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Abstract This paper studies robust solutions and semidefinite linear programming
(SDP) relaxations of a class of convex polynomial optimization problems in the face of
data uncertainty. The class of convex optimization problems, called robust SOS-convex
polynomial optimization problems, includes robust quadratically constrained convex
optimization problems and robust separable convex polynomial optimization prob-
lems. It establishes sums-of-squares polynomial representations characterizing robust
solutions and exact SDP-relaxations of robust SOS-convex polynomial optimization
problems under various commonly used uncertainty sets. In particular, the results
show that the polytopic and ellipsoidal uncertainty sets, that allow second-order cone
re-formulations of robust quadratically constrained optimization problems, continue
to permit exact SDP-relaxations for a broad class of robust SOS-convex polynomial
optimization problems.
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2 V. Jeyakumar et al.

1 Introduction

Consider the convex polynomial optimization problem

(P0) inf f (x)

s.t. gi (x) ≤ 0, i = 1, . . . , m,

where f and gi ’s are convex polynomials. The model problem (P0) admits a hierarchy
of semidefinite programming (SDP) relaxations, known as the Lasserre hierarchy of
SDP-relaxations. More generally, the Lasserre hierarchy of SDP relaxations is often
used to solve nonconvex polynomial optimization problems with compact feasible
sets [20,22], and it has finite convergence generically as shown recently in [26].

In particular, if f and gi , i = 1, 2, . . . , m are SOS-convex polynomials (see Def-
inition 2.2), then (P0) enjoys an exact SDP-relaxation in the sense that the optimal
values of (P0) and its relaxation problem are equal and the relaxation problem attains
its optimum under the Slater constraint qualification ([22, Theorem 3.4]). The class
of SOS-convex polynomials is a numerically tractable subclass of convex polyno-
mials and it contains convex quadratic functions and convex separable polynomials
[1,15]. The SOS-convexity of a polynomial can be numerically checked by solving a
semidefinite programming problem.

The exact SDP-relaxation of a convex optimization problem is a highly desirable
feature because SDP problems can be efficiently solved [2,11]. However, the data
of real-world convex optimization problems are often uncertain (that is, they are not
known exactly at the time of the decision) due to estimation errors, prediction errors
or lack of information. Recently, robust optimization approach has emerged as a pow-
erful approach to treat optimization under data uncertainty. It is known that a robust
convex quadratic optimization problem under ellipsoidal data uncertainty enjoys exact
SDP relaxation as it can be equivalently reformulated as a semi-definite programming
problem (see [7]). In the same vein, Goldfarb and Iyengar [14] have shown that a robust
convex quadratic optimization problems under restricted ellipsoidal data uncertainty
can be equivalently reformulated as a second-order cone programming problem.

Unfortunately, an exact SDP relaxation may fail for a robust convex (not neces-
sarily quadratic) polynomial optimization problem under restricted ellipsoidal data
uncertainty (see Example 3.1). This raises the fundamental question: do some classes
of robust convex (not necessarily quadratic) polynomial optimization problems posses
exact SDP relaxation? This question has motivated us to study SOS-convex polynomial
optimization problems under uncertainty.

In this paper, we study the SOS-convex polynomial optimization problem (P0)

in the face of data uncertainty. This model problem under data uncertainty in the
constraints can be captured by the model problem

(U P0) inf f (x)

s.t. gi (x, vi ) ≤ 0, i = 1, . . . , m,

where vi is an uncertain parameter and vi ∈ Vi for some compact uncertainty set
Vi ∈ R

qi , qi ∈ N, f : R
n → R is a SOS-convex polynomial and gi : R

n × R
qi → R,
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Robust SOS-convex polynomial optimization problems 3

i = 1, . . . , m, are functions such that for each vi ∈ R
qi , gi (·, vi ) is a SOS-convex

polynomial. As solutions to convex optimization problems are generally sensitive to
data uncertainty, even a small uncertainty in the data can affect the quality of the optimal
solution of a convex optimization problem. This has clearly been demonstrated in [6]
by solving 90 linear programming problems from the well-known NETLIB collection.

Consequently, how to find robust optimal solutions, that are immunized against
data uncertainty, has become an important question in convex optimization and has
recently been extensively studied in the literature (see [7–10,16–18] and the references
therein).

Following the robust optimization approach, the robust counterpart of (U P0), which
finds a robust solution of (U P0) that is immunized against all the possible uncertain
scenarios, is given by

(P) inf f (x)

s.t. gi (x, vi ) ≤ 0, ∀vi ∈ Vi , i = 1, . . . , m,

and is called a robust SOS-convex polynomial optimization problem or called sim-
ply, robust SOSCP. In the robust counterpart, the uncertain inequality constraints are
enforced for all realizations of the uncertainties vi ∈ Vi , i = 1, . . . , m. A sum of
squares (SOS) relaxation problem of (P) with degree k is the model problem

(Dk) sup
μ∈R,vi ∈Vi ,λi ≥0

{
μ : f (·) +

m∑
i=1

λi gi (·, vi ) − μ ∈ �2
k

}

where �2
k denotes the set of all sum of squares polynomials with degree no larger than

k. The model (Dk) is, in fact, the sum of squares relaxation of the robust Lagrangian
dual, examined recently in [3,12,16–18].

The following contributions are made in this paper to robust convex optimization.
I. We first derive a complete characterization of the solution of a robust SOS-convex

polynomial optimization problem (P) in terms of sums of squares polynomials under
a normal cone constraint qualification that is shown to be the weakest condition for
the characterization (see Theorem 2.2). We show that the sum of squares characteri-
zation can be numerically checked for some classes of uncertainty sets by solving a
semidefinite programming problem.

II. We establish that the value of a robust SOS-convex optimization problem (P)
can be found by solving a sum-of-squares programming problem (see Theorem 2.3).
This is done by proving an exact sum-of-squares relaxation of the robust SOS-convex
optimization problem (P).

III. Although the sum of squares relaxation problem (Dk) is, in general, a compu-
tationally hard problem for general classes of uncertainty sets (see Remark 2.1), we
prove that, for the classes of polytopic and ellipsoidal uncertainty sets, the relaxation
problem can equivalently be re-formulated as a semidefinite programming problem
(see Theorems 3.1 and 3.2). This shows that these uncertainty sets, which allow second-
order cone re-formulations of robust quadratically constrained optimization problems
[14], permit exact SDP relaxations for a broad class of robust SOS-convex optimiza-
tion problems. The relaxation problem provides an alternative formulation of an exact
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4 V. Jeyakumar et al.

second-order cone relaxation for the robust quadratically constrained optimization
problem, studied in [14].

The outline of the paper is as follows. Section 2 presents necessary and sufficient
conditions for robust optimality and derives SOS-relaxation for robust SOS-convex
optimization problems. Section 3 provides numerically tractable classes of robust
convex optimization problems by presenting exact SDP-relaxations.

2 Solutions of robust SOSCPs

We begin with some definitions and preliminaries on polynomials. We say that a real
polynomial f is sum-of-squares [23] if there exist real polynomials f j , j = 1, . . . , r ,
such that f = ∑r

j=1 f 2
j . The set consisting of all sum of squares real polynomial is

denoted by �2. Moreover, the set consisting of all sum of squares real polynomial
with degree at most d is denoted by �2

d . The space of all real polynomials on R
n is

denoted by R[x] and the set of all n × r matrix polynomials is denoted by R[x]n×r .

Definition 2.1 (SOS matrix polynomial) We say a matrix polynomial F ∈ R[x]n×n is
a SOS matrix polynomial if F(x) = H(x)H(x)T where H(x) ∈ R[x]n×r is a matrix
polynomial for some r ∈ N.

Definition 2.2 (SOS-Convex polynomial [15]) A real polynomial f on R
n is called

SOS-convex if the Hessian matrix function F : x �→ ∇2 f (x) is a SOS matrix poly-
nomial.

Clearly, a SOS-convex polynomial is convex. However, the converse is not true, that
is, there exists a convex polynomial which is not SOS-convex [1]. It is known that any
convex quadratic function and any convex separable polynomial is a SOS-convex poly-
nomial. Moreover, a SOS-convex polynomial can be non-quadratic and non-separable.
For instance, f (x) = x8

1 + x2
1 + x1x2 + x2

2 is a SOS-convex polynomial (see [15])
which is non-quadratic and non-separable.

Lemma 2.1 (SOS-Convexity & sum-of-squares[15, Lemma 8]) Let f be a SOS-
convex polynomial on R

n. If f (u) = 0 and ∇ f (u) = 0 for some u ∈ R
n, then f

is a sum-of-squares polynomial.

The following existence result for solutions of a convex polynomial optimization
problem will also be useful for our later analysis.

Lemma 2.2 (Solutions of convex polynomial optimization [4, Theorem 3]) Let
f0, f1, . . . , fm be convex polynomials on R

n and let C := {
x ∈ R

n : fi (x) ≤ 0,

i = 1, . . . , m
}
. If inf

x∈C
f0(x) > −∞ then argminx∈C f0(x) 
= ∅.

We note that it is possible to reduce a convex polynomial optimization problem
to a quadratic optimization problem by introducing new variables. For example,
minx∈R{x2 : x4 ≤ 1} can be converted to a quadratic optimization problem
min(x,t)∈R2{x2 : x2 ≤ 1, t = x2}. However, introducing new variables will result
in a problem which may not satisfy the required convexity.
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Robust SOS-convex polynomial optimization problems 5

Recall that for a convex set A ⊂ R
m , the normal cone of A at x ∈ A is given by

NA(x) := {
v ∈ R

n : vT (y − x) ≤ 0, ∀y ∈ A
}
. Let F := {x : gi (x, vi ) ≤ 0 ∀vi ∈

Vi , i = 1, . . . , m} 
= ∅. We say that the normal cone condition holds for F at x ∈ F
provided that

NF (x) =
{

m∑
i=1

λi∇x gi (x, vi ) : λi ≥ 0, vi ∈ Vi , λi gi (x, vi ) = 0

}
,

where ∇x denotes the gradient with respect to the variable x .
It is known from [16] that the normal cone condition is guaranteed by the following

robust Slater condition, {x ∈ R
n : gi (x, vi ) < 0, ∀vi ∈ Vi , i = 1, . . . , m} 
= ∅. On

the other hand, the normal cone condition is, in general, weaker than the robust Slater
condition.

In the following theorem we first prove that the normal cone condition guarantees a
robust solution characterization involving sums-of-squares representations for robust
SOSCPs.

Theorem 2.1 (Sum-of-squares characterization of solutions) Let f : R
n → R be a

SOS-convex polynomial and let gi : R
n × R

qi → R, i = 1, . . . , m, be functions such
that for each vi ∈ R

qi , gi (·, vi ) is a SOS-convex polynomial with degree at most di . Let
Vi ⊂ R

qi be compact and F := {x ∈ R
n : gi (x, vi ) ≤ 0 ∀vi ∈ Vi , i = 1, . . . , m} 
=

∅. Suppose that argminx∈F f (x) 
= ∅ and the normal cone condition holds at x∗ ∈ F.
Then, x∗ is a minimizer of minx∈F f (x) if and only if (∃ v̄i ∈ Vi , λi ∈ R+, i =
1, . . . , m, σ0 ∈ �2

k0
) (∀ x ∈ R

n)

f (x) − f (x∗) +
m∑

i=1

λi gi (x, v̄i ) = σ0(x), (2.1)

where k0 is the smallest even number such that k0 ≥ max
{
deg f, max1≤i≤m di

}
.

Proof [(if part)] It easily follows from the fact that f (x) − f (x∗) = σ0(x) −∑m
i=1 λi gi (x, v̄i ) ≥ 0 for all x ∈ F as σ0(x) ≥ 0 and λi ≥ 0. [(only if part)] If

f (x∗) = minx∈F f (x), then, by the optimality condition of convex optimization,
−∇ f (x∗) ∈ NF (x∗). By the normal cone condition, there exist v̄i ∈ Vi , λi ≥ 0,
i = 1, . . . , m, with λi gi (x∗, v̄i ) = 0, such that −∇ f (x∗) =∑m

i=1 λi∇gi (x∗, v̄i ). Let
L(x) := f (x) − f (x∗) +∑m

i=1 λi gi (x, v̄i ), for x ∈ R
n . Observe that L(x∗) = 0

and ∇L(x∗) = 0. Clearly, L is SOS-convex since f and g(·, v̄i ) are all SOS-
convex. So, Lemma 2.1 guarantees that L is a sum of squares polynomial. More-
over, the degree of L is not larger than k0. So, there exists σ0 ∈ �2

k0
such that

f (x) − f (x∗) + ∑m
i=1 λi gi (x, v̄i ) = σ0(x) ∀x ∈ R

n . Thus, the conclusion fol-
lows. ��

Next, we show that the normal cone condition is indeed the weakest condition for
the robust solution characterization in the sense that if the normal cone condition fails
at some feasible point then there exists a SOS-convex real polynomial f such that the
robust solution characterization fails.
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6 V. Jeyakumar et al.

Theorem 2.2 (Weakest qualification for solution characterization) Let gi : R
n ×

R
qi → R, i = 1, . . . , m, be functions such that for each vi ∈ R

qi , gi (·, vi ) is a SOS-
convex polynomial with degree at most di . Let F := {x ∈ R

n : gi (x, vi ) ≤ 0 ∀vi ∈ Vi ,

i = 1, . . . , m} 
= ∅ and let Vi ⊂ R
qi be compact. Then, the following statements are

equivalent:

(i) For each SOS-convex real polynomial f on R
n with argminx∈F f (x) 
= ∅, f (x∗)

= min
x∈F

f (x) ⇔
[
∃ v̄i ∈ Vi , λi ≥ 0 : f (·) − f (x∗) +∑m

i=1 λi gi (·, v̄i ) ∈ �2
k0

]
where k0 is the smallest even number such that k0 ≥ max

{
deg f, max1≤i≤m di

}
.

(ii) NF (x) = {∑m
i=1 λi∇x gi (x, vi ) : λi ≥ 0, vi ∈ Vi , λi gi (x, vi ) = 0

}
, for all x ∈ F.

Proof It suffices to show that (i) ⇒ (ii) since the converse statement has been already
shown in Theorem 2.1. In fact, we just need to show NF (x) ⊂ {∑m

i=1 λi∇x gi (x, vi ) :
λi ≥ 0, vi ∈ Vi , λi gi (x, vi ) = 0}, for any x ∈ F , since the converse inclusion always
holds. Let x∗ ∈ F be arbitrary. If w ∈ NF (x∗) then −wT (x − x∗) ≥ 0 for all x ∈ F .
Let f (x) := −wT (x − x∗). Then, minx∈F f (x) = f (x∗) = 0. Since any affine
function is SOS-convex, applying (i), there exist v̄i ∈ Vi , λi ≥ 0, for i = 1, . . . , m,
and σ0 ∈ �2

k0
such that, for all x ∈ R

n ,

− wT (x − x∗) +
m∑

i=1

λi gi (x, v̄i ) = σ0(x) ≥ 0. (2.2)

Letting x = x∗, we see that
∑m

i=1 λi gi (x∗, v̄i ) ≥ 0. This together with x ∈ F
implies λi gi (x∗, v̄i ) = 0, i = 1, . . . , m. So, (2.2) implies that σ0(x∗) = 0 and
0 = ∇σ0(x∗) = −w +∑m

i=1 λi gi (x∗, v̄i ). Then, w ∈ {∑m
i=1 λi∇x gi (x∗, vi ) : λi ≥

0, vi ∈ Vi , λi gi (x∗, vi ) = 0}. Thus, the conclusion follows. ��
It is worth noting that the sum-of-squares condition characterizing the solution of

a robust SOSCP can be numerically verified by solving semi-definite programming
problems for some uncertainty sets. We illustrate this with two simple examples: (1)
SOS-convex constraints with finite uncertainty sets; (2) quadratic constraints with
spectral norm data uncertainty sets. The numerical tractability of more general classes
of robust SOS-convex optimization problems under sophisticated classes of uncer-
tainty sets will be discussed later on in Sect. 3.

2.1 SOS-convex constraints and finite uncertainty sets

Suppose that Vi = {v1
i , . . . , v

si
i

}
for any i ∈ {1, . . . , m}. Then, the robust SOS-convex

polynomial optimization problem takes the form

(P1) min
x∈Rn

{ f (x) : gi (x, v
j
i ) ≤ 0, ∀ j = 1, . . . , si , ∀i = 1, . . . , m},

and the minimum is attained in virtue of Lemma 2.2. Let x∗ be a feasible solution of
(P1) and suppose that the normal cone condition is satisfied at x∗.
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Robust SOS-convex polynomial optimization problems 7

Let k0 = max1≤i≤m,1≤ j≤si {deg f, deggi (·, v j
i )}. In this case, (2.1) in Theorem 2.1

is equivalent to the condition that there exist λ
j
i ≥ 0, i = 1, . . . , m, j = 1, . . . , si ,

and σ0 ∈ �2
k such that

f (x) − f (x∗) +
∑

1≤i≤m,1≤ j≤si

λ
j
i gi

(
x, v

j
i

)
= σ0(x) for all x ∈ R

n . (2.3)

Indeed, it is easy to see that (2.1) in Theorem 2.1 implies (2.3). On the other hand,
(2.3) immediately gives us that x∗ is a solution of (P1) which implies (2.1). Therefore,
a solution of a SOS-convex polynomial optimization problem under finite uncertainty
sets can be efficiently verified by solving a semidefinite programming problem.

2.2 Quadratic constraints under spectral norm uncertainty

Consider the following SOS-convex polynomial optimization problem with quadratic
constraints under spectral norm uncertainty:

min
x∈Rn

{ f (x) : xT Bi x + 2bT
i x + βi ≤ 0, i = 1, . . . , m},

where, bi ∈ R
n and βi ∈ R, the data (Bi , bi , βi ) ∈ Sn × R

n × R, i = 1, . . . , m, are
uncertain and belong to the spectral norm uncertainty set

Vi = {(Bi , bi , βi ) ∈ Sn × R
n × R :

∥∥∥∥∥
(

Bi bi

bT
i βi

)
−
(

Bi bi

b
T
i β i

)∥∥∥∥∥
spec

≤ εi },

for some εi ≥ 0, Bi � 0, bi ∈ R
n and β i ∈ R. Here, Sn denotes the space of

symmetric n×n matrices and ‖·‖spec denotes the spectral norm defined by ‖M‖spec =√
λmax(MT M) where λmax(C) is the maximum eigenvalue of the matrix C . The

corresponding robust counterpart of the above problem is

(P2) min f (x)

s.t. xT Bi x + 2bT
i x + βi ≤ 0, ∀ (Bi , bi , βi ) ∈ Vi , i = 1, . . . , m,

Let k = max{deg f, 2}. In this case, (2.1) in Theorem 2.1 becomes (∃ Bi ∈ Vi , λ ∈
R

m+, σ0 ∈ �2
k ) (∀x ∈ R

n) f (x) − f (x∗) +∑m
i=1 λi (xT Bi x + 2bT

i x + βi ) = σ0(x).
This, in turn, is equivalent to the condition that there exist λi ≥ 0, i = 1, . . . , m, and
σ0 ∈ �2

k such that

f (x)− f (x∗)+
m∑

i=1

λi (xT (Bi +εi In)x +2b
T
i x +β i +εi ) = σ0(x) for all x ∈ R

n .

(2.4)
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In fact, (2.4) implies (2.1) as (Bi +εi In, bi , β i +εi ) ∈ Vi . On the other hand, note that,

for all (Bi , bi , βi ) ∈ Vi ,

(
Bi + εi In bi

b
T
i βi + εi

)
−
(

Bi bi
bT

i βi

)
is a positive semidefinite

matrix, and hence, for each i = 1, . . . , m,

hi (x) :=
(

x
1

)T
((

Bi + εi In bi

b
T
i βi + εi

)
−
(

Bi bi

bT
i βi

))(
x
1

)

is sum-of-squares. So, (2.1) implies that there exist λi ≥ 0 and (Bi , bi , βi ) ∈ Vi , such
that

f (x) − f (x∗) +
m∑

i=1

λi (xT (Bi + εi In)x + 2b
T
i x + β i + εi )

= f (x) − f (x∗) +
m∑

i=1

λi (xT Bi x + 2bT
i x + βi ) +

m∑
i=1

hi (x),

is a sum-of-squares polynomial with degree at most k. Therefore, a solution of a
quadratic optimization problem under spectral norm data uncertainty can also be effi-
ciently verified by solving a semidefinite programming problem.

Next, we examine how to find the optimal value of a robust SOSCP by solving a sum
of squares relaxation problem. In particular, the corresponding sum of squares relax-
ation problem can often be equivalently reformulated as semi-definite programming
problems under various commonly used data uncertainty sets.

Theorem 2.3 (Exact sum of squares relaxation) Let f : R
n → R be a SOS-convex

polynomial. Let gi : R
n × R

qi → R, i = 1, . . . , m, be functions such that for
each x ∈ R

n, gi (x, ·) is concave, gi (·, vi ) is a SOS-convex polynomial for each
vi ∈ Vi with degree at most di , and Vi ⊂ R

qi are convex compact sets. Let
{x ∈ R

n : gi (x, vi ) < 0 ∀vi ∈ Vi , i = 1, . . . , m} 
= ∅. Then, we have

inf{ f (x) : gi (x, vi ) ≤ 0 ∀vi ∈ Vi , i = 1, . . . , m}

= max
λi ≥0,vi ∈Vi

{
μ : f (·) +

m∑
i=1

λi gi (·, vi ) − μ ∈ �2
k0

}
,

where k0 is the smallest even number such that k0 ≥ max
{
deg f, max1≤i≤m di

}
.

Proof Note that, for any λi ≥ 0, vi ∈ Vi with f (·) +∑m
i=1 λi gi (·, vi ) − μ ∈ �2

k0
and any point x ∈ R

n such that gi (x, vi ) ≤ 0 for all vi ∈ Vi , one has f (x) ≥
f (x) + ∑m

i=1 λi gi (x, vi ) ≥ μ. So, we see that inf{ f (x) : gi (x, vi ) ≤ 0 ∀vi ∈
Vi , i = 1, . . . , m} ≥ maxλi ≥0,vi ∈Vi {μ : f (·) +∑m

i=1 λi gi (·, vi ) − μ ∈ �2
k0

}.
To see the reverse inequality, we may assume without loss of generality that c :=

inf{ f (x) : gi (x, vi ) ≤ 0 ∀vi ∈ Vi , i = 1, . . . , m} ∈ R. By the usual convex
programming duality and the robust Slater condition,
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Robust SOS-convex polynomial optimization problems 9

inf{ f (x) : gi (x, vi )≤0, ∀ vi ∈Vi }= inf{ f (x) : max
vi ∈Vi

gi (x, vi )≤0, i = 1, 2, . . . , m}

= max
λi ≥0

inf
x∈Rn

{
f (x)+

m∑
i=1

λi max
vi ∈Vi

gi (x, vi )

}
=max

λi ≥0
inf

x∈Rn
max
vi ∈Vi

{
f (x)+

m∑
i=1

λi gi (x, vi )

}
,

where the attainment of the maximum is guaranteed by the robust Slater condition.
Note that x �→ gi (x, vi ) is SOS-convex (and so convex) and vi �→ gi (x, vi ) is

concave. From the convex-concave minimax theorem, we have, for each λi ≥ 0,

inf
x∈Rn

max
vi ∈Vi

{
f (x) +

m∑
i=1

λi gi (x, vi )

}
= max

vi ∈Vi

inf
x∈Rn

{
f (x) +

m∑
i=1

λi gi (x, vi )

}
.

So, inf{ f (x) : gi (x, vi ) ≤ 0, ∀ vi ∈ Vi } = maxvi ∈Vi ,λi ≥0 infx∈Rn
{

f (x) +∑m
i=1

λi gi (x, vi )} . Hence, there exist v̄i ∈ Vi and λ̄i ≥ 0, for i = 1, . . . , m, such that
f (x) +∑m

i=1 λ̄i gi (x, v̄i ) ≥ c for all x ∈ R
n .

Let h(x) := f (x)+∑m
i=1 λ̄i gi (x, v̄i )−c. Then, h ≥ 0 and it is also a SOS-convex

polynomial, as f (·) and g (·, v̄i ) are all SOS-convex. So, by Lemma 2.2, we obtain that
minx∈Rn h(x) = h(x∗) for some x∗ ∈ R

n . The polynomial L(x) := h(x) − h(x∗) is
again SOS-convex. Moreover, L(x∗) = 0 and∇L(x∗) = 0. Then, L is a sum of squares
polynomial as a consequence of Lemma 2.1. So we get that f (x)+∑m

i=1 λ̄i gi (x, v̄i )−
c − h(x∗) = σ1(x) ∀x ∈ R

n, where σ1 ∈ �2
k0

and k0 is the smallest even number
such that k0 ≥ max

{
deg f, max1≤i≤m di

}
. Note that a sums-of-squares polynomial

must be of even degree. As h(x∗) ≥ 0, σ0(·) := σ1(·)+h(x∗) is also a sum of squares
with degree at most k0. Therefore, σ0 ∈ �2

k0
and f (x)+∑m

i=1 λ̄i gi (x, v̄i )−c = σ0(x)

for all x ∈ R
n . Hence, c ≤ maxλi ≥0,vi ∈Vi {μ : f (·) +∑m

i=1 λi gi (·, vi ) − μ ∈ �2
k0

}
and the conclusion follows. ��
Remark 2.1 (Intractability of general SOS-relaxation problems) In general, finding
the optimal value of a robust SOSCP using the SOS-relaxation problem can still be
an intrinsically hard problem. For example, consider the following robust convex
quadratic optimization problem:

(P4) inf xT Ax + 2aT x + α

s.t. gi (x, vi ) ≤ 0, ∀ vT
i Ql

ivi ≤ 1, l = 1, . . . , k, i = 1, . . . , m,

where

gi (x, vi ) =
∥∥∥∥∥∥
⎛
⎝B

0
i+

s∑
j=1

v
j
i B

j
i

⎞
⎠ x

∥∥∥∥∥∥
2

+ 2

⎛
⎝b

0
i +

s∑
j=1

v
j
i b

j
i

⎞
⎠

T

x+
⎛
⎝β

0
i+

s∑
j=1

v
j
i β

j
i

⎞
⎠ ,

(2.5)

vi = (v1
i , . . . , vs

i ), Ql
i � 0, for l = 1, . . . , k, i = 1, . . . , m, and k ≥ 2. It was shown

in [8, Section 3.2.2] that checking the robust feasibility of the problem (P4), is an
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10 V. Jeyakumar et al.

NP-hard problem [13] even under the robust Slater condition. By applying Theorem
2.3 with f (x) = 0, we see that the robust feasibility problem of (P4) is equivalent to
the condition that the optimal value of the following problem is zero:

sup
μ∈R,vT

i Ql
i vi ≤1,λi ≥0

{
μ :

m∑
i=1

λi gi (·, vi ) − μ ∈ �2
2

}
.

This, in particular, shows that finding the optimal value of a SOS-relaxation of a robust
SOSCP, via Theorem 2.3, is also NP-hard.

Furthermore, observe that for the above intractable case, vi �→ gi (x, vi ) with
gi (x, vi ) defined in (2.5) is not affine.

A semidefinite programming approximation scheme for solving a robust nonconvex
polynomial optimization problem has been given in [21] where it was shown that
the optimal value of the robust optimization problem can be approached as close as
possible by the optimal value of a sequence of semi-definite programming relaxation
problem under mild conditions. In the next section, we show that, in the case of
affine data parametrization (that is, vi �→ gi (x, vi ) is affine), the optimal value of the
robust SOS-convex polynomial optimization problem can be found by solving a single
semi-definite programming problem under two commonly used data uncertainty sets:
polytopic uncertainty and ellipsoidal uncertainty.

3 Exact SDP-relaxations and affine parameterizations

In this section we consider the robust SOSCP under affinely parameterized data uncer-
tainty:

(P) inf f (x)

s.t. gi (x, vi ) ≤ 0, ∀vi ∈ Vi , i = 1, . . . , m,

where f is a SOS-convex polynomial and the data is affinely parameterized in the
sense that

gi (·, vi ) = g(0)
i (·) +

qi∑
r=1

v
(r)
i g(r)

i (·),

vi = (v
(1)
i , . . . , v

(ti )
i , v

(ti +1)
i , . . . , v

(qi )
i ) ∈ Vi ⊆ R

ti+ × R
qi −ti ,

where g(r)
i , for r = 1, . . . , ti , are SOS-convex polynomials, and g(r)

i , for r = ti +
1, . . . , qi , are affine functions, for all i = 1, . . . , m.

In the following, we show, in the case of two commonly used uncertain sets,
that the SOS-relaxation is exact and the relaxation problems can be represented as
semi-definite programming (SDP) problems whenever a robust Slater condition is
satisfied.
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Robust SOS-convex polynomial optimization problems 11

3.1 Polytopic data uncertainty

Consider the robust SOSCP with polytopic uncertainty, that is, ti = qi and Vi = V̄i ,
where V̄i is given by

V̄i := {vi = (v
(1)
i , . . . , v

(qi )
i ) ∈ R

qi : v
(r)
i ≥ 0, Aivi = bi },

for some matrix Ai = (A jr
i ) ∈ R

li ×qi and bi = (b j
i ) ∈ R

li such that V̄i is compact.
This is equivalent to the condition that Ai ∈ R

li ×qi and {x ∈ R
qi : Ai x = 0} ∩ R

qi+ =
{0}. For instance, the simplex, Vi , defined by Vi = {vi ∈ R

qi : v
(r)
i ≥ 0,

∑qi
r=1 v

(r)
i =

1}, satisfies this assumption.
For the robust SOSCP (P) with polytopic uncertainty sets V̄i , named (P p), and

each k ∈ N, the corresponding relaxation problem (D p
k ) can be stated as

(D p
k ) max

μ,wr
i

μ

s.t. f +
m∑

i=1

qi∑
r=0

wr
i g(r)

i − μ ∈ �2
k

qi∑
r=1

A jr
i wr

i = w0
i b j

i , ∀ j = 1, . . . , li , i = 1, . . . , m,

μ ∈ R, wr
i ≥ 0, ∀r = 0, 1, . . . , qi , i = 1, . . . , m.

(3.1)

Let k0 be the smallest even number such that k0 ≥ max0≤r≤qi ,1≤i≤m{deg f, deg g(r)
i }.

Note that the relaxation problem (D p
k ) can be equivalently rewritten as a semidefinite

programming problem.

Theorem 3.1 (Exact SDP-relaxation under polytopic data uncertainty) Consider the
uncertain SOS-convex polynomial optimization problem under polytope data uncer-
tainty (P p) and its relaxation problem (D p

k ). Suppose that

{
x ∈ R

n : g(0)
i (x) +

qi∑
r=1

v
(r)
i g(r)

i (x) < 0 ∀vi ∈ V̄i , i = 1, . . . , m

}

= ∅.

Then, the minimum of (P p) is attained and min(P p) = max(D p
k0

), where k0 is the

smallest even number such that k0 ≥ max0≤r≤qi ,1≤i≤m{deg f, deg g(r)
i }.

Proof Denote the extreme points of V̄i by v1
i , . . . , v

si
i , i = 1, . . . , m. As vi �→

gi (x, vi ) is affine, maxvi ∈V̄i
gi (x, vi ) = max1≤ j≤si gi (x, v

j
i ) for each fixed x ∈ R

n .
So, min(P p) can be equivalently rewritten as follows:

min
x∈Rn

{
f (x) : gi (x, v

j
i ) ≤ 0,∀ j = 1, . . . , si , ∀i = 1, . . . , m

}
.

So, the minimum in the primal problem is attained in virtue of Lemma 2.2.
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12 V. Jeyakumar et al.

Now, according to Theorem 2.3, we have

min(P p) = min
x∈Rn

{
f (x) : g(0)

i (x) +
qi∑

r=1

v
(r)
i g(r)

i (x) ≤ 0 ∀vi ∈ V̄i , i = 1, . . . , m

}

= max
μ∈R,λi ≥0

v
(r)
i ≥0,Ai vi =bi

{
μ : f +

m∑
i=1

λi

(
g(0)

i +
qi∑

r=1

v
(r)
i g(r)

i

)
− μ ∈ �2

k0

}
.

(3.2)

Let w0
i := λi and wr

i := λiv
(r)
i for r = 1, . . . , qi . Observe that, for each i = 1, . . . , m,

λi ≥ 0, v
(r)
i ≥ 0 ∀r = 1, . . . , qi , Aivi = bi

is equivalent to wr
i ≥ 0 ∀r = 0, 1, . . . , qi ,

∑qi
r=1 A jr

i wr
i = w0

i b j
i ∀ j = 1, . . . , li . So,

the maximization problem in (3.2) collapses to that one in (3.1) with k = k0. Thus,
min(P p) = max(D p

k0
). ��

The above theorem illustrates that, under the robust strict feasibility condition, an
exact SDP relaxation holds for robust SOS-convex polynomial optimization prob-
lem under polytopic data uncertainty. In the special case of robust convex quadratic
optimization problem, such an exact SDP relaxation result was given in [8,11].

3.2 Restricted ellipsoidal data uncertainty

Consider the robust SOSCP with a restrictive ellipsoidal uncertainty, that is, Vi = V̂i

where V̂i is given by

V̂i := {vi ∈ R
qi : v

(r)
i ≥ 0, r = 1, . . . , ti , ‖(v(1)

i , . . . , v
(ti )
i )‖

≤ 1, ‖(v(ti +1)
i , . . . , v

(qi )
i )‖ ≤ 1}. (3.3)

In the case where all the SOS-convex polynomials are convex quadratic functions, the
above problem collapses to the robust quadratic optimization problem under restric-
tive ellipsoidal uncertainty set which was examined in [14]. It is worth noting that
the restriction of v

(r)
i ≥ 0 is essential. Indeed, as pointed out in [14], if this nonneg-

ative restriction is dropped, the corresponding robust quadratic optimization problem
becomes NP-hard. It should also be noted that SOS-convexity of gi (·, v) may not be
preserved if v

(r)
i is negative for some r because gi (·, v) = g(0)

i +∑qi
r=1 v

(r)
i g(r)

i and

g(r)
i ’s are all SOS-convex polynomials.

We begin this case by providing a numerically tractable characterization for a point
x to be feasible for the robust SOSCP under the above restricted ellipsoidal data
uncertainty.
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Robust SOS-convex polynomial optimization problems 13

Lemma 3.1 (Robust feasibility characterization) Let x ∈ R
n and let V̂i be given

in (3.3). Then x is feasible for the robust SOSCP problem (P), that is, g(0)
i (x) +∑qi

r=1 v
(r)
i g(r)

i (x) ≤ 0, ∀vi ∈ V̂i , i = 1, 2, . . . , m, if and only if, for each i = 1, . . . , m,
the following second-order cone programming problem has a non-negative optimal
value

max
μ1,μ2,λ

(r)
i

− a(0)
i − μ1 − μ2

s.t. ‖(a(1)
i + λ

(1)
i , . . . , a(ti )

i + λ
(ti )
i

)‖ ≤ μ1,

‖(a(ti +1)
i , . . . , a(qi )

i

)‖ ≤ μ2,

μ1, μ2 ≥ 0, λ
(r)
i ≥ 0, ∀r = 1, . . . , ti ,

where a(r)
i = g(r)

i (x), r = 0, 1, . . . , qi .

Proof Fix i ∈ {1, . . . , m}. Note that x is feasible for robust SOSCP under the restricted
ellipsoidal uncertainty is equivalent to

‖(v(1)
i , . . . , v

(ti )
i )‖ ≤ 1, v

(r)
i ≥ 0, r = 1, . . . , ti

‖(v(ti +1)
i , . . . , v

(qi )
i )‖ ≤ 1

}
⇒ − g(0)

i (x) −
qi∑

r=1

v
(r)
i g(r)

i (x) ≥ 0.

Using the standard Lagrangian duality theorem, this can be equivalently rewritten as

0 ≤ inf
vi ∈R

qi

{
−g(0)

i (x) −
qi∑

r=1

v
(r)
i g(r)

i (x) : ‖(v(1)
i , . . . , v

(ti )
i )‖ ≤ 1, v

(r)
i ≥ 0, r = 1, . . . , ti

‖(v(ti +1)
i , . . . , v

(qi )
i )‖ ≤ 1

}

= max
μ1,μ2≥0
λi ∈R

ti+

inf
vi ∈R

qi

⎧⎪⎪⎨
⎪⎪⎩

−g(0)
i (x) −

qi∑
r=1

v
(r)
i g(r)

i (x) + μ1(‖(v(1)
i , . . . , v

(ti )
i )‖ − 1)

+μ2(‖(v(ti +1)
i , . . . , v

(qi )
i )‖ − 1) −

ti∑
r=1

λ
(r)
i v

(r)
i

⎫⎪⎪⎬
⎪⎪⎭

= max
μ1,μ2≥0
λi ∈R

ti+

{
−g(0)

i (x) − μ1 − μ2 : ‖(g(1)
i (x) + λ

(1)
i , . . . , g(ti )

i (x) + λ
(ti )
i

)‖ ≤ μ1,

‖(g(ti +1)
i (x), . . . , g(qi )

i (x)
)‖ ≤ μ2.

}

Hence, the equivalence follows. ��
For the robust SOSCP (P) with restricted ellipsoidal uncertainty sets V̂i , named

(Pe), and each k ∈ N, the corresponding relaxation problem (De
k) can be stated as

(De
k) max

μ,wr
i

μ

s.t. f +
m∑

i=1

qi∑
r=0

wr
i g(r)

i − μ ∈ �2
k

‖(w1
i , . . . , w

ti
i )‖ ≤ w0

i , ∀i = 1, . . . , m,

‖(wti +1
i , . . . , w

qi
i )‖ ≤ w0

i , ∀i = 1, . . . , m,

wr
i ≥ 0, ∀r = 0, 1, . . . , ti , ∀i = 1, . . . , m.

μ ∈ R, wr
i ∈ R, ∀r = ti + 1 . . . , qi , ∀i = 1, . . . , m.

(3.4)
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14 V. Jeyakumar et al.

Let k0 be the smallest even number such that k0 ≥ max0≤r≤qi ,1≤i≤m{deg f, deg g(r)
i }.

As in the polytopic case, the relaxation problem (De
k) can be equivalently rewritten as

a semidefinite programming problem with additional second-order cone constraints.

Theorem 3.2 (Exact SDP-relaxation under restricted ellipsoidal uncertainty) Con-
sider the uncertain SOS-convex polynomial optimization problem under ellipsoidal
data uncertainty (Pe) and its relaxation problem (De

k). Suppose that {x ∈ R
n :

g(0)
i (x) + ∑qi

r=1 v
(r)
i g(r)

i (x) < 0 ∀vi ∈ V̂i , i = 1, . . . , m} 
= ∅. Then, inf(Pe) =
max(De

k0
).

Proof Using Theorem 2.3, we obtain that

inf(Pe) = inf
x∈Rn

{
f (x) : g(0)

i (x) +
qi∑

r=1

v
(r)
i g(r)

i (x) ≤ 0, ∀vi ∈ V̂i , i = 1, . . . , m

}

= max
μ∈R,λi ≥0

vi ∈V̂i

{
μ : f +

m∑
i=1

λi g
(0)
i +

m∑
i=1

qi∑
r=1

λiv
(r)
i g(r)

i − μ ∈ �2
k0

}
. (3.5)

To see the conclusion, define w0
i := λi and wr

i := λiv
(r)
i , r = 1, . . . , qi . It can be

verified that, for each i = 1, . . . , m, λi ≥ 0, vi ∈ V̂i is equivalent to

‖(w1
i , . . . , w

ti
i )‖ ≤ w0

i , wr
i ≥ 0, ∀r = 0, 1, . . . , ti ,

‖(wti +1
i , . . . , w

qi
i )‖ ≤ w0

i , wr
i ∈ R, ∀r = ti + 1 . . . , qi .

So, the maximization problem in (3.5) collapses to that one in (3.4) with k = k0. Thus,
we get inf(Pe) = max(De

k0
). ��

In the following example, we show that an exact SDP relaxation may fail for a
robust convex (but not SOS-convex) polynomial optimization problem with linear
constraints under restricted ellipsoidal data uncertainty.

Example 3.1 (Failure of exact SDP relaxation for convex polynomial optimization)
Let f be a convex homogeneous polynomial with degree at least 2 in R

n which is not a
sum-of-squares polynomial (see [5,19], for the existence of such polynomials). Con-
sider the following robust convex polynomial optimization problem under ellipsoidal
data uncertainty:

minx∈Rn f (x)

s.t. vT x − 1 ≤ 0, ∀ v ∈ V,

where V = {u ∈ R
n : ‖u‖ ≤ 1} is the uncertainty set and g(x, v) = vT x − 1. It is

easy to see that the strict feasibility condition is satisfied.
We now show that our SDP relaxation is not exact. To see this, as f is a convex

homogeneous polynomial with degree at least 2 (which is necessarily nonnegative),
we first note that infx∈Rn { f (x) : g(x, v) ≤ 0, ∀ v ∈ V} = 0. The claim will follow
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Robust SOS-convex polynomial optimization problems 15

if we show that, for any (w0
1, w

1
1, . . . , w

n
1 ) ∈ R

n+1 with ‖(w1
1, . . . , w

n
1 )‖ ≤ w0

1,
f (x) + (−1)w0

1 +∑n
i=1 wi

1xi − 0 /∈ �2
d . Otherwise, there exists a sum of squares

polynomial σ with degree at most d such that

f (x) + (−1)w0
1 +

n∑
i=1

wi
1xi = σ(x), for all x ∈ R

n . (3.6)

for some (w0
1, w

1
1, . . . , w

n
1 ) ∈ R

n+1 with ‖(w1
1, . . . , w

n
1 )‖ ≤ w0

1. Note that σ is a sum-
of-squares (and so, is nonnegative) and w0

1 ≥ 0. So, f (x) ≥ h(x) := −∑n
i=1 wi

1xi .
As f is a convex homogeneous polynomial with degree m and m ≥ 2, h ≡ 0. (Indeed,
if there exists x̂ such that h(x̂) 
= 0, then by replacing x̂ with −x̂ , if necessary, we
can assume that h(x̂) > 0. Now, we have tm f (x̂) = f (t x̂) ≥ 2h(t x̂) = 2th(x̂), for
all t > 0. This shows us that f (x̂)

h(x̂)
≥ 1

tm−1 , for all t > 0. This is a contradiction as
1

tm−1 → ∞ as t → 0.) Hence, f = σ + w0
1 and so f is a sum-of-squares polynomial.

This contradicts our construction of f . Therefore, our relaxation is not exact.

Corollary 3.1 (Robust SOSCP with a sum of quadratic and separable functions)
Consider the uncertain convex polynomial optimization problem under restricted
ellipsoidal data uncertainty (Pe) and its relaxation problem (De

k), where each

g(r)
i is the sum of a separable convex polynomial and a convex quadratic func-

tion, i.e., g(r)
i (x) = ∑n

l=1 h(r)
il (xl) + 1

2 xT B(r)
i x + (

b(r)
i

)T
x + β

(r)
i for some con-

vex univariate polynomial h(r)
il , B(r)

i � 0, b(r)
i ∈ R

n and β
(r)
i ∈ R. Suppose that

{x ∈ R
n : g(0)

i (x) +∑qi
r=1 v

(r)
i g(r)

i (x) < 0 ∀vi ∈ V̂i , i = 1, . . . , m} 
= ∅. Then, we
have inf(Pe) = max(De

k0
).

Proof The conclusion follows from the preceding theorem by noting that the sum
of a separable convex polynomial and a convex quadratic function is a SOS-convex
polynomial. ��
Corollary 3.2 (Robust convex quadratic problem) For problem (Pe) and its relax-

ation problem (De
2), let f (x) = xT Ax +2aT x +α, g(r)

i (x) = xT B(r)
i x +2

(
b(r)

i

)T
x +

β
(r)
i , r = 0, 1, . . . , ti , and g(r)

i (x) = (
b(r)

i

)T
x + β

(r)
i , r = ti + 1, . . . , qi , where

A, B(r)
i � 0, a, b(r)

i ∈ R
n and α, β

(r)
i ∈ R. Suppose that {x ∈ R

n : g(0)
i (x) +∑qi

r=1 v
(r)
i g(r)

i (x) < 0 ∀vi ∈ V̂i , i = 1, . . . , m} 
= ∅. Then, inf(Pe) = max(De
2) and

max(De
2) can be written as the following semi-definite programming problem

max
μ,wr

i

μ

s.t.

⎛
⎝ A +∑m

i=1
∑ti

r=0 wr
i B(r)

i a +∑m
i=1
∑qi

r=0 wr
i b(r)

i(
a +∑m

i=1
∑qi

r=0 wr
i b(r)

i

)T
α +∑m

i=1
∑qi

r=0 wr
i β

(r)
i − μ

⎞
⎠ � 0 (3.7)

‖(w1
i , . . . , w

ti
i )‖ ≤ w0

i , ∀i = 1, . . . , m,

‖(wti +1
i , . . . , w

qi
i )‖ ≤ w0

i , ∀i = 1, . . . , m,
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16 V. Jeyakumar et al.

wr
i ≥ 0, ∀r = 0, 1, . . . , ti , ∀i = 1, . . . , m,

μ ∈ R, wr
i ∈ R, ∀r = ti + 1 . . . , qi , ∀i = 1, . . . , m.

Proof As f and each g(r)
i , r = 1, . . . , qi , are convex quadratic functions,

the conclusion follows by applying Theorem 3.2 and noting just that f + ∑m
i=1∑qi

r=0 wr
i g(r)

i − μ∈�2
2 is, in this particular case, equivalent to(

A +∑m
i=1

∑ti
r=0 wr

i B(r)
i a +∑m

i=1
∑qi

r=0 wr
i b(r)

i
(a +∑m

i=1
∑qi

r=0 wr
i b(r)

i )T α +∑m
i=1

∑qi
r=0 wr

i β
(r)
i − μ

)
� 0. ��

We now present a numerical example verifying the exact SDP relaxation for a robust
SOS-convex polynomial optimization problem where the objective function is neither
a quadratic function nor a separable function.

Example 3.2 (Exact SDP relaxation for a robust non-quadratic SOS-convex problem)
Consider the following robust SOSCP

(P5) min x4
1 + 2x2

1 − 2x1x2 + x2
2

s.t. v1x1 + v2x2 ≤ 1, ∀ ‖(v1, v2)‖ ≤ 1.

It is easy to verify that global solution of (P5) is (0, 0) with optimal value zero, and
robust Slater condition is satisfied. The corresponding 4th-order relaxation problem
is given by

max
μ∈R,λ≥0

‖(v1,v2)‖≤1

{μ : x4
1 + 2x2

1 − 2x1x2 + x2
2 + λ(v1x1 + v2x2 − 1) − μ ∈ �2

4}.

It can be equivalently reformulated as the following semi-definite programming prob-
lem:

max
μ,w,W

μ

s.t. W11 = −w0 − μ, 2W12 = w1, 2W13 = w2, 2W23 + 2W14 = −2,

2W16 + W33 = 1, 2W15 + W22 = 2, W55 = 1,

Wi j = 0 ∀(i, j) /∈ {(2, 2), (2, 3), (3, 2), (3, 3), (5, 5)} ∪ {∪6
j=1(1, j)}

∪{∪6
j=1( j, 1)},

‖(w1, w2)‖ ≤ w0, μ ∈ R, w = (w0, w1, w2) ∈ R
3, W = (Wi j ) ∈ S6+.

Let μ∗ be the optimal value of the above SDP problem associated to a maximizer
(μ∗, ŵ, Ŵ ). Since Ŵ � 0, then Ŵ11 ≥ 0 which implies −ŵ0 − μ∗ ≥ 0, and so,
μ∗ ≤ −ŵ0 ≤ 0. On the other hand, define W ∈ S6+ by W 33 = W 55 = 1, W 22 = 2
and W 23 = W 32 = −1 and W i j = 0 otherwise. Let w0 = w1 = w2 = 0 and μ = 0.
It is not hard to verify that W � 0 and (μ,w, W ) is a feasible point for the above SDP
problem. So, μ∗ ≥ 0. Thus, μ∗ = 0 which shows that the SDP relaxation is exact.
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We note that, in the special case of quadratically constrained optimization problem
with linear objective function under restrictive ellipsoidal data uncertainty, the linear
matrix inequality constraint in (3.7) reduces to

⎛
⎜⎝
∑m

i=1
∑ti

r=0 wr
i (L(r)

i )T L(r)
i a +∑m

i=1
∑qi

r=0 wr
i b(r)

i(
a +∑m

i=1
∑qi

r=0 wr
i b(r)

i

)T
α +∑m

i=1
∑qi

r=0 wr
i β

(r)
i − μ

⎞
⎟⎠ � 0,

where L(r)
i ∈ R

n×s , is a matrix such that B(r)
i = L(r)

i (L(r)
i )T . It then follows from [24]

(see also [25, page 277]) that this linear matrix inequality can be equivalently written
as second-order cone constraints. So, for a quadratically constrained optimization
problem with linear objective function under restrictive ellipsoidal data uncertainty,
the sums-of-squares relaxation problem can be equivalently rewritten as a second
order cone programming problem, and hence, exact second-order cone relaxation
holds under the robust strict feasibility condition.

A second-order cone reformulation of a robust quadratic optimization problem with
linear objective function under restrictive ellipsoidal data uncertainty was first shown
in [14]. Our Corollary provides an alternative second-order cone reformulation for
this class of problems.

4 Conclusions and further research

In this paper, we studied robust solutions and semidefinite linear programming (SDP)
relaxations for SOS-convex polynomial optimization problems in the face of data
uncertainty. We established sums-of-squares polynomial representations characteriz-
ing robust solutions and exact SDP-relaxations of robust SOS-convex optimization
problems under various commonly used uncertainty sets.

Our SDP-relaxation results show that the optimal value of a robust SOS-convex
polynomial optimization problem under classes of polytopic and restricted ellipsoidal
uncertainty sets can be found by solving a single semi-definite programming problem
whenever a suitable regularity condition is satisfied.

On the other hand, how to obtain a minimizer of a robust SOS-convex polynomial
optimization problem is also an important and interesting problem, which has not
been addressed in this paper. However, it is known that, using the Lasserre hierarchy
together with a moment approach [20], one can get a sequence of points converging
to a minimizer of a general (possibly nonconvex) polynomial optimization problem
under some regularity assumptions. It would be of interest to examine whether the
moment approach of [20,21] together with our exact SDP relaxation results in this
paper leads to a sequence of points converging to a minimizer of a given robust SOS-
convex polynomial optimization problem under some commonly used uncertainty
sets. This would be examined in a forthcoming study.
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