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Abstract In this paper, we consider a nondifferentiable multiobjective semi-infinite
optimization problem.We introduce a qualification condition and derive strongKarusk
Kuhn Tucker(KKT) necessary conditions. Then a sufficient optimality condition is
proved under invexity assumptions.
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1 Introduction

This paper focuses mainly on the following multiobjective semi-infinite programming
problem:

(MOSIP) inf
(
f1(x), f2(x), . . . , fm(x)

)

s.t. g j (x) ≤ 0, j ∈ J,

x ∈ R
n,

where fi , i ∈ I := {1, 2, . . . ,m}, and g j , j ∈ J , are locally Lipschitz functions from
R
n to R ∪ {+∞}, and J is an arbitrary (but nonempty) index set.
Theoretical aspects and a wide range of applications of semi-infinite (both scalar

problems and vector ones) programming have been studied intensively by many
researchers; see [2–5,8,12,14–17,20,25] and their references. To the best of our
knowledge, there are only a few works available dealing with optimality condi-
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1122 N. Kanzi

tions for (MOSIP); see [1,27] for differentiable case, [6,11] for convex case, and
[9,10,22,23,26] for other cases. Recently, in [18] we obtained Karusk-Kuhn-Tucker
(KKT, briefly) optimality conditions for non-differentiable non-convex (MOSIP).

Inmany situations,weobtain positiveKKTmultiplier associatedwith vector-valued
objective function

(
f1(x), f2(x), . . . , fm(x)

)
, namely, some of the multipliers may be

equal to zero. We say that strong KKT condition holds for a (MOSIP), when the KKT
multipliers are positive for all components of the objective function. The aim of this
paper is to derive the strong KKT types necessary and sufficient optimality conditions
for the (MOSIP). Our results are expressed in terms of Clarke subdifferential.

The paper is organized as follows. In Sect. 2, we introduce some notations, basic
definitions, and preliminaries, which are used throughout the paper. In Sect. 3, we give
a constraint qualification and derive the strong KKT type necessary conditions for
(MOSIP). In Sect. 4, a strong KKT type sufficient condition for (MOSIP) is obtained.

2 Notations and preliminaries

In this section we present some definitions and auxiliary results that will be needed in
the sequel.

Let A be a nonempty subset ofRn , denote by Ā, conv(A), and cone(A), the closure
of A, the convex hull, and the convex cone (containing the origin) generated by A,
respectively. Also, the polar cone and the strict polar cone of A are defined respectively
by:

A− := {
d ∈ Rn | 〈x, d〉 ≤ 0 ∀x ∈ A

}
,

As := {
d ∈ Rn | 〈x, d〉 < 0 ∀x ∈ A

}
,

where 〈., .〉 exhibits the standard inner product inRn . Notice that A− is always a closed
convex cone. It is easy to show that if As 	= ∅ then As = A−. The bipolar Theorem
states that (A−)− = cone(A); see [13].

Let us recall the following theorems which will be used in the sequel.

Theorem 1 ([13]) Let A be a nonempty compact subset of Rn. Then

(I) conv(A) is a closed set.
(II) cone(A) is a closed cone, if 0 /∈ conv(A).

We recall that for A ⊆ R
n and x̂ ∈ A, the contingent cone and the Clarke tangent

cone to A at x̂ are respectively defined by

Γ (A, x̂) :=
{
d ∈ R

n | ∃ {(tk , dk)} → (0+, d), such that x̂ + tkdk ∈ A ∀k ∈ N

}
,

T (A, x̂) :=
{
d ∈ R

n | ∀ {(tk , xk)} → (0+, x̂) ∃dk → d, such that x̂k + tkdk ∈ A ∀k ∈ N

}
.

Notice that Γ (A, x̂) is a closed cone (generally nonconvex) in Rn .
Let x̂ ∈ R

n and let ϕ : R
n → R be a locally Lipschitz function. The Clarke

directional derivative of ϕ at x̂ in the direction v ∈ R
n , and the Clarke subdifferential

of ϕ at x̂ are respectively given by
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ϕ◦(x̂; v) := lim sup
y→x̂, t↓0

ϕ(y + tv) − ϕ(y)

t
,

∂cϕ(x̂) := {
ξ ∈ R

n | 〈ξ, v〉 ≤ ϕ◦(x̂; v) for all v ∈ R
n}.

The Clarke subdifferential is a natural generalization of the classical derivative since it
is known that when function ϕ is continuously differentiable at x̂, ∂cϕ(x̂) = {∇ϕ(x̂)}.
Moreover when a function ϕ is convex, the Clarke subdifferential coincides with the
subdifferential in the sense of convex analysis.

In the following theorem we summarize some important properties of the Clarke
directional derivative and the Clarke subdifferential from [7] which are widely used
in what follows.

Theorem 2 Let ϕ and φ be functions from R
n to R which are Lipschitz near x̂ . Then,

(i) the following assertions hold:

ϕ◦(x̂; v) = max
{ 〈ξ, v〉 | ξ ∈ ∂cϕ(x̂)

}
,

∂c
(
max{ϕ, φ})(x̂) ⊆ conv

(
∂cϕ(x̂) ∪ ∂cφ(x̂)

)
,

∂c(λϕ + φ)(x̂) ⊆ λ∂cϕ(x̂) + ∂cφ(x̂), ∀ λ ∈ R.

(ii) the function v → ϕ◦(x̂; v) is finite, positively homogeneous, and subadditive on
R
n, and

∂
(
ϕ◦(x̂; .)

)
(0) = ∂cϕ(x̂),

where ∂ denotes the subdifferential in sense of convex analysis.
(iii) ∂cϕ(x̂) is a nonempty, convex, and compact subset of Rn.
(iv) ϕ◦(x; v) is upper semicontinuous as a function of (x, v).

Theorem 3 (mean-value) Let x, y ∈ R
n, and ϕ be a locally Lipschitz function from

R
n to R. Then, there exists a point u in the open line segment (x, y), such that

ϕ(y) − ϕ(x) ∈ 〈∂cϕ(u), y − x〉.

3 Strong KKT necessary condition

As a starting point of this section, we denote by S the feasible region of (MOSIP), i.e.,

S := {
x ∈ R

n | g j (x) ≤ 0 ∀ j ∈ J
}
.

For a given x̂ ∈ S, let J (x̂) denotes the index set of all active constraints at x̂ ,

J (x̂) := {
j ∈ J | g j (x̂) = 0

}
.

A point x̂ is said to be a weakly efficient solution to (MOSIP) if there is no x ∈ S
satisfying fi (x) < fi (x̂) for all i ∈ I . The set of all weakly efficient solutions of
(MOSIP) is denoted by W .
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For each x̂ ∈ S, set

A(x̂) :=
⋃

i∈I
∂c fi (x̂) and B(x̂) :=

⋃

j∈J (x̂)

∂cg j (x̂).

Recall the following definition from [18, Definition 3.2]:
We say that (MOSIP) satisfies the regular constraint qualification
(RCQ, briefly) at x̂ ∈ S if

(A(x̂)
)s ∩ (B(x̂)

)− ⊆ Γ (S, x̂).

The following theorem is proved in [18, Theorem 3.4].

Theorem 4 (KKT necessary condition) Let x0 be a weakly efficient solution of
(MOSIP) and RCQ holds at x0. If in addition cone

(B(x0)
)
is a closed cone, then

there exist αi ≥ 0 (for i ∈ I ), and β j ≥ 0 (for j ∈ J (x0)) with β j 	= 0 for at most
finitely many indexes, such that

0 ∈
m∑

i=1

αi∂
c fi (x0) +

∑

j∈J (x0)

β j∂
cg j (x0).

It is shown in [19, Example 5.1] that strong KKT condition does not necessarily
hold at a weakly efficient solution under RCQ, even if |J | = 1. The aim of this paper is
to derive the strong KKT necessary condition at x̂ ∈ W under the following constraint
qualification

(
with the convention

⋃
α∈∅ Xα = ∅)

:

(CQ):
(Ak(x̂)

)s ∩ (B(x̂)
)s 	= ∅ for all k ∈ I,

where

Ak(x̂) :=
⋃

i∈Ik
∂c fi (x̂) and Ik := I\{k}.

Observe that (CQ) is the nonsmooth analog of the qualification introduced byMaeda
in [21] for differentiable finite multiobjective problems (i.e., |J | < ∞). If m = 1, the
(CQ) reduces to Cottle constraint qualification which studied in [16] in nonsmooth
semi-infinite cases.

Throughout this section we assume that the following condition holds:

Assumption A The index set J is a nonempty compact subset of Rl , the function
(x, j) → g j (x) is upper semicontinuous on R

n × J , and ∂cg j (x) is an upper semi-
continuous mapping in j for each x .

Theorem 5 (Strong KKT necessary condition) Suppose that (CQ) is satisfied at x̂ ∈
W. If assumption A holds, then there exist λi > 0, i ∈ I , and γ j ≥ 0, j ∈ J (x̂), with
γ j 	= 0 for at most finitely many indexes, such that
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0 ∈
m∑

i=1

λi∂
c fi (x̂) +

∑

j∈J (x̂)

γ j∂
cg j (x̂).

Proof We present the proof in five steps.
Step 1.Weprove that conv

(B(x̂)
)
and cone

(B(x̂)
)
are closed sets. Firstly, we claim

thatB(x̂) is a compact set. Let {ξk}∞k=1 be a sequence inB(x̂). If |∂cg j∗(x̂)∩{ξk}∞k=1| =
∞ for some j∗ ∈ J (x̂), then there exists subsequence {ξkp } which converges to some

ξ̂ ∈ ∂cg j∗(x̂) (by compactness of ∂cg j∗(x̂)). If |∂cg j (x̂) ∩ {ξk}∞k=1| < ∞ for all
j ∈ J (x̂), then without loss of generality we can assume that ξk ∈ ∂cg jk (x̂) for
all k ∈ N, and hence, jkp → ĵ ∈ J (x̂) for some subsequence { jkp } of { jk} (by
compactness of J (x̂)). Since the mapping j → ∂cg j (x̂) is upper-semicontinuous,
there exists a subsequence of {ξkp } which converges to ξ̂ ∈ ∂cg ĵ (x̂). Therefore, our

claim is proved, i.e., B(x̂) is a compact set. Then, conv
(B(x̂)

)
is closed by Theorem

1(I). Now, the (CQ) implies
(
conv

(B(x̂)
))s = (B(x̂)

)s 	= ∅,

and hence 0 /∈ conv
(B(x̂)

)
. Therefore, cone

(B(x̂)
)
is a closed set by Theorem 1(II).

Step 2. Let

G(x) := max
j∈J

g j (x) ∀x ∈ S.

Since each g j is locally Lipschitz, it follows readily that G is locally Lipschitz. The
proof of the estimate

G◦(x̂; d) ≤ max
j∈J (x̂)

g◦
j (x̂; d) ∀d ∈ R

n, (1)

is presented in [7, Theorem 2.8.2, Step 1]. Note that the function j → g◦
j (x̂; d) is

upper-semicontinuous and J (x̂) is compact (by Assumption A; see [7] P. 78-79), so
that the notation “max” is justified in (1).

Let ξ ∈ ∂cG(x̂). The inequality (1) implies that

max
j∈J (x̂)

ĝ j (d) ≥ 〈ξ, d〉 ∀d ∈ R
n,

where ĝ j (d) := g◦
j (x̂; d). Since each ĝ j (.) is convex and ĝ j (0) = 0, we can conclude

that ξ ∈ ∂cĜ(0), where Ĝ defined for each d by Ĝ(d) := max j∈J (x̂) ĝ j (d). On

the other hand, for every j, ĝ j is continuous at d̂ := 0, and for every d, the function
j → ĝ j (d) is upper-semicontinuous. So, the well-known Pshenichnyi-Levin-Valadire
Theorem ([13, pp. 267]) can be applied to obtain that

∂Ĝ(0) = conv

⎛

⎝
⋃

j∈ Ĵ (0)

∂ ĝ j (0)

⎞

⎠ ,
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where, Ĵ (0) := {
j ∈ J (x̂) | ĝ j (0) = Ĝ(0) = 0

}
. Now, since Ĵ (0) = J (x̂) and

∂ ĝ j (0) = ∂cg j (x̂) and conv
(B(x̂)

)
is closed by Step 1, we obtain that

∂cG(x̂) ⊆ conv
(B(x̂)

)
. (2)

Step 3. Since
(B(x̂)

)s 	= ∅ under the (CQ) assumption, we can choose d ∈ (B(x̂)
)s .

Now, owning to

(B(x̂)
)s =

(
conv

(B(x̂)
))s

,

we conclude that d ∈
(
conv

(B(x̂)
))s

. Hence, by (2)G◦(x̂; d) < 0, and consequently,

there exists a scalar δ > 0 such that

G(x̂ + βd) < G(x̂) ≤ 0, ∀ β ∈ (0, δ].

Thus, for all j ∈ J and for all β ∈ (0, δ], we have g j (x̂ + βd) < 0. Therefore, for all
β ∈ (0, δ] we have x̂ + βd ∈ S, which implies d ∈ Γ (S, x̂). Since d is an arbitrary
element in

(B(x̂)
)s , it follows that

(B(x̂)
)s ⊆ Γ (S, x̂). This inclusion and the fact

that
(B(x̂)

)s 	= ∅ imply that

(B(x̂)
)− = (B(x̂)

)s ⊆ Γ (S, x̂) = Γ (S, x̂),

and hence, the RCQ is satisfied at x̂ .
Step 4.Now, by Step 1 cone

(B(x̂)
)
is closed and by Step 3 (RCQ) holds. Therefore,

from Theorem 4 we conclude that

0 ∈
m∑

i=1

αi∂
c fi (x̂) +

∑

j∈J (x̂)

β j∂
cg j (x̂), (3)

for some αi ≥ 0, i ∈ I , and β j ≥ 0, j ∈ J (x̂), with β j 	= 0 for finitely many
indexes.

Step 5. Inclusion (3) implies

m∑

i=1

αiξi +
∑

j∈J (x̂)

β jζ j = 0, (4)

for some ξi ∈ ∂c fi (x̂) and ζ j ∈ ∂cg j (x̂) with (i, j) ∈ I × J (x̂). By contradiction, we
suppose that αk = 0 for some k ∈ I . Since (CQ) holds, there exists d ∈ R

n such that

{ 〈ξi , d〉 < 0, i ∈ Ik,
〈ζ j , d〉 ≤ 0, j ∈ J (x̂).
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Inequalities above together with (4) imply that
∑

i∈Ik
αi 〈ξi , d〉

︸ ︷︷ ︸
<0

+
∑

j∈J (x̂)

β j 〈ζ j , d〉
︸ ︷︷ ︸

≤0

= 0,

a contradiction. This means αi > 0 for all i ∈ I , and hence, the proof of the theorem
is complete. ��
The following example shows that if (CQ) is not satisfied then a weakly efficient
solution is not a strong KKT point.

Example 1 Suppose that f1(x1, x2) := −x1, x̂ = (0, 0), g j (x1, x2) := −x1 −
j for all j ∈ J = [0, 1], and f2(x) is the support function of P :={
(y1, y2) ∈ R

2 | y21 + (y2 + 1)2 ≤ 1
}
, i.e.,

f2(x) = sup
b∈P

〈b, x〉 .

Assumption A is satisfied, and x̂ is a weakly efficient solution for the problem. We
have:

J (x̂) = {0},
(B(x̂)

)s = {(−1, 0)}s = (0,+∞) × R,
(A1(x̂)

)s = Ps = ∅.

Thus, the (CQ) is not satisfied at x̂ . It is easy to see that there do not existλ1 > 0, λ2 > 0
and γ0 ≥ 0 satisfying

(0, 0) ∈ λ1(−1, 0) + λ2P + γ0(−1, 0).

4 Strong KKT sufficient condition

In this section we discuss a sufficient optimality result under invexity hypotheses
imposed on the involved functions. Let us recall the following definition from [24].

Let ϕ : R
n −→ R be a locally Lipschitz function. We say that ϕ is invex at

x̂ ∈ A ⊆ R
n on A if for every y in A, there is some vector η(x̂, y) ∈ T (A, x̂), called

kernel of ϕ,such that

ϕ(y) − ϕ(x̂) ≥ ϕ◦(x̂, η(x̂, y)
)
.

Theorem 6 Let x̂ be a feasible solution of (MOSIP). Suppose that fi , i ∈ I , and
g j , j ∈ J (x̂), are invex functions on S with the same kernel η. If there exist scalars
λi > 0 i ∈ I and γ j ≥ 0, j ∈ J (x̂), with γ j 	= 0 for at most finitely many indexes
such that
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0 ∈ ∂c

⎛

⎝
m∑

i=1

λi fi (x) +
∑

j∈J (x̂)

γ j g j (x)

⎞

⎠ , (5)

holds, then x̂ is a weakly efficient solution of the problem.

Proof Suppose on the contrary that x̂ is not a weakly efficient solution for (MOSIP).
Then there exists a feasible point y for (MOSIP) such that

fi (y) < fi (x̂) for all i ∈ I.

Since λi > 0 for each i ∈ I , we obtain that

m∑

i=1

λi fi (y) <

m∑

i=1

λi fi (x̂).

Due to the feasibility of y and the last relation, the following inequalities are fulfilled:

m∑

i=1

λi fi (y) +
∑

j∈K (x̂)

γ j g j (y) ≤
m∑

i=1

λi fi (y) <

m∑

i=1

λi fi (x̂)

≤
m∑

i=1

λi fi (x̂) +
∑

j∈K (x̂)

γ j g j (x̂), (6)

where K (x̂) := { j ∈ J (x̂) | γ j 	= 0}. For each x ∈ S, we define

ϕ(x) :=
m∑

i=1

λi fi (x) +
∑

j∈K (x̂)

γ j g j (x).

Observe that ϕ is a invex function with kernel η. Now, (5) and (6) imply that

0 ∈ ∂cϕ(x̂) and ϕ(y) − ϕ(x̂) < 0.

Combining this with Theorem 2(i) yields

0 > ϕ(y) − ϕ(x̂) ≥ ϕ◦(x̂; η(x̂, y)
) = max

{〈ξ, η(x̂, y)〉 | ξ ∈ ∂cϕ(x̂)
} ≥ 〈0, η(x̂, y)〉 = 0.

This is a contradiction, and hence, the proof of the theorem is complete. ��
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