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Abstract Recently Bai and Yang in (Appl Numer Math 59:2923–2936, 2009) pro-
posed the Picard–Hermitian and skew-Hermitian splitting (HSS) iteration method to
solve the system of nonlinear equations Ax = ϕ(x), where A ∈ C

n×n is a non-
Hermitian positive definite matrix and ϕ : D ⊂ C

n → C
n is continuously differen-

tiable function defined on the open complex domain D in the n-dimensional complex
linear space C

n . In this paper, we focus our attention to the absolute value equation
(AVE) Ax = ϕ(x) where ϕ(x) = |x | + b, where b ∈ C

n . Since the function ϕ

in AVE is not continuously differentiable function the convergence analysis of the
Picard–HSS iteration method for this problem needs to be investigated. We give suf-
ficient conditions for the convergence of the Picard–HSS iteration method for AVE.
Some numerical experiments are given to show the effectiveness of the method and to
compare with two available methods.

Keywords Absolute value equation · HSS · Picard · Positive definite · Convergence

1 Introduction

We consider the absolute value equation (AVE)

Ax − |x | = b, (1)

where A ∈ C
n×n and b ∈ C

n . In Eq. (1), |x | = (|x1|, |x2|, . . . , |xn|)T where xi ’s are
the entries of x . Many mathematical programming problems can be formulated as an
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2192 D. K. Salkuyeh

AVE. For example, consider the linear complementarity problem (LCP)

z ≥ 0, w = Mz + q ≥ 0, zT w = 0, (2)

for a given M ∈ R
n×n and q ∈ R

n . When the matrix M − I is nonsingular, the LCP
(2) can be reduced to the following AVE (see for example [2–5])

(M − I )−1(M + I )x − |x | = (M − I )−1q, (3)

with

x = 1

2
((M − I )z + q).

Mangasarian in [6] has shown that AVE is equivalent to a concave minimization
problem and considered solving the latter problem instead of AVE. In [7], Prokopyev
has discussed the unique solvability of AVE, and its relations with LCP and mixed
integer programming. By invoking the connection between LCPs and AVE we can
deduce that all singular values of A exceeding 1 implies existence of a unique solution
for every right-hand side b [4]. Another condition for the existence and uniqueness of
a solution for the problem (1) has been provided by [4, Proposition 4].

In fact, the authors have shown that AVE (1) has a unique solution for any b if
‖A−1‖2 < 1, where ‖.‖2 is the 2-norm. In [5], Mangasarian proposed a generalized
Newton method for AVE (1) and investigated its convergence properties. This method
can be summarized as

x (k+1) =
(

A − D(x (k))
)−1

b, k = 0, 1, 2, . . . , (4)

where x (0) is an initial guess and D(x (k)) is a diagonal matrix of the form D(x (k)) =
diag(sign(x (k))) (for more details see [5]). In practical implementation of the general-
ized Newton method a linear system of equations with coefficient matrix A − D(x (k))

should be solved in each iteration. Since the coefficient matrices in (4) are changed
with respect to the iteration index k, the computations of the generalized Newton iter-
ates can be much expensive. Rohn et al. in [8] proposed another method to solve AVE
(1). In practice their method is reduced to the well known Picard iteration method (see
also [9])

x (k+1) = A−1
(
|x (k)| + b

)
, k = 0, 1, 2, . . . , (5)

where x (0) = A−1b is the initial guess. In practice, in each iteration of the Picard
method a linear system with the coefficient matrix A, which is constant in all the
iterations, should be solved. The main problem with the Picard iteration method is
that if the matrix A is ill-conditioned then in each iteration of the Picard method an
ill-conditioned linear system should be solved. Later, in [10] Noor et al. presented an
iterative method to solve AVE (1) when C = A − D is symmetric positive definite for
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every diagonal matrix D with diagonal entries −1, 0 or +1. Bai and Yang in [11] have
presented the Picard–HSS iteration method which incorporates the Picard iteration
method and the Hermitian and skew-Hermitian splitting (HSS) method [12] to solve
the nonlinear system Ax = ϕ(x) where the matrix A is non-Hermitian positive definite
and ϕ : D ⊂ C

n → C
n is continuously differentiable function defined on the open

complex domain D in the n-dimensional complex linear space C
n . By comparing the

nonlinear system Ax = ϕ(x) with our problem, we see that ϕ(x) = |x |+b. However,
this function does not satisfies the assumptions of [11] and the stated theorem for the
convergence in [11] should be revised. In this paper, we show that these assumptions
can be ignored for our problem and establish a theorem for the convergence of the
method. Some numerical results are given to show the validity of the theoretical results
and efficiency of the method. We also compare the numerical results of the Picard–HSS
iteration method with those of the Picard and generalized Newton methods.

For convenience, some notations, definitions and results that will be used in the
following parts are given below. For A ∈ C

n×n , AH represents the conjugate transpose
of A. A matrix A ∈ C

n×n is said to be positive definite if its Hermitian part H =
(AH + A)/2 is positive definite, i.e., x H H x > 0 for any x ∈ C

n\{0}. The spectral
radius of A is denoted by ρ(A). We have Ak → 0 as k tends to infinity if and only if
ρ(A) < 1 (see [1,13]).

The rest of the paper is organized as follows. In Sect. 2 we review the HSS iteration
method. Section 3 is devoted to introducing the Picard–HSS iteration method to solve
AVE (1) and investigate its convergence properties. Some numerical experiments are
given in Sect. 4.

2 A brief description of the HSS method

Let A ∈ C
n×n be a non-Hermitian positive definite matrix. Then the matrix A possesses

a Hermitian/skew-Hermitian (HS) splitting

A = H + S, (6)

where

H = 1

2
(A + AH ) and S = 1

2
(A − AH ).

Based on the HS splitting (2), Bai et al. [12] presented the HSS iteration method to
solve positive definite system of linear equations Ax = b. The HSS method to solve
the system Ax = b can be written as:

The HSS iteration method: Given an initial guess x (0) ∈ C
n , for � = 0, 1, 2 . . . ,

until {x (�)}∞�=0 converges, compute

{
(α I + H)x (�+ 1

2 ) = (α I − S)x (�) + b,

(α I + S)x (�+1) = (α I − H)x (�+ 1
2 ) + b,

(7)

where α is a positive constant and I is the identity matrix.
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The HSS iteration in the matrix-vector form can be equivalently rewritten as

x (�+1) = T (α)x (�) + G(α)b

= T (α)�+1x (0) +
�∑

j=0

T (α) j G(α)b, � = 0, 1, 2, . . . , (8)

where

T (α) = (α I + S)−1(α I − H)(α I + H)−1(α I − S),

and

G(α) = 2α(α I + S)−1(α I + H)−1.

It is easy to see that HSS is a stationary iterative method obtained from the splitting

A = B(α) − C(α),

where

B(α) = 1

2α
(α I + H)(α I + S),

C(α) = 1

2α
(α I − H)(α I − S).

On the other hand, we have

T (α) = B(α)−1C(α) and G(α) = B(α)−1.

In [12], it has been shown that for any positive constant α we have ρ(T (α)) < 1. This
shows that the HSS iteration method unconditionally converges to the exact solution
of Ax = b for any initial guess x (0) ∈ C

n .

3 The HSS–Picard for solving AVE

As we mentioned in Sect. 1 the Picard iteration method to solve Eq. (1) can be written
in the form

Ax (k+1) = |x (k)| + b, k = 0, 1, 2, . . . . (9)

We assume that the matrix A is non-Hermitian positive definite. In this case, the next
iterate of x (k+1) can be approximately computed by the HSS iteration by making use
of A = B(α) − C(α) as following (see [11])

B(α)x (k,�+1) = C(α)x (k,�) + |x (k)| + b, � = 0, 1, . . . , lk − 1,

k = 0, 1, 2, . . . , (10)
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where B(α) and C(α) are the matrices defined in the previous section, α is a positive
constant, {lk}∞k=0 a prescribed sequence of positive integers, and x (k,0) = x (k) is the
starting point of the inner HSS iteration at kth outer Picard iteration. This leads to the
inexact Picard iteration method, called Picard–HSS iteration method, for solving the
system (1) which can be summarized as following (see [11]).

The Picard–HSS iteration method: Let the matrix A ∈ C
n×n be positive definite

with H = 1
2 (A + AH ) and S = 1

2 (A − AH ) being the Hermitian and skew-Hermitian
parts of A, respectively. Given an initial guess x (0) ∈ C

n and a sequence {lk}∞k=0 of
positive integers, compute x (k+1) for k = 0, 1, 2, . . ., using the following iteration
scheme until {x (k)} satisfies the following stopping criterion:

(a) Set x (k,0) := x (k);
(b) For � = 0, 1, . . . , lk − 1, solve the following linear systems to obtain x (k,�+1):

{
(α I + H)x (k,�+ 1

2 ) = (α I − S)x (k,�) + |x (k)| + b,

(α I + S)x (k,�+1) = (α I − H)x (k,�+ 1
2 ) + |x (k)| + b,

where α is a given positive constant;
(c) Set x (k+1) := x (k,lk ).

The two linear sub-systems in all inner HSS iterations have the same shifted Hermitian
and shifted skew-Hermitian coefficient matrices, which are constant with respect to
the iteration index k. The first sub-system can be solved exactly by making use of the
Cholesky factorization and the second one by the LU factorization of the coefficient
matrix. Moreover, these sub-systems can be solve approximately by the conjugate
gradient method and a Krylov subspace method like GMRES, respectively.

The next theorem provides sufficient conditions for the convergence of the Picard–
HSS method to solve system (1).

Theorem 1 Let A ∈ C
n×n be a positive definite matrix and H = 1

2 (A + AH ) and
S = 1

2 (A − AH ) be its Hermitian and skew-Hermitian parts, respectively. Let also
η = ‖A−1‖2 < 1. Then the AVE (1) has a unique solution x∗, and for any initial
guess x (0) ∈ C

n and any sequence of positive integers lk , k = 0, 1, 2, . . ., the iteration
sequence {x (k)}∞k=0 produced by the Picard–HSS iteration method converges to x∗
provided that l = lim inf

k→∞ lk ≥ N, where N is a natural number satisfying

‖T (α)s‖2 <
1 − η

1 + η
∀s ≥ N .

Proof Since η < 1, according to Proposition 4 in [4] AVE (1) has a unique solution
x∗ ∈ C

n . Invoking Eq. (8) we see that the (k + 1)th iterate of the Picard–HSS method
can be written as

x (k+1) = T (α)lk x (k) +
lk−1∑
j=0

T (α) j G(α)(|x (k)| + b), k = 0, 1, 2, . . . . (11)
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On the other hand, since x∗ is the solution of Eq. (1), we have

x∗ = T (α)lk x∗ +
lk−1∑
j=0

T (α) j G(α)(|x∗| + b), k = 0, 1, 2, . . . . (12)

Subtracting (12) from (11) yields

x (k+1) − x∗ = T (α)lk (x (k) − x∗) +
lk−1∑
j=0

T (α) j G(α)(|x (k)| − |x∗|). (13)

On the other hand, since ρ(T (α)) < 1, we have

lk−1∑
j=0

T (α) j G(α) =
(

I − T (α)lk
)

(I − T (α))−1G(α)

= (I − T (α)lk )
(

I − B(α)−1C(α)
)−1

B(α)−1

= (I − T (α)lk )A−1.

Substituting this in Eq. (13) yields

x (k+1) − x∗ = T (α)lk (x (k) − x∗) + (I − T (α)lk )A−1(|x (k)| − |x∗|)
= T (α)lk

[
(x (k) − x∗) − A−1(|x (k)| − |x∗|)

]
+ A−1(|x (k)| − |x∗|).

It is easy to see that for any x, y ∈ C
n , ‖ |x | − |y| ‖2 ≤ ‖x − y‖2. Therefore,

∥∥∥x (k+1) − x∗
∥∥∥

2
≤

(∥∥∥T (α)lk
∥∥∥

2
(1 + η) + η

) ∥∥∥x (k) − x∗
∥∥∥

2
.

Since ρ(T (α)) < 1, T (α)s → 0 as s tends to infinity. Therefore, there is a natural
number N such that

∥∥T (α)s
∥∥

2 <
1 − η

1 + η
∀s ≥ N .

Now, if we assume l = lim inf
k→∞ lk ≥ N , then the desired result is obtained. ��

According to Theorem 1, we see that the Picard–HSS iteration method to solve
the AVE (3) is convergent if the matrix (M − I )−1(M + I ) is positive definite, η =
‖(M + I )−1(M − I )‖2 < 1 and the sequence lk, k = 0, 1, 2, . . . , is defined as in
Theorem 1.

Similar to [11], the residual-updating form of the Picard–HSS iteration method can
be written as following.

The Picard–HSS iteration method (residual-updating variant): Let the matrix
A ∈ C

n×n be positive definite with H = 1
2 (A + AH ) and S = 1

2 (A − AH )
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being the Hermitian and skew-Hermitian parts of A, respectively. Given an initial
guess x (0) ∈ C

n and a sequence {lk}∞k=0 of positive integers, compute x (k+1) for
k = 0, 1, 2, . . ., using the following iteration scheme until {x (k)} satisfies the follow-
ing stopping criterion:

(a) Set s(k,0) := 0 and b(k) := |x (k)| + b − Ax (k);
(b) For � = 0, 1, . . . , lk − 1, solve the following linear systems to obtain s(k,�+1):

{
(α I + H)s(k,�+ 1

2 ) = (α I − S)s(k,�) + b(k),

(α I + S)s(k,�+1) = (α I − H)s(k,�+ 1
2 ) + b(k),

where α is a given positive constant;
(c) Set x (k+1) := x (k) + s(k,lk ).

4 Numerical experiments

In this section we give some numerical experiments to show the effectiveness of the
Picard–HSS iteration method to solve AVE (1). To this end, we compare the numerical
results of the Picard–HSS iteration with those of the Picard and generalized Newton
methods. We use the residual-updating version of the Picard–HSS iteration method
presented in the previous section. All the numerical experiments presented in this
section have been computed in double precision using some MATLAB codes on a
Pentium 4 PC, with a 2.10 GHz CPU and 1.99 GB of RAM. We use a null vector as
an initial guess and the stopping criterion

‖Ax (k) − |x (k)| − b‖2

‖b‖2
≤ 10−7,

is always used where x (k) is the computed solution by each of the methods at iterate
k. For the Picard–HSS iterations method, the stopping criterion

‖b(k) − As(k,�)‖2

‖b(k)‖2
≤ 0.01

and a maximum number of iterations 10 (lk = 10, k = 0, 1, 2, . . .) for the inner
iterations are used. For all of the methods the maximum number of iterations (outer
iterations) is set to be 2, 000. The right-hand side vector of AVE (1) is taken such a
way that the vector x = (x1, x2, . . . , xn)T with

xi = (−1)i i, i = 1, 2, . . . , n,

be the exact solution. In the implementation of the Picard–HSS iteration method,
the optimal parameters have been obtained experimentally. In fact, the experimentally
found optimal parameters αexp are the ones resulting in the least numbers of iterations.
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As mentioned in [11] the computation of the optimal parameter is often problem-
dependent and generally difficult to be determined. Subsystems with the coefficient
matrix (α I + H) are solved by the Cholesky factorization of the coefficient matrix and
subsystems with the coefficient matrix (α I + S) are solved by the LU factorization of
the coefficient matrix.

We give two examples and the corresponding numerical results are adjusted in four
tables. In the presented tables we give the number of iterations for the convergence
(denoted by IT), CPU times for the convergence (denoted by CPU) and αexp. Here, we
mention that the reported CPU times are the sum of the CPU times for the convergence
and the CPU times for computing the Cholesky and LU factorizations of the coefficient
matrices. It is also mentioned that the CPU times are given in seconds.

For our numerical experiments we consider the two-dimensional convection diffu-
sion equation

{−(uxx + uyy) + q(ux + uy) + pu = f (x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω = (0, 1) × (0, 1), ∂Ω its boundary, q is a positive constant and p is a real
number. We use the five-point finite difference scheme to the diffusive terms and the
central difference scheme to the convective terms. Let h = 1/(m+1) and Re = (qh)/2
denote the equidistant step size and the mesh Reynolds number, respectively. Then we
get a system of linear equations Bx = d, where B is matrix of order n = m2 of the
form

B = Tx ⊗ Im + Im ⊗ Ty + pIn, (14)

wherein Im and In are, respectively, the identity matrices of order m and n, ⊗ means
the Kronecker product symbol, and Tx and Ty are the tridiagonal matrices

Tx = tridiag(t2, t1, t3) and Ty = tridiag(t2, 0, t3),

with

t1 = 4, t2 = −1 − Re, t3 = −1 + Re.

It is easy to see that for every nonnegative number q the matrix B is in general non-
symmetric positive definite. We define the matrix A in AVE (1) by making use of the
matrix B for our numerical experiments as follows.

Example 1 Let q = 0 and p = 0. In this case, the matrix B provided by (4) is
symmetric positive definite. We set

A = B + 5(L − LT ),

where L is the strictly lower part of B. It is easy to see that the marix A is non-symmetric
positive definite. We present the numerical results for different values of n in Table 1.
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Table 1 Numerical results for Example 1 for different values of n and (q, p) = (0, 0)

n 100 400 900 1,600 2,500

Picard–HSS IT 11 12 14 16 17

CPU time 0.02 0.08 0.24 0.67 1.45

αexp 5.6 5.6 5 5 5

Gen. Newton IT 3 3 4 4 4

CPU time 0.01 0.05 0.08 0.11 0.21

Picard IT 11 12 14 16 17

CPU time 0.02 0.03 0.08 0.11 0.28

Table 2 Numerical results for Example 1 for different values of n and (q, p) = (0, −1)

n 100 400 900 1,600 2,500

Picard–HSS IT 13 17 21 26 30

CPU time 0.03 0.14 0.40 1.17 2.47

αexp 20.4 18.5 18.1 17.5 17.5

Gen. Newton IT Fail Fail Fail Fail Fail

CPU time – – – – –

Picard IT Fail Fail Fail Fail Fail

CPU time – – – – –

In this table “Gen. Newton” is denoted for the generalized Newton method. From
Table 1 we see that the number of iteration of the Picard–HSS and Picard iteration
methods are the same and the CPU times for the Picard method is always less than or
equal to those of the Picard–HSS method. We also see that the number of iterations
of the generalized Newton method is always less than those of the two other methods.
Moreover, the CPU times for the generalized Newton method are comparable with
those of the Picard iterative method. We now assume q = 0 and p = −1 and set

A = B + 0.5(L − LT ),

where L is the strictly lower part of B. In this case the matrix A is in general indefinite.
We report the numerical results in Table 2. All of the assumptions are as before. As
seen both of the Picard and the generalized Newton methods fail to converge in 2,000
iterations (in tables it is denoted by “Fail”). However, we see that the Picard–HSS
method provides quite suitable results.

Example 2 In this example, we first set A = B where B is defined by (4). Numerical
results for different values of n (n = 100, 400, 900, 1, 600, 2, 500), different values
of q (q = 1, 10, 100, 1, 000) and p = 0 are given in Table 3. All of the concluding
remarks which we have given for Table 1 can be mentioned here. In addition, Table
2 shows that the Picard method for q = 1 and q = 10 fails to converge in 2,000
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Table 3 Numerical results for Example 2 for different values of n and q and p = 0

q Method n 100 400 900 1,600 2,500

1 Picard–HSS IT 35 34 33 32 31

CPUtime 0.07 0.28 0.67 1.43 2.50

αexp 13.22 13.6 13.6 13.6 13.6

Gen.Newton IT 6 5 5 5 5

CPU time 0.02 0.03 0.06 0.13 0.21

Picard IT Fail Fail Fail Fail Fail

CPU time – – – – –

10 Picard–HSS IT 40 70 44 46 46

CPU time 0.09 0.56 0.91 2.06 3.63

αexp 7.2 12.1 12.7 13.4 14.1

Gen. Newton IT 4 6 5 5 5

CPU time 0.01 0.03 0.6 0.11 0.22

Picard IT Fail Fail Fail Fail Fail

CPU time – – – – –

100 Picard–HSS IT 11 17 24 36 52

CPU time 0.03 0.14 0.50 1.61 4.11

αexp 10 10 10 10 10

Gen. Newton IT 3 4 6 9 13

CPU time 0.01 0.02 0.07 0.21 0.47

Picard IT 11 17 25 38 75

CPU time 0.02 0.02 0.08 0.1 0.35

1,000 Picard–HSS IT 7 9 11 11 13

CPU time 0.05 0.14 0.39 0.72 1.30

αexp 10 10 10 10 10

Gen. Newton IT 2 2 3 3 3

CPU time 0.01 0.02 0.04 0.06 0.11

Picard IT 7 9 11 11 13

CPU time 0.02 0.02 0.08 0.1 0.35

iterations, whereas the Picard–HSS method properly converges to the exact solution.
Here, it is necessary to mention that the shifted matrices α I + H and α I + S are
usually more well-conditioned than the matrix A.

For the last set of the numerical results we consider A = B where B is defined by
(4) with different values of n (n = 100, 400, 900, 1, 600, 2, 500), different values of
q (q = 1, 10, 100, 1, 000) and p = −1. The related numerical results are given in
Table 4. As we see the Picard–HSS method always converges, but both of the Picard
and generalized Newton methods fail to converge for several cases. For the rest of the
cases, almost all of the previous observations can be concluded.
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Table 4 Numerical results for Example 2 for different values of n and q and p = −1

q Method n 100 400 900 1,600 2,500

1 Picard–HSS IT 24 68 121 205 307

CPUtime 1.06 0.63 2.78 12.53 36.81

αexp 14.8 12.1 11.7 11.5 11.3

Gen.Newton IT 301 Fail Fail Fail Fail

CPU time 0.282 – – – –

Picard IT Fail Fail Fail Fail Fail

CPU time – – – – –

10 Picard–HSS IT 14 27 47 74 109

CPU time 0.03 0.25 1.03 4.01 11.98

αexp 20.8 14.6 12.9 12.2 11.8

Gen. Newton IT 132 Fail Fail Fail Fail

CPU time 0.11 – – – –

Picard IT Fail Fail Fail Fail Fail

CPU time – – – – –

100 Picard–HSS IT 14 20 34 64 156

CPU time 0.04 0.12 0.61 3.04 16.75

αexp 3.8 5.1 8.1 11.0 19.9

Gen. Newton IT 3 6 12 21 29

CPU time 0.01 0.02 0.07 0.21 0.47

Picard IT 14 20 35 75 Fail

CPU time 0.01 0.02 0.05 0.18 -

1,000 Picard–HSS IT 11 11 13 15 15

CPU time 0.04 0.14 0.31 0.76 1.40

αexp 25 22 17 13 12

Gen. Newton IT 2 2 3 3 4

CPU time 0.01 0.03 0.05 0.08 0.14

Picard IT 7 10 13 15 16

CPU time 0.02 0.02 0.08 0.17 0.33
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