) there exists ẑ ∈ X such that

g′
α(x̄)ẑ < 0, α ∈ A(x̄),

h′
β(x̄)ẑ = 0, β ∈ B.
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Nonlinear infinite programming problems 1137

Remark 2 Let x̄ ∈ F and d̄ = 0 ∈ D(x̄). If R(x̄) is closed, it follows from Hahn-
Banach and Riesz Theorems2 that the nonexistence of a nonzero signed measure
ν ∈ M(B) such that

∫
B
h′

β(x̄)zν(dβ) = 0 ∀ z ∈ X

is equivalent to R(x̄) = C(B), that is, H ′(x̄) being onto (observe that in finite dimen-
sions, R(x̄) is always closed, so that this equivalence always holds true). Therefore,
when R(x̄) is closed, CQ(0) is exactly the Mangasarian-Fromovitz constraint qualifi-
cation defined above.

Corollary 2 Suppose that assumptions (H2) and (H4) are valid. Let x̄ be an optimal
solution of (IP). Assume that R(x̄) is closed. If the constraints of (IP) satisfy the
Mangasarian–Fromovitz type constraint qualification at x̄ , then x̄ is a Karush–Kuhn–
Tucker solution.

Proof See Theorem 4.8 in [20]. 	


4 Sufficient conditions

In this section we present sufficient conditions of optimality under generalized con-
vexity assumptions. Initially, we show that every first order Karush–Kuhn–Tucker
solution is an optimal solution when the defining functions are invex with a common
invexity kernel. Then we make a study for (IP) similar to that Martin [18] made for
classical mathematical programming problems. Martin introduced a weaker notion of
invexity, calledKKT-invexity, and showed that this notion is not only sufficient but also
a necessary condition for the validity of the property that every stationary point (first
order Karush–Kuhn–Tucker solution) is a global minimizer of the problem. The same
kind of study is carried out by Ivanov [15] for second order Karush–Kuhn–Tucker
solutions. As Martin, Ivanov worked with mathematical programming problems in
finite dimensions. We generalize Ivanov’s results for (IP).

4.1 First order sufficient conditions

The definition of KKT-invexity given here is slightly different from the definition
provided in de Oliveira and Rojas-Medar [20]. It is closer to Martin’s definition. In
fact, in [20] instead of requiring the invexity of the objetive function, as Martin did
and as we do in the Definition 6 below, we request the pseudo-invexity of it. It is
well known that, in finite dimensions, invexity and pseudo-invexity are equivalent
(see Ben-Israel and Mond [1] for example). The equivalence between KKT-invexity
given in [20] and KKT-invexity given here will be clear after Theorem 3 in the sequel
is established.

2 See, for example, Brézis [3] and Folland [9].
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1138 V. A. de Oliveira et al.

Definition 5 Let X be a normed space. We say that a Fréchet differentiable function
f : X → R is invex at x̄ ∈ X if there exists a map η : X × X → X such that

f (x) − f (x̄) ≥ f ′(x̄)η(x, x̄) ∀ x ∈ X.

We say that f is invex if f is invex at each x̄ ∈ X .

Theorem 2 Suppose that assumption (H1) is valid. Let x̄ ∈ F be a Karush-Kuhn-
Tucker solution. Assume that f, gα, α ∈ A(x̄), hβ and −hβ, β ∈ B, are invex at x̄
with a common η. Then x̄ is a global optimal solution of (IP).

Proof See Theorem 4.9 in [20]. 	

Now we turn to introduce the notion of KKT-invexity for (IP) and to establish a

result similar to that of Martin [18].

Definition 6 Assume that (H1) is valid. We say that (IP) is Karush–Kuhn–Tucker
invex (or KKT-invex) if there exists a map η : X × X → X such that

f (x) − f (x̄) ≥ f ′(x̄)η(x, x̄)

0 ≥ g′
α(x̄)η(x, x̄), α ∈ A(x̄),

0 = h′
β(x̄)η(x, x̄), β ∈ B,

for all x, x̄ ∈ F .

Remark 3 We remark that if there are no equality constraints, X has finite dimension
and A is a finite set, the definition above coincides exactly with the definition given
by Martin. So, this definition is in fact a generalization of the Martin’s definition.

Notice that if functions f, gα, α ∈ A(x̄), hβ and −hβ, β ∈ B, are invex, then
(IP) is clearly KKT-invex.

The next example provides a KKT-invex problem which is not invex. In addition,
it holds the property that every KKT-solution is a global optimal solution. This shows
that invexity is sufficient for the validity of such a property, but it may be valid without
the problem being necessarily invex.

Example 1 Let X = C([0, 1]) × C([0, 1]). Consider the problem

minimize f (x, y) =
∫ 1

0
[1 − exp(−y(t))]dt

subject to gα(x, y) = −y(α) ≤ 0, α ∈ [0, 1],
hβ(x, y) = 1 +

∫ β

0
(−x(t) + y(t)2)dt − x(β) = 0, β ∈ [0, 1].

Set (x̂(t), ŷ(t)) = (exp(−t), 0), t ∈ [0, 1]. It is easy to see that (x̂, ŷ) is a feasible
Karush–Kuhn–Tucker solution with λ̂ = 1, μ̂ as the Lebesgue measure and ν̂ as the
null measure. Defining η = (η1, η2) ∈ X as

η1(x, y, x̄, ȳ)(t)=2 exp(−t)
∫ t

0
ȳ(s)[exp(s) − exp(s − y(s) + ȳ(s))]ds, t ∈ [0, 1],

η2(x, y, x̄, ȳ)(t) = 1 − exp(−y(t) + ȳ(t)), t ∈ [0, 1],
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Nonlinear infinite programming problems 1139

it is easily seen that the problem is KKT-invex, so that (x̂, ŷ) is an optimal solution.
However, this problem is not invex. In fact, if one assumes the existence of a map

η = (η1, η2) such that both objective and constraints functions are invex with this
common kernel, then

−y(α) + ȳ(α) = gα(x, y) − gα(x̄, ȳ) ≥ g′
α(x̄, ȳ)η(x, y, x̄, ȳ) = −η2(x, y, x̄, ȳ)(α),

for all α ∈ [0, 1], so that

f (x, y) − f (x̄, ȳ) −
∫ 1

0
exp(−ȳ(t))[y(t) − ȳ(t)]dt

≥ f (x, y) − f (x̄, ȳ) −
∫ 1

0
exp(−ȳ(t))η2(x, y, x̄, ȳ)(t))dt ≥ 0

for all (x, y), (x̄, ȳ) ∈ X . A contradiction follows for the particular choice y(t) = 0,
ȳ(t) = t, t ∈ [0, 1], and x, x̄ arbitrary.

Now let us see that (x̂(t), ŷ(t)) = (exp(−t), 0), t ∈ [0, 1], is the only Karush–
Kuhn–Tucker solution. Assume that (x̃, ỹ) is a Karush–Kuhn–Tucker solution with
ỹ(t) > 0, t ∈ [0, 1]. Then there exist λ̃ = 1, a positive measure μ̃ ∈ M([0, 1]) and
a signed measure ν̃ ∈ M([0, 1]) such that (1)–(2) hold. Since ỹ(t) > 0, t ∈ [0, 1],
it follows from (2) that μ̃ = 0. By choosing w̃ ∈ C([0, 1]) such that w̃(t) > 0, t ∈
[0, 1], and setting z̃(t) = 2

∫ t
0 exp(s − t)ỹ(s)w̃(s)ds ∈ C([0, 1]), and substituting in

(1), a contradiction follows. Therefore, in this problem, every Karush–Kuhn–Tucker
solution is an optimal solution.

Theorem 3 Suppose that assumptions (H2) and (H4) are valid. Assume that the con-
straints of (IP) satisfy theMangasarian–Fromovitz type constraint qualificationat each
x̄ ∈ F and that R(x̄) is closed for each x̄ ∈ F. Then, every Karush–Kuhn–Tucker
solution is a global optimal solution if, and only if, (IP) is Karush–Kuhn–Tucker invex.

Proof Observe that Theorem 3 is not a direct consequence of Theorem 4.11 in [20]
since here the invexity of the objective function is required in the definition of KKT-
invexity, while in [20], the pseudo-invexity. Although not the same, the proof is very
similar and will not be included. 	


4.2 Second order sufficient conditions

Now we generalize Ivanov’s definition of second order KKT-invexity for infinite pro-
gramming problems as well as his results concerning this concept of generalized
invexity. Due to the infinite dimensions setting, the techniques of the proofs are not
all the same as in Ivanov [15].

Definition 7 Assume that (H3) is valid. We say that (IP) is second order Karush–
Kuhn–Tucker invex (or secondorderKKT-invex) if there existmapsd, η : X×X → X
and ω : X × X → R obeying the following conditions

123



1140 V. A. de Oliveira et al.

f (y) − f (x) ≥ f ′(x)η(x, y) + ω(x, y) f ′′(x)(d(x, y), d(x, y)),

0 ≥ g′
α(x)η(x, y) + ω(x, y)g′′

α(x)(d(x, y), d(x, y)), α ∈ A(x̄),

0 = h′
β(x)η(x, y) + ω(x, y)h′′

β(x)(d(x, y), d(x, y)), β ∈ B,

d(x, y) ∈ D(x) and ω(x, y) ≥ 0,

for all x, y ∈ F .

Remark 4 Observe that this definition is the natural extension for infinite programming
of the corresponding one given by Ivanov [15] for mathematical programming. More-
over, this notion generalizes the first order Karush–Kuhn–Tucker invexity defined in
the last section. Indeed, by taking d(x, y) = 0 ∈ X or ω(x, y) = 0 in the definition
above we see that every KKT-invex infinite programming problem is also second order
KKT-invex.

Proposition 1 Assume that (H3) holds. If x̄ ∈ F is a second order Karush–Kuhn–
Tucker solution of (IP), then for each fixed d ∈ D(x̄), the system

⎧⎪⎨
⎪⎩

f ′(x̄)η + ω f ′′(x̄)(d, d) < 0,

g′
α(x̄)η + ωg′′

α(x̄)(d, d) ≤ 0, α ∈ A(x̄),

h′
β(x̄)η + ωh′′

β(x̄)(d, d) = 0, β ∈ B,

(6)

does not have any solution (η, ω) ∈ X × R+.

Proof Let x̄ ∈ F be a second order Karush–Kuhn–Tucker solution of (IP). Let us
suppose, on the contrary, that there exists d ∈ D(x̄) such that system (6) does have a
solution (η, ω) ∈ X × R+.

Provided x̄ is a second order Karush–Kuhn–Tucker solution, there exist a scalar
λ > 0, a positive measure μ ∈ M(A) and a signed measure ν ∈ M(B) satisfying
(1)–(5), from where it follows that

λ f ′(x̄)η +
∫
A(x̄)

g′
α(x̄)ημ(dα) +

∫
B
h′

β(x̄)ην(dβ) + λω f ′′(x̄)(d, d)

+
∫
A(x̄)

ωg′′
α(x̄)(d, d)μ(dα) +

∫
B

ωh′′
β(x̄)(d, d)ν(dβ) ≥ 0. (7)

On the other hand, from (6) one has

λ f ′(x̄)η + λω f ′′(x̄)(d, d) +
∫
A(x̄)

[g′
α(x̄)η + ωg′′

α(x̄)(d, d)]μ(dα)

+
∫
B
[h′

β(x̄)η + ωh′′
β(x̄)(d, d)]ν(dβ) < 0,

which contradicts (7). 	
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We set out to show that the converse of Proposition 1 holds true. Consider the
auxiliary infinite programming problem stated below:

minimize ϕ(η, ω)

subject to ψα(η, ω) ≤ 0, α ∈ A(x̄) ∪ {α0},
γβ(η, ω) = 0, β ∈ B,

(AP)

where ϕ,ψα, γβ : X × R → R, α ∈ A(x̄) ∪ {α0}, β ∈ B, are defined as

ϕ(η, ω) = f ′(x̄)η + ω f ′′(x̄)(d, d),

ψα(η, ω) =
{
g′
α(x̄)η + ωg′′

α(x̄)(d, d), α ∈ A(x̄),
−ω, α = α0,

γβ(η, ω) = h′
β(x̄)η + ωh′′

β(x̄)(d, d), β ∈ B,

with α0 /∈ A(x̄), and d ∈ X is an arbitrary fixed direction and x̄ ∈ F is an arbitrary
fixed point.

It is easy to see that (η̄, ω̄) = (0, 0) is an optimal solution of (AP) when (6) does
not have any solution. Let us verify that the assumptions of Corollary 1 are satisfied.

Lemma 1 Assume that (H3) is valid. Let x̄ ∈ F. Assume that the constraints of (IP)
satisfy the CQ(d) condition at x̄ for a given direction d ∈ D(x̄). Then the constraints
of (AP) also satisfy the CQ(d) condition for every (d1, d2) ∈ D(η̄, ω̄) at (η̄, ω̄).

Proof Provided CQ(d) is satisfied, one has R(x̄) = C(B) and the existence of a point
ẑ ∈ X such that

g′
α(x̄)ẑ + g′′

α(x̄)(d, d) < 0, α ∈ A,

h′
β(x̄)ẑ + h′′

β(x̄)(d, d) = 0, β ∈ B.

Let ϕ ∈ C(B). Then there exists z̃ ∈ X such that ϕ(β) = h′(x̄)z̃ for all β ∈ B. For
(z̃1, z̃2) = (z̃, 0) ∈ X × R, it follows that

γ ′
β(η̄, ω̄)(z̃1, z̃2) = h′

β(x̄)z̃1 + z̃2h
′′
β(x̄)(d, d) = h′

β(x̄)z̃ = ϕ(β) ∀ β ∈ B,

so that C(B) ⊂ R(η̄, ω̄). Thus, R(η̄, ω̄) = C(B).
Let (d1, d2) ∈ D(η̄, ω̄). Taking (ẑ1, ẑ2) = (ẑ, 1) ∈ X × R, one obtains

ψ ′
α(η̄, ω̄)(ẑ1, ẑ2) + ψ ′′

α(η̄, ω̄)((d1, d2), (d1, d2))

=
{
g′
α(x̄)ẑ + g′′

α(x̄)(d, d) < 0, α ∈ A(x̄),
−1 < 0, α = α0,

γ ′
β(η̄, ω̄)(ẑ1, ẑ2) + γ ′′

β (η̄, ω̄)((d1, d2), (d1, d2))

= h′
β(x̄)ẑ + h′′

β(x̄)(d, d) = 0, β ∈ B.

Therefore the constraints of (AP) satisfy CQ(d) for arbitrary (d1, d2) ∈ D(η̄, ω̄).
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Now we state and prove the converse of Proposition 1.

Proposition 2 Suppose that (H3) and (H5) are valid. Assume that CQ(d) is satisfied
for every d ∈ D(x̄) at x̄ , for all x̄ ∈ F. Let x̄ ∈ F be such that system (6) does not
have any solution (η, ω) ∈ X × R+, for each d ∈ D(x̄). Then x̄ is a second order
Karush–Kuhn–Tucker solution of (IP).

Proof Let d ∈ D(x̄) be an arbitrarily fixed critical direction. It is easily verified that
(η̄, ω̄) = (0, 0) ∈ X × R is an optimal solution of (AP) when (6) does not have any
solution (η, ω) ∈ X ×R+. By Lemma 1 we know that the constraints of (AP) satisfy
CQ(d) for every (d1, d2) ∈ D(η̄, ω̄). Therefore we can apply Corollary 1 and get that
(η̄, ω̄) is a second order Karush–Kuhn–Tucker solution of (AP). For (d, 0) ∈ X × R

we have that

ϕ′(η̄, ω̄)(d, 0) = f ′(x̄)d ≤ 0,

ψ ′
α(η̄, ω̄)(d, 0) =

{
g′
α(x̄)d ≤ 0, α ∈ A(x̄),

0, α = α0,

γ ′
β(η̄, ω̄)(d, 0) = h′

β(x̄)d = 0, β ∈ B.

Hence, (d, 0) ∈ X × R is a critical direction for (AP) at (η̄, ω̄) = (0, 0), that is,
(d, 0) ∈ D(η̄, ω̄). Let us denote δ = (d, 0). Then, as (η̄, ω̄) is a second order Karush–
Kuhn–Tucker solution, there exist a scalar λ > 0, a positive Radon measure μ̃ ∈
M(A(x̄) ∪ {α0}) and a signed Radon measure ν ∈ M(B) satisfying

λϕ′(η̄, ω̄)(z1, z2) +
∫
A(x̄)∪{α0}

ψ ′
α(η̄, ω̄)(z1, z2) μ̃(dα)

+
∫
B

γ ′
β(η̄, ω̄)(z1, z2)ν(dβ) = 0 ∀ (z1, z2) ∈ X × R, (8)

∫
A(x̄)∪{α0}

ψα(η̄, ω̄)(z1, z2) μ̃(dα) = 0, (9)

λϕ′′(η̄, ω̄)(δ, δ) +
∫
A(x̄)∪{α0}

ψ ′′
α(η̄, ω̄)(δ, δ) μ̃(dα)

+
∫
B

γ ′′
β (η̄, ω̄)(δ, δ)ν(dβ) ≥ 0, (10)

λϕ′(η̄, ω̄)δ = 0, (11)∫
A(x̄)∪{α0}

ψ ′
α(η̄, ω̄)δ μ̃(dα) = 0. (12)

Particularly, letting (z1, z2) = (z, 0) ∈ X × R in (8), we obtain

λ f ′(x̄)z +
∫
A(x̄)

g′
α(x̄)z μ̃(dα) +

∫
B
h′

β(x̄)zν(dβ) = 0 ∀z ∈ X. (13)
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Now set (z1, z2) = (d, 1) ∈ X × R in (8) to get

0 = λ[ f ′(x̄)d + 1 f ′′(x̄)(d, d)] +
∫
A(x̄)

[g′
α(x̄)d + 1g′′

α(x̄)(d, d)] μ̃(dα)

+
∫

{α0}
(−1) μ̃(dα) +

∫
B
[h′

β(x̄)d + h′′
β(x̄)(d, d)]ν(dβ)

= λ f ′(x̄)d +
∫
A(x̄)

g′
α(x̄)d μ̃(dα) +

∫
B
h′

β(x̄)ν(dβ)

+ λ f ′′(x̄)(d, d) +
∫
A(x̄)

g′′
α(x̄)(d, d) μ̃(dα) +

∫
B
h′′

β(x̄)(d, d)ν(dβ)

− μ̃({α0}).

Taking (13) into account, we get

λ f ′′(x̄)(d, d) +
∫
A(x̄)

g′′
α(x̄)(d, d) μ̃(dα) +

∫
B
h′′

β(x̄)(d, d)ν(dβ)

= μ̃({α0}) ≥ 0, (14)

provided μ̃ is a positive Radon measure. From (11) we have

0 = λϕ′(η̄, ω̄)δ = λ f ′(x̄)d. (15)

As a consequence of (12) we obtain

0 =
∫
A(x̄)∪{α0}

ψ ′
α(ω̄, η̄)δ μ̃(dα) =

∫
A(x̄)

g′
α(x̄))dμ̃(dα) +

∫
{α0}

0 μ̃(dα)

=
∫
A(x̄)

g′
α(x̄)d μ̃(dα). (16)

It is clear that gα(x̄) = 0 for all α ∈ A(x̄), so that

∫
A(x̄)

gα(x̄) μ̃(dα) = 0. (17)

Define3

μ(K ) =
{

μ̃(K ), if K ∈ B(A(x̄)),
0, if K ∈ B(A)\B(A(x̄)).

3 We denote by B(A) the Borel σ -algebra on A.
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Then μ is a positive Radon measure on A. We have that

∫
A(x̄)

g′
α(x̄)z μ̃(dα) =

∫
A
g′
α(x̄)zμ(dα), (18)

∫
A(x̄)

g′′
α(x̄)(d, d) μ̃(dα) =

∫
A
g′′
α(x̄)(d, d)μ(dα), (19)

∫
A(x̄)

gα(x̄) μ̃(dα) =
∫
A
gα(x̄)μ(dα). (20)

From (13)–(20) we see that x̄ is a second order Karush–Kuhn–Tucker solution of (IP).
	


The following proposition brings forward an alternative characterization for the
second order KKT-invexity (Definition 7).

Proposition 3 Assume that (H3) holds. (IP) is second order KKT-invex if, and only
if, for each pair x, y ∈ F with f (y) < f (x) there exist a direction d(x, y) ∈ D(x)
and maps η : X × X → X and ω : X × X → R+ such that

f ′(x)η(x, y) + ω(x, y) f ′′(x)(d(x, y), d(x, y)) < 0, (21)

g′
α(x)η(x, y) + ω(x, y)g′′

α(x)(d(x, y), d(x, y)) ≤ 0, α ∈ A(x), (22)

h′
β(x)η(x, y) + ω(x, y)h′′

β(x)(d(x, y), d(x, y)) = 0, β ∈ B. (23)

Proof Let x, y ∈ F with f (y) < f (x). It is straightforward to verify that a second
order KKT-invex problem obeys (21)–(23).

Let us establish the converse. Suppose that given x, y ∈ F with f (y) < f (x),
there exist d(x, y) ∈ D(x), ω(x, y) ≥ 0 and η(x, y) ∈ X obeying (21)–(23). On the
contrary, assume that (IP) is not second order KKT-invex, so that, there exist x, y ∈ F
such that at least one of the inequalities

f (y) − f (x) ≥ f ′(x)u + v f ′′(x)(z, z), (24)

0 ≥ g′
α(x)u + vg′′

α(x)(z, z), α ∈ A(x), (25)

0 = h′
β(x)u + vh′′

β(x)(z, z), β ∈ B, (26)

is not satisfied for any given triple (u, v, z) ∈ X ×R+ × D(x). Choosing ū = 0 ∈ X ,
v̄ = 1 ≥ 0 and z̄ = 0 ∈ D(x) we see that (ū, v̄, z̄) satisfies (25) and (26). So (24) is
not valid, and hence f (y) < f (x). Then, by hypothesis, there exist d(x, y) ∈ D(x),
η(x, y) ∈ X and ω(x, y) ≥ 0 such that (21)–(23) are verified. Arbitrarily fix t > 0
and take û = tη(x, y) ∈ X , v̂ = tω(x, y) ≥ 0 and ẑ = d(x, y) ∈ D(x). Then (22)
and (23) imply in (25) and (26). Therefore (24) is violated, that is,

f (y) − f (x) < t[ f ′(x)η(x, y) + ω(x, y) f ′′(x)(d(x, y), d(x, y))]

for all t > 0, which is not possible once, from (21), the term in brackets is negative.
Thus (IP) is second order KKT-invex. 	
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We are now able to set the main result of this section up.

Theorem 4 Suppose that (H3) and (H5) hold. Assume that CQ(d) is satisfied for every
d ∈ D(x̄) at x̄ , for all x̄ ∈ F. Then, (IP) is second order KKT-invex if, and only if,
every second order Karush–Kuhn–Tucker solution is an optimal solution of (IP).

Proof Assume that (IP) is second order KKT-invex, but there exists a second order
Karush–Kuhn–Tucker solution x ∈ F which is not an optimal solution of (IP), so
that there exists y ∈ F with f (y) < f (x). By Proposition 3, there exist a direction
d(x, y) ∈ D(x) and maps η : X × X → X and ω : X × X → R+ such that

⎧⎪⎨
⎪⎩

f ′(x)η(x, y) + ω(x, y) f ′′(x)(d(x, y), d(x, y)) < 0,

g′
α(x)η(x, y) + ω(x, y)g′′

α(x)(d(x, y), d(x, y)) ≤ 0, α ∈ A(x̄),

h′
β(x)η(x, y) + ω(x, y)h′′

β(x)(d(x, y), d(x, y)) = 0, β ∈ B,

which contradicts Proposition 1.
Conversely, assume that every second order Karush–Kuhn–Tucker solution is an

optimal solution of (IP).
Let us arbitrarily fix x ∈ F and d ∈ D(x). Consider the following systems:

⎧⎪⎨
⎪⎩

f ′(x)η + ω f ′′(x)(d, d) < 0,

g′
α(x)η + ωg′′

α(x)(d, d) ≤ 0, α ∈ A(x̄),

h′
β(x)η + ωh′′

β(x)(d, d) = 0, β ∈ B,

(S1)

whose variable is (η, ω) ∈ X × R+, and

⎧⎪⎨
⎪⎩

f (y) − f (x) < 0,

gα(y) ≤ 0, α ∈ A,

hβ(y) = 0, β ∈ B,

(S2)

whose variable is y ∈ X . We claim that, if (S2) has a solution y ∈ X then (S1) has
a solution (η, ω) ∈ X × R. Indeed, if (S2) has a solution y ∈ X then x ∈ F is not
an optimal solution of (IP), so that, by assumption, x is not a second order Karush–
Kuhn–Tucker solution. From Proposition 2, there exists d ∈ D(x) such that system
(6) has a solution (η, ω), that is, (S1) has a solution. As claimed.

Therefore, if (IP) were not second order KKT-invex, then, from Proposition 3, there
exist x, y ∈ F with f (y) < f (x) such that (21)–(23) are not satisfied for any given
d ∈ D(x), η ∈ X and ω ≥ 0, so that (S1) does not have any solution. Thence we have
that (S2) does have a solution while (S1) does not have any solution, in disagreement
with the claim above. Thus, (IP) is second order KKT-invex. 	


The next example provides a second-order KKT-invex problem which is not KKT-
invex.
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Example 2 Let X = C([0, 1]) × C([0, 1]). Consider the problem

minimize f (x, y) =
∫ 1

0
[1 − x(t)]y(t)dt

subject to gα(x, y) = [y(α)]2 − 2y(α) ≤ 0, α ∈ [0, 1],
hβ(x, y) = x(β) −

∫ β

0
y(t)dt = 0, β ∈ [0, 1].

Set, for each t ∈ [0, 1], (x̄(t), ȳ(t)) = (0, 0), (x̂(t), ŷ(t)) = (2t, 2) and (x̃(t), ỹ(t)) =
(t, 1). It is easy to see that

(x̄, ȳ) is a second order Karush–Kuhn–Tucker solution with λ̄ = 2, μ̄ = � and
ν̄ = 0, and f (x̄, ȳ) = 0;
(x̂, ŷ) is a second order Karush–Kuhn–Tucker solution with λ̂ = 1/2, μ̂ = �/4
and ν̂ = �, and f (x̂, ŷ) = 0;
(x̃, ỹ) is a first order Karush–Kuhn–Tucker solution with λ̃ = 1, μ̃ = 0 and ν̃ = �,
and f (x̃, ỹ) = 1/2.

As f (x, y) ≥ 0 for all feasible solution (x, y), it follows that (x̄, ȳ) and (x̂, ŷ) are
optimal solutions, and (x̃, ỹ) is not an optimal solution. Thus, from Theorem 3, one
sees that the problem is not KKT-invex. It is not difficult to show that (x̄, ȳ) and (x̂, ŷ)
are the only second orderKarush–Kuhn–Tucker solutions. Therefore, fromTheorem4,
one sees that the problem is second order KKT-invex.
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