
Optim Lett (2015) 9:465–482
DOI 10.1007/s11590-014-0761-7

ORIGINAL PAPER

Upper and lower bounds for the permutation flowshop
scheduling problem with minimal time lags

Imen Hamdi · Taïcir Loukil

Received: 6 September 2013 / Accepted: 31 May 2014 / Published online: 18 June 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In this paper, we consider the problem of scheduling n jobs in an m-
machine permutation flowshop with minimal time lags between consecutive operations
of each job. The processing order of jobs is to be the same for each machine. The
time lag is defined as the waiting time between two consecutive operations of each
job. Upper bounds for the problem are provided by applying heuristic procedures
based on known and new rules. Lower bounds based on Moore’s algorithm and logic-
based Benders decomposition are developed. For the last one, we define a long time
horizon on the last machine divided into many segments of time. We combine a mixed
integer linear programming to allocate jobs to time segments and scheduled using the
constraint programming. Then, computational results are reported.

Keywords Scheduling · Permutation flowshop · Time lags · Upper bounds ·
Lower bounds

1 Introduction

We address an important scheduling problem that occurs frequently in manufacturing
and production contexts. We study the permutation flowshop scheduling problem with
minimal time lags. According to the standard notation given by Graham et al. [8], this
problem can be noted Fπ |θmin

i,k | ∑
i Ui . It can be described as follows: There are n

jobs to be scheduled for processing on m machines. Each machine can process at most
one operation at a time and preemption is not allowed. Each job i ∈ {1, 2, . . . , n}

I. Hamdi (B) · T. Loukil
Research Unit LOGIQ, High Institute of Industrial Management, University of Sfax, Sfax 3018, Tunisia
e-mail: imen.hamdi2007@yahoo.fr

T. Loukil
e-mail: taicir.loukil@fsegs.rnu.tn

123

466 I. Hamdi, T. Loukil

is processed on the m machines during pi,1, pi,2, . . . , pi,m time units successively
subject to a due date di . We consider here additional constraints that extend the clas-
sical model: for each job, a definite amount of time must elapse between each two
consecutive operations which has to be greater than or equal to a non negative value
called minimal time lag (θmin). Our objective is to find a schedule for which the total
number of tardy jobs is minimized.

Although this problem arise in many industrial sectors, it proves to be quite difficult
to solve. Many industrial situations involving specific manufacturing processes may
be modelled using minimal time lags, for example in the field of biotechnologies
and chemistry where the chemical reactions with variable processing times may be
represented by minimal time lags [1]. Other examples are given by Deppner [4].

Over the scheduling literature, Hariri and Potts [9] present the first exact algorithm
for the NP-hard Fm || ∑ Ui problem. They use a branch and bound algorithm that can
solve problems with up to 3 machines with 25 jobs. For the same problem, Lenstra et al.
[17] show that the problem is NP-hard for 2 machines. Lodree et al. [18] propose a new
sequencing rule, Earliest Adjusted Due Date (EADD) for the Fm |ri | ∑ Ui problems
with up to 50 jobs on 3 machines. The rule is derived by considering a variation of the
Moore’s algorithm [19] which is then proven to outperform the shortest processing
time dispatching rule.

Recently, Dhouib et al. [5] turn to propose two mathematical formulations for the
permutation flowshop scheduling problem with setup times and time lags constraints;
then a simulated annealing algorithm is developed to solve this problem. Ruiz-Torres
et al. [20] solve minimizing the number of tardy jobs in flow shop environment with
operation and resource flexibility. They develop lower bound procedure and efficient
solution approaches to solve each sub-problem. For the case of common due dates,
Croce et al. [3] treat the 2-machine to minimize the total number of tardy jobs, which
is an NP-hard in the ordinary sense, a compact multidimensional knapsack problem
formulation of the problem is introduced together with several structural properties.
Then, they propose a branch and bound procedure to find an optimal solution to the
problem.

Solution methods based on partitioning the problem into many smaller problems
make the problem more easy to be solved. Recently, great interests are oriented to
the logic-based Benders decomposition. We can model a problem as a Mixed Inte-
ger Linear Programming (M I L P) or a Constraint Programming (C P) which is not
perfomant especially with the complex structure. The M I L P is effective only when
we are interested in the optimization aspect and the C P is more effective only for
the feasibility criterion especially for highly constrained discrete optimization prob-
lems. To exploit the strength of the M I L P and the C P , we integrate them by the
logic-based Benders decomposition. According to Hooker [14], the hybrid method
generally achieves speedups of two or three orders of magnitude on larger instances
when minimizing the number of late tasks, and it solves significantly more problems
to optimality.

We consider a permutation flowshop problem with minimal time lags between
operations. The objective function is to minimize the total number of tardy jobs which
have different due dates. We try to adopt this technique to our problem to generate
lower bounds. To make the proposed approach viable, we focus on the last machine

123

Upper and lower bounds for the permutation flowshop scheduling problem 467

m to define a long time horizon divided into many segments of time. We develop a
lower bound on the completion time on the first m − 1 machines for each job. This
bound is considered as a release date for each job to be processed to the last machine
after its assignment to the time segment. So that, an assignment problem for each
job on each segment of time becomes the master problem and is solved by M I L P ,
while the scheduling problem becomes the subproblem which separates into several
independent scheduling problems is solved by C P. It is then compared to another
lower bound based on Moore’s algorithm. The developed lower bounds are evaluated
by determining the relative deviation from a developed upper bound. This last one is
chosen as the best one among some proposed heuristic algorithms.

The organization of the remainder of this paper is as follows: in Sect. 2, we present
the problem under consideration and we describe the used notations. Section 3 is
devoted to present three proposed heuristic procedures useful to provide upper bounds.
In Sect. 4, we present the developed lower bounds. We remind some previous works
about the logic-based Benders decomposition over the literature, and we detail its
application. Thereafter, we describe the lower bound based on Moore’s algorithm.
Then, computational results are reported in Sect. 5, and finally in Sect. 6 we discuss
concluding remarks.

2 Problem’s definition and nomenclatures

The considered problem (Fπ |θmin
i,k | ∑

i Ui) is characterized by n jobs and each one is
composed of m operations as we described previously. These jobs have to be processed
on a set of m machines (k = 1, 2, . . . , m) following the same order: first on machine
1, second on machine 2, and so on until machine m. The order of the execution of the
jobs is the same on all machines. So, only one sequence is considered. The processing
time of job i on machine k (pi, k), the minimal time lag which is a waiting time that
must exist between the end of the operation k and the beginning of the operation
k + 1 of the job i , and the due date (di) are fixed in advance. Then, for a considered
sequence of jobs, we denote by Ci,k the completion time of job i on machine k
(i = 1, 2, . . . , n; k = 1, 2, . . . , m). If job i finishes on machine k at Ci,k then i can
start on machine k + 1 at time ti,k+1 such that ti,k+1 ≥ Ci,k + θmin

i,k . We consider the
number of tardy jobs as a criterion to minimize. A job is called tardy if its completion
time exceeds its due date (C j > d j), otherwise it is early. We define T = ∑

i Ui as
the number of tardy jobs where Ui = 1 if the job is tardy and 0 otherwise. As same,
we define “E” as the number of early jobs (E = {i |Ci < di }). As we are interested
in the permutation flowshop problem, we consider the completion time on the last
machine m for each job i (Ci,m∀i = 1, 2, . . . , n) to define the set of tardy and early
jobs (T = {i |Ci,m > di } and E = {i |Ci,m < di } respectively).

It is known that the general problem of permutation flowshop without time
lags is NP-hard in the strong sense even if all jobs have a common due date
[17], then the considered problem is obviously NP-hard in the strong sense. π =
{π(1), π(2), . . . , π(n)} is used to design the permutation or the sequence of jobs
where π(1) for example means the job in the first position. The following example is

123

468 I. Hamdi, T. Loukil

Table 1 The data
pi,1 pi,2 pi,3 θmin

i,1 θmin
i,2 di

Job 1 6 8 5 2 1 23

Job 2 3 5 4 3 2 20

Job 3 5 5 4 5 3 33

Fig. 1 Scheduling figure

used to explain better the problem which shows the scheduling of 3-jobs on 3 machines.
The data are given in Table 1.

Here, pi,1 for example design the processing time of job i on machine 1, and θmin
i,1

design the minimal time lag of job i between machines 1 and 2. Then, the scheduling
is presented in Fig.1. It shows that for a given sequence of jobs (π = 2 − 1 − 3),
there are one tardy job which is the job in the second position in the sequence as
its completion time (the noted value on the last machine which is equal for this job
25) exceeds its due date (23), then T = {1}. However, the jobs in the first and third
positions in the considered sequence are early as their completion times (17 and 31
respectively) doesn’t exceed their due dates (20 and 33 respectively) and then E = {2,

3}.
Then the used nomenclatures in this paper are described as follows:

• n: number of jobs (i ∈ {1, 2, . . . , n})
• m: number of machines (k ∈ {1, 2, . . . , m})
• J : segments of time (j ∈ {1, 2, . . . , J })
• pi,k : processing time of job i on machine k
• θmin

i,k : minimal time lag of job i between machine k and machine k + 1
• Ci,k : completion time of job i on machine k
• di : due date of job i
• ri : release date of job i
• di,k : due date of job i on machine k
• ri,k : release date of job i on machine k
• E : set of early jobs

123

Upper and lower bounds for the permutation flowshop scheduling problem 469

• T : set of tardy jobs
• Ui =1 if the job i is tardy and 0 else
• π(i), k : the job in position i in the schedule sequence on machine k
• Cπ(i),k : completion time of job in position i on machine k
• dπ(i): due date of job in position i
• pπ(i),k : processing time of job in position i on machine k

3 Upper bounds

Consider a permutation flowshop scheduling problem with minimal time lags. Some
heuristic procedures are proposed where the generated solution is considered as an
upper bound of the optimal solution. They are based on three different rules: the
well known rule “Shortest Processing Time (S PT)”, and two other new proposed
rules “Shortest Sum of Processing Times (SS PT)” and “Adjustment on the Bottle-
neck Machine (AB M)”. Then the obtained sequences by using the proposed rules are
scheduled by applying the “Algori thm C” described later to obtain the total number
of tardy jobs. Here π(i), k denote the job in position i in the schedule sequence π on
machine k; i = 1, 2, . . . , n and k = 1, 2, . . . , m.

3.1 Shortest processing time (SPT) rule

The S PT rule states to sequence the jobs in nondecreasing order of processing
times. As we are interested in a permutation flowshop problem, we may find m
different sequences, one sequence for each machine k ∈ {1, . . . , m} and the jobs
are arranged according to pπ(1),k ≤ pπ(2),k ≤ · · · ≤ pπ(n),k . We can determine
another sequence which is the (m + 1)th one using the rule of Total Processing time
(T Pπ(1) ≤ T Pπ(2).. ≤ T Pπ(n)) as same in [7]. Now, we determine the total tardiness
of all the m + 1 sequences and we select the final schedule with the smallest total
number of tardy jobs. This rule determines the final sequence through the following
algorithmic steps:

Step 1: Let k = 1.
Step 2: Sequence jobs in non-decreasing order of pi,k(pπ(1),k ≤ pπ(2),k ≤ · · · ≤

pπ(n),k) on machine k.
Step 3: Define a permutation schedule on all machines using this sequence and

determine the total number of tardy jobs by applying the Algori thm C described
later.

Step 4: If k = m, go to step 5, otherwise let k = k + 1, and go to step 2.
Step 5: Sequence jobs in non-decreasing order of T Pi (T Pπ(1) ≤ T Pπ(2) ≤

..T Pπ(n)). Define a permutation schedule on all machines using this sequence and then
calculate the total number of tardy jobs of all the jobs by applying the “Algori thm C”
described later.

Step 6: Select the final schedule with the smallest total number of tardy jobs among
the m + 1 schedules, and stop.

123

470 I. Hamdi, T. Loukil

3.2 Shortest Sum of Processing Times (SSPT) rule

This rule is similar to the well known SPT rule, but instead of using the individual
job processing time on each machine, we consider for each job the total processing
times on all machines plus the exact time lags between each consecutive couple of
operations. Then by obtaining a sequence, we calculate the total number of tardy jobs
by applying the “Algorithm C” described later.

3.3 Adjustment on the Bottleneck Machine (ABM) rule

In this proposed algorithm, we focus on the bottleneck machine (b ∈ {1, 2, . . . , m}) to
adjust the number of tardy jobs. This machine is defined as the machine that requires
maximum sum of processing times of all jobs amongst all machines. We determine
for each job its ready time to be processed on this machine and we derive its due date.
Then, we can define two sets of jobs: a set of tardy jobs and a set of early jobs. The
adjustment is done by sequencing the set of tardy jobs in a decreasing order of the
tardiness values and the early jobs in an increasing order of the earliness values, then
we concatenate the sequence of the early jobs to the set of tardy jobs to form the final
sequence to be scheduled using the “Algori thm C” described later. It is described as
follows:

Step 1.

– Determine the release date of job i on machine b

ri,b =
{

b−1∑

l=1

(pi,l + θmin
i,l)

}

– Determine the due date of job i on machine b

di,b = di −
(

m−1∑

l=b+1

(
pi,l + θmin

i,l

)
+ pi,m

)

Step 2.
Determine two sets of jobs: set of early jobs (E) and set of tardy jobs (T) on the

bottleneck machine.

T = {i |ri,b + pi,b > di,b} and we define ui∈T = ri,b + pi,b − di,b

E = {i |ri,b + pi,b < di,b} and we define si∈E = di,b − pi,b − ri,b

Step 3.
Sequence the jobs in an increasing order of si ∀i ∈ E to provide the sequence E1
Sequence the jobs in a decreasing order of ui ∀i ∈ T to provide the sequence T1
The final sequence (π) to be scheduled is defined by concatenating the sequence

E1 to T1 ⇒ π = T1 + E1

123

Upper and lower bounds for the permutation flowshop scheduling problem 471

The obtained sequence is scheduled using the following “Algorithm C”

Algorithm C

Let the set of tardy jobs T = {∅} and w = 0.
The first job is scheduled as soon as possible
a) Schedule the job in the first position of the sequence on the first machine
Cπ(1),1 = pπ(1),1
b) Schedule successively the other operations of the job in the first position
For k = 1 to m − 1, do
Cπ(1),k+1 = Cπ(1),k + θmin

π(1),k + pπ(1),k+1
c) Verify if the job in the first position π(1) is tardy or not
If Cπ(1),m > dπ(1)

Then T = T ∪ {π(1)}, w = w + 1
End if
Step 6.
Schedule the other jobs as soon as possible
For i = 2 to n, do
a) Schedule the first operation of the job in the i th position in the sequence on

machine 1
Cπ(i),1 = Cπ(i−1),1 + pπ(i),1
b) Schedule successively the other operations of the job in the i th position in the

sequence with respect to the precedence constraints and minimal time lag constraints
For k = 1 to m − 1, do
Cπ(i),k+1 = max{Cπ(i),k + θmin

π(i),k, Cπ(i−1),k+1} + pπ(i),k+1
c) Verify if the job in position i (π(i)) is tardy
If Cπ(i),m > dπ(i)

Then T = T ∪ {π(i)}, w = w + 1
The number of tardy jobs is w.

As it is shown from the “Algorithm C”, the constructed schedule is feasible as the
precedence and the minimal time lags constraints hold, and the job sequence follows
the obtained permutation π . Indeed, it is not necessary to verify the minimal time
lag constraints for the job in the first position as this one has none precedent and its
operations are consequently placed exactly after the minimal time lags. Also, it is
shown for the other jobs that their operations are scheduled as soon as possible with
respect to the precedence and the minimal time lags constraints. The complexity of
this algorithm is O(nm).

4 Lower bounds

In this section, lower bounds are developed which are based on the logic-based Benders
decomposition and Moore’s algorithm.

123

472 I. Hamdi, T. Loukil

Fig. 2 Horizon time

4.1 Logic-based Benders decomposition based-lower bounds (LB1)

In what follows, we will remind the literature of the logic-based Benders decomposi-
tion technique, then we detail its application. We will determine the associated M I L P
of the studied problem, its C P , and an hybrid approach by combining the M I L P and
the C P . The hybrid approach proves a great performance to generate results more
interesting and less consuming time than the ones provided by only M I L P or C P .
The motivation to use this hybrid method comes from its meaningful efficiency found
by many researches over the literature (e.g [14–16]). The found result by each one is
a lower bound of the optimal solution for the considered problem.

The way to adopt this hybrid method is to define a long time horizon noted H
(H ≥ Cπ(n),m) divided into J segments of time as it is shown in the following
Fig. 2. These segments can be inequal, but we will consider them equal for the seek
of simplicity. Here, the considered problem can be decomposed into an assignment
portion and a scheduling portion. Central managers assign each job i ∈ {1, . . . , n} to
the time segment j ∈ {1, 2, . . . , J }, whereas operations managers prepare detailed
schedules for each segment. As the done assignment can be infeasible, the operations
managers are used to call the central managers to ask for different allocations of
jobs. The assignment problem becomes the master problem and is solved by M I L P ,
while the scheduling problem becomes the subproblem which separates into several
independent scheduling problems is solved by C P . Hence, the discretization of the
time segments is relevant and a new decision variable xi,t is introduced which is equal
to 1 if the job i starts at time t and 0 else where N discrete times are defined starting
from 0.

We are interested in a permutation flowshop scheduling problem where the jobs
have to be processed on each machine in the same order. When we define a time
horizon for each machine, it will be hard to specify non-overlapping time intervals for
the machines 1, . . . , k − 1 in advance, without sacrificing optimality. Suppose jobs
i and i ′ are assigned to intervals j and j + 1, respectively, on machine k. Then a
valid lower bound for the start time of job i ′ on machine k − 1 would be less than
a valid upper bound for the start time of job i on machine k − 1. The intervals on

123

Upper and lower bounds for the permutation flowshop scheduling problem 473

machine k − 1 would therefore overlap. One way to make this approach viable to the
studied problem is to focus on the last machine m to define a long time horizon. Then,
we determine a lower bound on the completion time of each job i ∈ {1, 2, . . . , n}
on the m − 1 machine, this bound is considered as a release date of each job (ri)

to be processed on the last machine. ri is generated from the interval [CT1, CTn]
where CT1 is a lower bound on the completion time of the job in the first position;
and CTn is a lower bound on the completion time of the job in the last position.
Where

CT1 = min
i

m−1∑

k=1

(pi,k + θmin
i,k))

CTn = max
1≤k≤m−1

{
n∑

i=1

pi,k +
m−1∑

l=1

min
i

(
pi,l + θmin

i,l

)
− min

i
pi,k

}

Then when the job i ∈ {1, . . . , n} is assigned to the segment of time j ∈ {1, . . . , J },
its starting time (t × xi,t) can’t be smaller than its release date (ri) which is supposed
to be the amount of time necessary to its completion on the first m − 1 machines (the
lower bound on the completion time defined already). If the generated value (ri) from
the interval [CT1, CTn] is greater than the time segment in which the job is assigned,
it will be result in an infeasibility of this assignment and another one is used. y1 and
yJ+1 are used to design the start time and finish time of the long time horizon. The
starting time of the horizon time can be assumed by considering the minimum sum of
processing times on machines 1 until m − 1 plus the minimal time lags between them
among all the jobs, so it can be calculated as min1≤i≤n(

∑m−1
k=1 pi,k + θmin

i,k) as same
for lower bound on the completion time of the job in the first position.

4.1.1 Previous work

The classical Benders decomposition is useful for solving problems that contain groups
of variables of different natures. However, it requires that the subproblem can be a
continuous linear or nonlinear programming problem. Scheduling is a highly combina-
torial problem that has no practical linear or nonlinear programming model [15]. The
logic-based Benders decomposition generalizes classical Benders. It requires great
interests recently, some trial values are assigned to the variables of the master problem
(in our case, define the assignment of jobs to segments of time) and then we try to find
the best solution with these values. In logic-based Benders decomposition, the central
element is the derivation of Benders cuts which are obtained by solving the inference
dual of the subproblem rather than a linear programming dual in classical benders.
The solution of the inference dual is a proof of optimality when the variables of the
master problem are fixed to their current values. So that, the process continues until
the master problem and subproblem converge in value.

Logic-based Benders decomposition is introduced by Hooker and Yan [11] in the
context of verifying logic circuits. Hooker [12] extends the Benders decomposition to
a logic-based context for propositional satisfiability and 0-1 programming problem.

123

474 I. Hamdi, T. Loukil

Hooker [13] shows how to derive effective Benders cuts for at least one such case,
minimum makespan problems. Computational tests show that combining M I L P and
C P to be 100 to 1,000 times faster than M I L P or C P when all tasks have the same
deadlines. In a related work, Hooker [14] applies a logic-based Benders decomposition
method to minimize the number of late tasks, and minimizing total tardiness. The main
contribution is a relaxation of the cumulative scheduling subproblem, also much better
solutions for problems that cannot be solved to optimality are obtained. Motivated by
the complementary strength of the M I L P and C P , Coban and Hooker [2] apply logic-
based Benders to minimize tardiness in single-facility scheduling problems with many
jobs and long time horizons. Also, Hooker [15] applies the same method to solve an
important class of planning and scheduling problems where the tasks assigned to a
facility may run in parallel subject to resource constraints (cumulative scheduling).
The objective is to minimize cost, makespan, or total tardiness. Then, significant
computational speedups are obtained, of several orders of magnitude for the first two
objectives, relative to the state of the art in both M I L P and C P .

Jain and Grossmann [16] successfully apply such a method to least cost planning
and scheduling problems to process a set of orders using dissimilar parallel machines
subject to release and due dates constraints where the subproblems are disjunctive
scheduling problems (jobs must be run one at a time). According to computational
results, the hybrid models are shown to perform two to three orders of magnitude
reduction in C PU time compared to standalone M I L P and C P models.

Harjunkoski and Grossmann [10] consider multistage scheduling problems in which
the subproblems are feasibility problems rather than optimization problems. Thus, the
Benders cuts are generally simple as the subproblem is a feasibility problem rather
than an optimization problem.

4.1.2 Mixed integer linear programming

The problem can be formulated as follows: each job i ∈ {1, 2, . . . , n} has to be assigned
to a segment of time j ∈ {1, 2, . . . , J }, pi and di represent the processing time and
the due date respectively of job i . The binary variable xi,t is already defined which
is equal to 1 if the job i starts at time t , and 0 otherwise. t indicates the starting time
of this job; then, to which segment job is assigned becomes trivial and the decision
variable xi,t represent a segment. Here, we can refer to some proposed M I L P for
other different problems and mainly the single machine scheduling problem (see i.g.
[14,15]).

If we want modeling the scheduling problem as M I L P , the model is:

Min
∑

i

Ui (1)

s.t
∑

t

xi,t = 1 ∀i (2)

xi,t + xi,t ≤ 1 f or all i, t, i and t = t, . . . , t + pi − 1 (3)

xi,t = 0 ∀t ≤ ri and t ≥ y j+1 − pi ∀i (4)

123

Upper and lower bounds for the permutation flowshop scheduling problem 475

∑

t

(t + pi) xi,t − di ≤ NUi ∀i (5)

Ui ≥ 0 ∀i (6)

xi,t ∈ {0, 1} ∀i, t (7)

The objective (1) is to minimize the total number of tardy jobs (
∑

iUi) where Ui is
a binary variable equal to 1 if the job is tardy and 0 else. Each job has to be assigned to
only one time interval is represented in constraints (2). Equation (3) prevents overlap
from one segment to another one. Constraints (4) state that a job i can’t start executing
before its release date and cannot exceed the limit of the associated segment. Tardy jobs
are defined in (5) where N is the number of discrete times starting with 0. Constraints
(6) state that Ui is a non negative variable. Constraints (7) specify xi,t as a binary
variable.

4.1.3 Constraint programming formulation

Recently, the constraint programming became a leading technique for solving complex
decision support problems. In general, systems based on C P are much more expressive
and hence easy to understand. It is increasingly used for solving scheduling problems as
its flexibility is well suited for real-life scheduling problems. It works by incorporating
some restrictions on the possible solution into a programming environment. Some
recent works emphasize the C P application for different scheduling problems and
mainly the single machine problem (see e.g. [13,14]).

Here, new decision variables are introduced: zi is a decision variable representing
the time interval of job’s execution on the time segment, this definition is same of the
processing time’s job definition. Q j is another decision variable defining the sequence
of zi time intervals at time segment j. It’s known that this variable can be found easily
with some software used to solve the C P . For example, jobs 2 and 3 are assigned to
the segment j = 2 described by a start time y2 and a finish time y3; then Q2 is defined
as the sequence Q2 = 2, 3. The C P for the problem can be formulated as follows:

Min sum (i in Jobs)Ui (8)

s.t Start O f (zi) ≥ ri f orall i (9)

noOverlap (Q j) f orall j (10)

(end O f (zi) − di) ≤ NUi f orall i (11)

Minimizing the total number of tardy jobs is formulated by (8). Constraints (9)
state that a job i can start only after its completion time on the precedent machines. By
constraints (10) the sequence of jobs’ time intervals cannot overlap on each machine
as only one job have to be processed at a time. Constraints (11) define the tardy jobs.
Some constraint-based tools are provided for imperative languages in the form of
libraries. ILOG is one of the most successful companies to produce such tools. High

123

476 I. Hamdi, T. Loukil

level modeling languages exist for model constraint problems and specifying search
strategies such that the OPL language.

4.1.4 The hybrid method

Logic-based Benders decomposition applies to problems of the form:

Min f (x, y)

s.t c(x, y)

x ∈ Dx , y ∈ Dy (12)

C(x, y) is a set of constraints containing variables x, y. Dx and Dy denotes the
domains of x and y respectively. A general Benders algorithm begins by fixing x at
some trial value x ∈ Dx . This results in the subproblem:

Min f (x, y)

s.t c(x, y)

y ∈ Dy (13)

The inference dual is the problem of inferring the tightest possible lower bound on
f (x, y) from c(x, y). The inference dual of the subproblem is:

Max ν

s.t c(x, y) → f (x, y) ≥ ν (14)

The dual problem is to find the best possible lower bound ν∗ on the optimal cost that
can be inferred from the constraints, assuming x is fixed to x . This bound is expressed
as a function νx (x) of x yielding a Benders cut z ≥ νx (x). The algorithm proceeds as
follows. At each iteration h, we solve a master problem where its constraints are the
Benders cuts so far generated.

Min z

s.t νxh (x), h = 1, . . . , H

x ∈ Dx (15)

For each iteration h, we define xh the solution of the h master problem from iteration
1 until H − 1 to provide ν∗

1 , . . . , ν∗
H−1 optimal solutions. Then the solution x of the

previous subproblem to define the next one. z∗
h provides the lower bound of the optimal

value of the problem and ν∗ = min{ν∗
1 , . . . , ν∗

H−1}. Then, the algorithm continues
until z∗

h = ν∗.
For this hybrid method, the scheduling problem which is the subproblem separates

into several independent scheduling problems according to the number of the time
segments. Let Y j is the set of time intervals for J segments where Y j = {t : y j ≤
t ≤ y j+1 − 1}. The Benders approach formulates a master problem that assigns jobs

123

Upper and lower bounds for the permutation flowshop scheduling problem 477

to time segment j and a subproblem that schedules the jobs assigned to time segments.
We write the master problem using an M I L P model that minimizes the number of
tardy jobs. New decision variables are introduced in the master problem Ui, j and U
which represent the number of tardy jobs in the segment j and the total number of
tardy jobs respectively. In iteration h of the Benders algorithm, the master problem is:

Min U (16)

s.t
∑

t

xi,t = 1 ∀i (17)

xi,t = 0, ∀t ≤ ri and t ≥ y j+1 − pi ∀i (18)
∑

t∈Y j

(t + pi − di) xi,t ≤ N Ui, j ∀i, j (19)

U ≥
∑

i

∑

j

Ui, j ∀i, j (20)

xi,t ∈ {0, 1} ∀i, t (21)

Ui, j ≥ 0 ∀i, j (22)

Benders cuts in i terations 1, . . . , h − 1 (23)

relaxation of subproblem (24)

The objective function (16) is minimizing the total number of tardy jobs. (17),
(18), and (19) are same as the constraints of the MILP defined previously where Y j

is the set of job’s time intervals. (20) and (22) are used to define the number of tardy
jobs in the segment j . The main idea is to determine optimal assignments of jobs to
time segments t ∈ Y j , and then perform feasible sequencing of the jobs for the given
assignments at a lower level. The binary variable xi,t = 1 when a job i is assigned
to the time interval t . Once, an assignment of jobs to time intervals is determined by
solving the master problem; then, the scheduling subproblem is solved by C P . The
subproblem decouples into a single-segment scheduling problem. Let Jhj the set of
jobs assigned to segment j in the iteration h. Then, the subproblem becomes:

Min sum (i ∈ Jhj) Ui (25)

s.t star t O f (zi) ≥ ri f orall i ∈ Jhj (26)

start O f (zi) ≥ y j f orall i ∈ Jhj (27)

end O f (zi) ≤ y j+1 f orall i ∈ Jhj (28)

noOverlap (Q j) f orall j (29)

(end O f (zi) − di) ≤ NUi f orall i ∈ Jhj (30)

For each segment j , C P is solved separately. (25) and (26) are same as in the
previous formulated C P . (27) and (28) state that the start and the end of each job’s
time interval have to respect the time limits of the respective segment. Constraints (36)
and (37) are same as defined previously. LetU = {U (i)}, if U∗

h j is the optimal value

123

478 I. Hamdi, T. Loukil

of the previous problem, then
∑

jU
∗
h j is the minimum number of tardy jobs for all the

time segments.
We note Uhj a valid lower bound on the number of tardy jobs. Since xi,t = 0 when

job i is not assigned to the time segment t we have

Uhj ≥ U∗
h j − U∗

h j

∑

i∈Jhj

(1 − xi,t) ∀ j (31)

Uhj ≥ 0, all j (32)

Over all the time intervals, we have a lower bound on the total number of tardy
jobs:

U ≥
∑

j

Uhj (33)

Then, the benders cuts (23) in the master problem for the iteration h consist of the
inequalities (31), (32), and (33) obtained in the iterations 1, . . . , h − 1. It is straight-
forward to relax the subproblem when minimizing the number of tardy jobs. As we
described and defined above, let ri considered as a lower bound on the completion
time of job i on machines from 1 until m − 1. When executed on the time interval j ,
these jobs span a time interval at least: M = y j + ∑n

i∈{y j , y j+1}(ri + pi). We added
y j as each job i can’t start earlier than the start time of the time segment.

If M > y j+1 − y j then at least one task is tardy, and the number of tardy jobs in
the time interval k is at least

M − (y j+1 − y j)

max
i∈{y j , y j+1}

{ri + pi } (34)

rounded up to the nearest integer. As the same way we determine the number of tardy
jobs for each time segment. Then, a lower bound on the number of tardy jobs can be
obtained for all the horizon.

The jobs have to be indexed according to their deadline (d1 ≤ d2 ≤ · · · ≤ dn),
l = 1, 2 . . . , n . J (0, dl) is a set of jobs with time interval between 0 and dl . For any j ,
the last scheduled job in this set can finish no sooner than time t = ∑

i∈J (0, dl)
(ri + pi)

and the last job has due date no later than dl . Then, we can obtain the following
relaxation:

U ≥
∑

i

Ui

Ui ≥
∑n

i∈J (0, dl)
(ri + pi) − dl

maxi∈J (0, dl){ri + pi } ∀ i

which becomes (24) in the master problem.

123

Upper and lower bounds for the permutation flowshop scheduling problem 479

4.2 Moore’s algorithm based-lower bound (LB2)

Moore’s algorithm is known to define the sets of tardy jobs and early jobs for the single
machine scheduling. We adopt this algorithm to the studied problem to minimize the
total number of tardy jobs. We define a sequence of early jobs σand a set S of jobs not
yet sequenced. C(σ, k) is the earliest time at which machine k is available to process
jobs of S. As we aim to define a single machine scheduling, we desaggregate the
processing of jobs of S on machines l = 1, 2, . . . , k − 1 and we relax the constraints
that machines l = k + 1, . . . , m can process only job at a time. By considering a
subproblem Pkon machine k ∈ {1, 2, . . . , m}, each job i ∈ S is available for processing
at time C(σ, k) = mini∈S{∑k−1

l=1 (pi,l + θmin
i,l)}, requires pi,k processing time on

machine k, and requires time t = ∑m−1
l=k+1(pi,l + θmin

i,l) for its completion and has
a due date di . Then, Moore’s algorithm can be applied to generate a list of the tardy
jobs |T |. It states to begin by sequencing jobs in increasing order of due dates, and
then removing jobs with larger processing times. By applying the procedure to each
machine, the lower bound on the total number of tardy jobs can be defined as L B2 =
max{|T1|, |T2|, . . . , |Tm |}. Then, the Moore’s algorithm is applied as follows:

Step 1: sequence the jobs according to the Earliest Due Date rule to find the current
sequence (iπ(1), iπ(2), . . . , iπ(n)) such that dπ(1) ≤ dπ(2) ≤ · · · ≤ dπ(n)

Step 2: find the first tardy job, say iπ(i) in the current sequence. If no such job is
found. Go to step 4.

Step 3: reject longest job in 1 − iπ(i). Return to step 2 with a current sequence on
job shorter than before.

Step 4: form an optimal schedule by taking the current sequence and appending to
it the rejected jobs which may be sequenced in any order.

5 Computational results

In order to assess the quality of the proposed upper and lower bounds, we carry out
series of experiments. Random instances are generated as follows: The processing
times and the minimal time lags are generated as the same way in [6] from a uniform
distribution between 20 and 50 and [0, θmin] respectively where θmin ∈ {0, 7, 14}.
The due dates are generated as di = Pi ×Drange, where Pi = ∑m−1

j=1 (pi, j +θi, j)+ pi,m

and Drange = [0.8 − 1.2]. The experimentations conducted in this research are run
on a DELL PC/2.20GHz with 4.00Go RAM. The heuristic algorithms and the L B2
are implemented with MATLAB 7.6.

First experiments are done to test the performance of the proposed heuristic algo-
rithms used to provide the upper bounds. We classify 7 different sizes of test problems,
and we solve 10 problems for each size then the average value is considered. The 7
test problems consist of two different values of the number of machines (5 and 10)
and 6 different values of the number of jobs (10, 15, 20, 30, 40, and 50). Here, the
time lags interval is fixed to [0, 7]. The number of tardy jobs for each problem size
and for each heuristic algorithm are shown in the following Table 2.

According to the results shown in Table 2, the three algorithms prove their efficiency
to provide good results for different size problems. The three algorithms are almost

123

480 I. Hamdi, T. Loukil

Table 2 Performance of the upper bounds

(10, 5) (10,10) (15, 10) (20, 5) (30, 10) (40, 5) (50, 10)

S PT 6 7 13 15 22 31 43

SS PT 7 8 13 15 23 30 43

AB M 6 6 12 15 21 30 41

Table 3 Performance of the lower bounds

(n, m) θmin U B L B1 L B1 Speedup L B2

Nb C PU C P (%) C PU M I L P (%) C PU H ybrid
(%)

C PU % C PU

(10, 5) 0 6 0.06 0 0.12 50.5 0.14 2.5 0.09 1.55 50.3 0.08

7 6 0.08 0 0.19 0 0.18 0 0.07 2.57 20.7 0.04

14 7 0.10 16.1 1.22 4.3 1.11 14.3 0.85 1.30 0 0.13

(15, 5) 0 10 0.07 0 5.35 0 2.13 0 1.05 2.02 66.4 0.16

7 11 0.09 22.3 2.43 22.7 1.13 10.6 0.96 1.17 57.6 0.17

14 10 0.10 0 7.45 0 10.42 0 2.12 4.91 25.9 0.18

(15, 10) 0 12 0.11 9.2 13.25 33.5 9.51 0 0.95 10.01 50.6 0.16

7 12 0.13 9.3 22.16 20.8 19.12 33.5 8.13 2.35 50.5 0.10

14 12 0.11 0 44.00 0 38.13 9.4 20.34 1.87 0 0.09

(20, 5) 0 14 0.12 7.5 65.89 16.3 28.11 13.5 25.14 1.11 7.6 0.20

7 15 0.13 0 198.45 0 55.12 0 33.12 1.66 50.4 0.36

14 16 0.14 6.5 223.66 13.2 42.19 13.4 19.12 2.20 45.3 0.13

(25, 5) 0 17 0.12 13.8 >3,600 6.3 312.72 0.13 117.12 2.67 21.9 0.27

7 18 0.14 0 >3,600 0 >3,600 0 87.13 >41.31 28.5 0.21

14 19 0.16 11.3 >3,600 11.5 >3,600 0.11 123.58 >29.13 35.4 0.72

similar for the different tested problems just the one based on the AB M rule is the best
one. As its principle consists in adjusting the number of tardy jobs in the bottleneck
machine, it is not surprising to obtain the best found sequence. The algorithms are
solved in less than 1 second and we could not distinguish a meaningful difference
between all problems in the C PU time.

Second experiments are done to assess the performance of the proposed lower
bounds. Let H be the long time horizon. The length of each segment is generated
between [10, H × α] where α is a small coefficient generated between [0.1, 0.5].
We set four different configurations of number of jobs n ∈ {10, 15, 20, 25}, and two
different configurations for number of machines m ∈ {5, 10}.

15 problems classified according to the problem sizes and the time lags inter-
vals are presented. 10 instances are tested for each problem and the average value is
considered. The results are summarized in Table 3. To evaluate the proposed lower
bounds, we determine the relative deviation (%) for each found solution from the
upper bound (U B) provided by the AB M algorithm (as it is the best one) as follows

123

Upper and lower bounds for the permutation flowshop scheduling problem 481

% = U B−L B
L B × 100. (Nb = Number of tardy jobs). The Table 3 is described as fol-

lows: the first column indicates the problem size (n, m) where n is the number of jobs
and m is the number of machines. The second column corresponds to the time lags
interval [0, θmin] where θmin ∈ {0, 7, 14}. The columns 3 and 4 correspond to the
result of the upper bound for the different problem sizes and the C PU time needed to
solve it respectively. The next columns from 4 to 10 indicate the deviation percentage
of the lower bounds from the upper bound for the three methods C P , M I L P , and
the hybrid one respectively where each of them is followed by a column indicat-
ing the corresponding C PU time needed to solve it. We note L B1 for all of them.
Column 11 presents the speedup factor of the M I L P method relative to the hybrid
one which is determined as T ime (M I L P)

T ime (hybrid)
. The two last columns deal with the second

developed lower bound based on Moore’s algorithm and the corresponding C PU time
respectively. (The C PU time is given in seconds).

We use IBM ILOG CPLEX Optimization Studio to solve the M I L P (using CPLEX
Optimizer), the C P (using ILOG CPLEX CP Optimizer), and the logic-based Benders
method. All three methods are implemented using the OPL script language. We fix
the time limit at 3600 s; then if the execution time overcomes this limit, we consider
the value reached already at this time.

For each problem size, the number of tardy jobs increases with the increasing time
lags intervals. It is an expected result as it is due to the increasing value of the comple-
tion times. In spite that the C P , the M I L P , and the hybrid method consume more
C PU time than the L B2, they generate very tight lower bounds for some problems.
We can confirm that the C P can provide the optimal solution with a percentage 47 %,
the M I L P with a percentage equal to 40 %, and the hybrid method with 40 % too.
For these three methods, the quality of the generated lower bounds is very interesting.
The results of the hybrid method are obtained as the coincidence of both master and
subproblem results developed for this method. According to Hooker [15], by linking
M I L P and C P , we obtained substantial speedups relative to the existing state of the
art in both M I L P and C P . The hybrid method is shown to be faster than the M I L P
which is in turn faster than the C P . It is characterized by its ability to solve problems
until the size (25, 5). Its fastness is proved by the speedup factor relative to the MILP
which range between 1.11 and >41.31 as it is shown in the table above. The L B2
consume more less C PU time but the relative deviation is larger.

6 Conclusion

The permutation flowshop scheduling problem with minimal time lags to minimize
the total number of tardy jobs is considered in this paper. Upper and lower bounds are
developed. The upper bounds are given by three proposed heuristic algorithms based
on different rules. The best one is used then to evaluate the quality of the developed
lower bounds. M I L P and C P are proposed and then integrated through a logic-
based Benders decomposition. They are shown to be efficient to provide tight lower
bounds and the hybrid method is specified by its fastness against the C P and M I L P
methods. The lower bound based on Moore’s algorithm is shown to be easiest to be
found. However, its quality is less interesting.

123

482 I. Hamdi, T. Loukil

References

1. Chu, C., Proth, J.M.: Single machine scheduling with chain structured precedence constraints and
separation time windows. IEEE Trans. Robot. Autom. 12, 835–844 (1996)

2. Coban, E., Hooker, J.N.: Single-facility scheduling over long time horizons by logic-based benders
decomposition. In: Proceedings of CPAIOR, pp. 87–91 (2010)

3. Croce, F.D., Gupta, G.N.D., Tadei, R.: Minimizing tardy jobs in a flowshop with common due date.
Eur. J. Oper. Res. 120, 375–81 (2000)

4. Deppner, F.: Ordonnancement d’atelier avec contraintes temporelles entre operations. Ph.D. Thesis,
Institut National Polytechnique de Lorraine (in French) (2004)

5. Dhouib, E., Teghem, J., Loukil, T.: Minimizing the number of tardy jobs in a permutation flowshop
scheduling problem with setup times and time lags constraints. J. Math. Model. Algorith. Oper. Res.
12, 85–99 (2013)

6. Fondrevelle, J., Oulamara, A., Portmann, M.C.: Permutation flowshop scheduling problems with max-
imal and minimal time lags. Comput. Oper. Res. 33, 1540–1556 (2006)

7. Ghassemi, T.F., Olfat, L.: A set of algorithms for solving the generalized tardiness flowshop problems.
J. Ind. Syst. Eng. 4, 156–166 (2010)

8. Graham, R., Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

9. Hariri, A.M.A., Potts, C.N.: A branch and bound algorithm to minimize the number of late jobs in a
permutation flowshop. Eur. J. Oper. Res. 38, 228–237 (1989)

10. Harjunkoski, I., Grossmann, I.E.: Decomposition techniques for multistage scheduling problems using
mixed-integer and constraint programming methods. Comput. Chem. Eng. 26, 1533–1552 (2002)

11. Hooker, J.N., Yan, H.: Logic circuit verification by Benders decomposition. In: Saraswat, V., Van
Hentenryck, P. (eds.) Principles and Practice of Constraint Programming: The Newport Papers, pp.
267–288. MIT Press, Cambridge (1995)

12. Hooker, J.N.: Logic-based Benders decomposition. Carnegie-Mellon University, Technical report
(1995)

13. Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) Principles and
Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 3258, pp. 305–316.
Springer, Berlin (2004)

14. Hooker, J.N.: Planning and scheduling to minimize tardiness. In: van Beek, P. (ed.) Principles and
Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 3709, pp. 314–327.
Springer, Berlin (2005)

15. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Oper. Res. 55, 588–602
(2007)

16. Jain, V., Grossmann, I.E.: Algorithms for hybrid milp/cp models for a class of optimization problems.
INFORMS J. Comput. 13, 258–276 (2001)

17. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Ann.
Discrete Math. 1, 343–362 (1977)

18. Lodree, E., Jang, W., Klein, C.M.A.: New rule for minimizing the nuımber of tardy jobs in dynamic
flowshops. Eur. J. Oper. Res. 159, 258–263 (2004)

19. Moore, J.M.: An n job one machine algorithm for minimizing the number of late jobs. Manage. Sci.
15, 102–109 (1968)

20. Ruiz-Torres, A.J., Ablanedo-Rosasb, J.H., Johnny, C.H.: Minimizing the number of tardy jobs in the
flow shop problem with operation and resource flexibility. Comput. Oper. Res. 37, 282–291 (2010)

123

	Upper and lower bounds for the permutation flowshop scheduling problem with minimal time lags
	Abstract
	1 Introduction
	2 Problem's definition and nomenclatures
	3 Upper bounds
	3.1 Shortest processing time (SPT) rule
	3.2 Shortest Sum of Processing Times (SSPT) rule
	3.3 Adjustment on the Bottleneck Machine (ABM) rule

	4 Lower bounds
	4.1 Logic-based Benders decomposition based-lower bounds (LB1)
	4.1.1 Previous work
	4.1.2 Mixed integer linear programming
	4.1.3 Constraint programming formulation
	4.1.4 The hybrid method

	4.2 Moore's algorithm based-lower bound (LB2)

	5 Computational results
	6 Conclusion
	References

