
Optim Lett (2014) 8:2111–2125
DOI 10.1007/s11590-014-0724-z

ORIGINAL PAPER

Discretization orders and efficient computation
of cartesian coordinates for distance geometry

Douglas S. Gonçalves · Antonio Mucherino

Received: 21 August 2013 / Accepted: 17 January 2014 / Published online: 7 February 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Distance geometry is a class of problems where the position of points in
space is to be identified by using information about some relative distances between
these points. Although continuous approaches are usually employed, problems belong-
ing to this class can be discretized when some particular assumptions are satisfied.
These assumptions strongly depend on the order in which the points to be positioned
are considered. We discuss new discretization assumptions that are weaker than previ-
ously proposed ones, and present a greedy algorithm for an automatic identification of
discretization orders. The use of these weaker assumptions motivates the development
of a new method for computing point coordinates. Computational experiments show
the effectiveness and efficiency of the proposed approaches when applied to protein
instances.

Keywords Distance geometry ·Combinatorial optimization ·Discretization orders ·
Coordinate computation ·Molecular conformations

1 Introduction

Given a positive integer K and a simple weighted undirected graph G = (V, E, d),
where d maps edges (u, v) ∈ E to positive interval weights [d(u, v), d̄(u, v)], the
distance geometry problem (DGP) [13] is the one of finding an embedding of the
graph G in a K -dimensional space, that is a function x : V −→ R

K satisfying the
following set of constraints:

D. S. Gonçalves · A. Mucherino (B)
IRISA, University of Rennes 1, Rennes, France
e-mail: antonio.mucherino@irisa.fr

D. S. Gonçalves
e-mail: douglas.goncalves@irisa.fr

123

2112 D. S. Gonçalves, A. Mucherino

∀(u, v) ∈ E, d(u, v) ≤ ||xu − xv|| ≤ d̄(u, v), (1)

where || · || denotes the Euclidean norm. An important subclass of DGPs is the mole-
cular DGP (MDGP) [7], where the graph G gives information to be used for the iden-
tification of molecular conformations. In such a case, each vertex v ∈ V of the graph
represents an atom of the molecule, while E contains edges (u, v) between vertices,
whose weight represents the known distances between the atoms u and v. When deal-
ing with experimentally obtained data, the distance information d is generally given
by a lower and an upper bound on the distances, i.e. by the interval [d(u, v), d̄(u, v)].
Distances obtained from experiments of nuclear magnetic resonance (NMR) [15] are,
for example, generally represented by intervals. Distances between bonded atoms,
instead, can be deduced from already known X-ray obtained molecular conforma-
tions, and they can be considered as precise [14]. Naturally, an exact distance can be
represented as a degenerate interval, where d(u, v) = d̄(u, v), so that the constraint
(1) becomes an equality constraint.

There is a wide literature on DGPs (see for example the recent survey [13]). They
can be formulated as global optimization problems in a continuous space. The objec-
tive function, to be minimized, is generally a penalty function that measures the vio-
lation of the constraints (1). One example is the widely-used largest distance error
(LDE):

LDE(X) = 1

|E |
∑

(u,v)∈E

[
max(d(u, v)− ||xu − xv||, 0)

d(u, v)

+ max(||xu − xv|| − d̄(u, v), 0)

d̄(u, v)

]
, (2)

where X = (x1, x2, . . . , xn) and n = |V |, and where the symbol | · | denotes the set
cardinality. One previously proposed continuous approach is, for example, the one in
[16], where the objective function is approximated by smoother functions converging
to the original one. Based on the continuous approach is also the work in [9], where the
concept of funnel bottom is exploited, and where the optimization process is inspired
by the shape of energy landscapes. Moreover, semidefinite programming approaches
have been more recently proposed in [1,3]. The interested reader can find various
interesting approaches to the DGP in a recently edited book [19].

When particular assumptions are satisfied, the search space of the DGP, which
is generally a continuous space, can be discretized (see for example [11,18]). The
basic idea behind the discretization is as follows. Consider we are trying to place in
the space the vertex u ∈ V . If the distances between u and other vertices vi ∈ V
(with known coordinates) are available, then the possible positions for u belong to
the Euclidean object given by the intersection of the spherical shells centered in the
positions for the vertices vi , and having minimum radii d(vi , u) and maximum radii
d̄(vi , u), respectively. Therefore, the discretization is possible when, for every vertex
u ∈ V , this intersection provides a discrete object, or an object that can be discretized
without losing so much information.

123

Discretization orders and efficient computation 2113

The easiest case is the one treated for the first time in [11], where all distances are
supposed to be exact (d(vi , u) = d̄(vi , u)), and, in dimension K , there are at least K
reference vertices vi ∈ V , for every u > K . In such a case, indeed, the spherical shells
degenerate to spheres, and the intersection of K spheres gives at most two points in the
K -dimensional space (when an additional assumption is also satisfied, see Sect. 2).
The intersection object is therefore discrete and finite. If fewer distances are available,
or if not all of them are exact, then the intersection object is generally not discrete.

DGPs with interval data can however still be discretized by employing the strategy
that was preliminary proposed in [12]. The idea is to allow only one of the K distances
to be a nondegenerate interval, so that the intersection object has dimension 1, and we
can choose a discrete subset of positions from it. This is a realistic assumption when
working with biological molecules, as it is shown in Sect. 5.

This paper deals with two important facts related to the discretization. First, given a
graph G representing an instance of the DGP, how to identify an order for the vertices
in V so that the intersection object is (or can be considered as) discrete? Since the
vertices vi will be references for finding the position of the vertex u, they must be placed
earlier in the order. It is clear therefore how the concept of “order” is important for
the discretization. We will formalize this problem in the case the distance information
can be imprecise, and we will present an efficient greedy algorithm for its solution.
Differently from previous publications, we will consider orders that satisfy weaker
assumptions.

The second part of the paper gives an answer to the following question: given K
reference vertices vi ∈ V , how to compute the Cartesian coordinates of a vertex u?
Vertex positions can be identified by performing intersections of Euclidean objects.
When these objects are spheres, the intersection points can be found by solving a sys-
tem of quadratic equations [5]. Its solution, however, can lead to numerical instabilities
[18]. Another method instead, widely used in the past, is not sensitive to errors, but
requires discretization orders satisfying stronger assumptions [11]. We will propose a
more efficient and reliable procedure, that will allow us to consider instances satisfying
discretization orders based on the new weaker assumptions.

The rest of the paper is organized as follows. In Sect. 2, we will discuss the conditions
for a DGP to be discretizable and we will briefly report the interval Branch & Prune
(iBP) algorithm [12] for the solution of discretizable DGPs. In Sect. 3, the problem of
finding discretization orders for vertices of graphs G will be discussed, and a solution
method will be detailed. In Sect. 4, we will propose a new procedure for an efficient
computation of Cartesian coordinates of the vertices, and we will compare to other
previously employed procedures. Computational experiments, on discretizable MDGP
instances, will be presented in Sect. 5. Finally, concluding remarks will be given in
Sect. 6.

2 Discretizable DGPs and iBP algorithm

Let G = (V, E, d) be a simple weighted undirected graph representing an instance
of the DGP. Let E ′ be the subset of E for which the weight associated to the edge is
an exact distance (degenerate interval).

123

2114 D. S. Gonçalves, A. Mucherino

When defining a discretizable instance of the DGP, it is important to verify some
properties related to the order relationship on the vertices of V .

Definition 1 An order for V is a sequence r : N→ V ∪ {0} (with length |r | ≥ |V |)
such that, for each v ∈ V , there is an index i ∈ N for which ri = v [17].

We remark that, in previous publications,the repetition of vertices in the order was
allowed. This artifice was used to find orders that satisfied stronger assumptions with
respect to the ones we will consider in this paper [6,12]. In this work, orders will not
contain repeated vertices.

Once an order r has been assigned to V , it is possible to verify, for each vertex of
the graph G, its predecessors and successors [17]. Let

�α(ri) = {r j ∈ V | (r j , ri) ∈ E, j < i}

be the subset of adjacent predecessors for the vertex ri in the order r . Let

�β(ri) = {r j ∈ V | (ri , r j) ∈ E, j > i}

be the subset of adjacent successors of ri in the order r . We will denote the cardinality
of these sets by:

α(ri) = |�α(ri)|, β(ri) = |�β(ri)|.

In Definition 2, we will also consider the cardinality of a subset of �α(ri), related to
exact distances:

αex (ri) = |{r j ∈ V | (r j , ri) ∈ E ′, j < i}|.

As it is easy to remark, the considered set of vertices is similar to �α(ri): the only
difference stands in the fact that not all edges are considered, but only the ones in E ′.

We refer to the vertices in �α(ri) as possible reference vertices for ri , because
the distances between ri and any other vertex in �α(ri) are known, and all these
vertices precede ri in the order. The reference vertices can be used for finding the
candidate positions for the vertex ri . We refer to the corresponding distances as the
reference distances. Instead, vertices in �β(ri) have the vertex ri as a possible refer-
ence. Throughout this paper, we refer to a vertex using the usual letters u and v, but
also by the symbol ri , when a certain order r on V is supposed to be defined. Also,
we may refer to the vertex with the symbol i , by giving in this way more emphasis to
its rank in the given order.

Among the vertices in �α(ri), we will need to choose K of them as references for
the vertex ri . We will denote the set of selected references as �̂α(ri), while S(�̂α(ri))

will denote the convex hull of the vertices in �̂α(ri).
We give the following formal definition of a class of DGPs, containing interval

data, that can be discretized.

Definition 2 The interval Discretizable DGP (iDDGP).
Given a simple weighted undirected graph G = (V, E, d) and a positive integer

K , we say that G represents an instance of the iDDGP if and only if there exists an
order r on the vertices of V verifying the following conditions:

123

Discretization orders and efficient computation 2115

Algorithm 1 The iBP algorithm
1: iBP(j, r, d, D)

2: if (j > n) then
3: print current conformation;
4: else
5: if (only 2 reference distances are exact) then
6: let [l, u] be an interval reference distance for r j ; let N = D;
7: else
8: let [l, u] be a degenerate interval;
9: let l = u = d; let N = 1;
10: end if
11: for (h = 1 . . . N , h equally spaced distances in the interval [l, u]) do
12: compute the candidate positions: xh

j and x−h
j ;

13: // using pruning devices for verifying the feasibility of the computed positions
14: if (xh

j is feasible) then
15: iBP(j + 1, r, d, D);
16: end if
17: if (x−h

j is feasible) then
18: iBP(j + 1, r, d, D);
19: end if
20: end for
21: end if

(a) GC = (VC , EC) ≡ G[{r1, r2, . . . , rK }] is a clique and EC ⊂ E ′;
(b) ∀i ∈ {K + 1, . . . , |r |}, α(ri) ≥ K and αex (ri) ≥ K − 1;
(c) ∀i ∈ {K + 1, . . . , |r |}, ∃�̂α(ri) such that S(�̂α(ri)) has positive volume.

Assumption (a) requires that the graph GC , induced from the first K vertices in the
order r , is a K -clique. This allows us to place the first K vertices into a unique position.
By assumption (b), at least K reference vertices are available for all other vertices ri ,
and at least K − 1 out of the K vertices are related to an exact distance. For each
exact distance, a sphere can be defined; for each interval distance, a spherical shell
can be instead defined. By assumption (c), the convex hull of the K selected reference
vertices S(�̂α(ri)) has positive volume. Under these assumptions, the intersection of
K (hyper)spheres in the K -dimensional space gives at most 2 points (see Lemma 2 in
[10]), while the intersection of K−1 spheres and 1 spherical shell (see assumption (b))
produces two (usually disjoint) curves in dimension K . In the former case, we have
two possible positions for the vertex, while, in the latter, a predefined number of points
can be selected from the two curves. Thus, we always have a discrete (and finite) set
of possible positions for the vertex ri .

The iBP algorithm can be employed for the solution of iDDGP instances. Algo-
rithm 1 is a sketch of such an algorithm. In the algorithm call, j is the current vertex for
which we are looking for candidate positions, r is the discretization order, d represents
the set of weights on the edges of G (available distances), and D is the (predefined)
number of points that are taken from intervals for allowing the discretization, when
the intersection gives a continuous 1-dimensional object. A preliminary version of the
iBP algorithm was published in [12]. This version was tailored to dimension K = 3
and to special orders r with repetitions where only the reference distance (ri−3, ri)

was allowed to be represented by an interval.

123

2116 D. S. Gonçalves, A. Mucherino

The iBP algorithm recursively calls itself for exploring the whole discrete search
domain (that is a tree, to which we refer as iBP tree). During each call, a certain number
of candidate positions are computed for the current vertex, and the feasibility of each
computed position is verified. Throughout this paper, the coordinates of the vertices
in the embedding can be referred to by using the symbols xu, xri or xi , depending on
the context. When referring to the coordinates, we use the italic style. For example, in
dimension 3, we write xi = (xi , yi , zi). The same applies for the distances: we may
use the symbols d(u, v), du,v, d(ri , r j) or di j , depending on the context.

Every time possible positions for a vertex are computed, their feasibility can be
verified by applying the so-called pruning devices (see lines 10 and 13 of algorithm 1).
When we verify the feasibility with respect to the constraints (1), we can employ the
pruning device named direct distance feasibility (DDF) [11]. Let r j ∈ V be the current
vertex for which we have a new candidate position x j . DDF consists in verifying
whether the inequality

d(ri , r j)− ε ≤ ||xi − x j || ≤ d̄(ri , r j)+ ε, (3)

with ε > 0, is satisfied for every distance between r j and its predecessors ri that are
not used in the discretization. DDF is the simplest and probably most efficient pruning
device to be integrated with the iBP algorithm. We remark that other pruning devices
can be added to iBP: the interested reader can refer, for example, to [8] for a discussion
on energy-based pruning devices.

In order to apply the iBP algorithm, a discretization order for the vertices in V is
needed. When such an order is not available, finding a discretization order becomes a
fundamental preprocessing step for solving a DGP instance. Section 3 will be devoted
to this problem, and we will present an efficient greedy algorithm for its solution.

Moreover, a procedure for the computation of the candidate vertex positions is
necessary for the implementation of this algorithm (see line 8 of algorithm 1). As
discussed above, these positions can be identified by intersecting (hyper)spheres in
the K -dimensional space. However, as we will discuss in Sect. 4, the solution of the
quadratic systems derived from the sphere intersections is not the most efficient way
to compute the candidate vertex positions. A more numerically stable method will be
instead presented.

3 Finding discretization orders

The problem of finding a discretization order r for G such that the assumptions in
definition 2 are satisfied is formalized as follows. This problem appears in the literature
with two different names: the “discretization vertex order problem” (DVOP) in [10,17]
and the “trilateration ordering problem” (TOP, see [4]). In the rest of the text, we will
refer to this problem as the reordering problem.

Definition 3 Given a simple weighted undirected graph G = (V, E, d) and a positive
integer K , establish whether there exists an order r such that assumptions (a) and (b) of
the iDDGP are satisfied. Orders satisfying (a) and (b) are referred to as “discretization
orders” [17].

123

Discretization orders and efficient computation 2117

Algorithm 2 A greedy algorithm for the reordering problem
0: reorder(G)
1: while (a discretization order r is not found yet) do
2: let i = 0;
3: find a K -clique C in G with exact distances;
4: // position C at the beginning of new order
5: assign the first ranks 1, 2, . . . , K to the vertices in C ; B ← C ;
6: // greedy search
7: for i = K + 1, . . . , |V | do
8: v = arg maxu∈V \B {α(ri) |ri = u, αex (ri) ≥ K − 1};
9: if (α(v) < K) then
10: break the inner loop: there are no possible orderings for this choice of C ;
11: end if
12: // adding the vertex to the order
13: let ri = v; B ← B ∪ {v};
14: end for
15: end while
16: return r ;

As it can be seen from the definition, we do not explicitly consider assumption (c)
of the iDDGP. In fact, the subset of possibilities for which S(�̂α(ri)) does not have a
positive volume has Lebesgue measure equal to zero [10].

A necessary condition for finding a discretization order for the vertices in V is that
each v ∈ V has at least K adjacent vertices. Additional condition, to be verified for
the order r to be a discretization one, is that at least K adjacents of v precede v in the
order r (so that they actually are reference vertices).

In [6,12], some handcrafted orders have been proposed for the protein backbone
and some side chains. These orders required the reference vertices to be consecutive.
To make this possible, some vertices needed to be repeated along the order. However,
the absence of the consecutivity assumption makes the conditions for these orders
weaker, so that a wider class of DGPs can be discretized and solved by our discrete
approach.

When all available distances are exact, the reordering problem (see definition 3)
can be solved in polynomial time by employing the greedy algorithm proposed in
[10]. For any initial K -clique C that can be selected in V , the algorithm proceeds by
choosing the next vertex ri for which the value of α(ri) is maximized. If this maximum
possible value for α(ri) is smaller than K , then the initial clique C cannot lead to a
discretization order. On the other side, if such an order exists (for a given choice of
the initial clique), then the algorithm is able to identify it.

Algorithm 2 is a sketch of the greedy algorithm extended for interval data [17].
There are two main differences with respect to the version for exact distances only.
The first one is on line 3 of the algorithm, where it is required that all distances in
the initial clique C are exact. This way, it is ensured that the initial K vertices can be
placed uniquely (modulo rotation and translation). The second difference is on line 8.
Instead of considering all possible vertices u for which the value of α(ri) is maximized,
only the ones for which αex (ri) is at least equal to K − 1 are considered. This filter
allows us to generate (if they exist) orders where only one of the reference distances

123

2118 D. S. Gonçalves, A. Mucherino

for the vertices can be represented by an interval, as required by assumption (b) (see
definition 2).

We remark that, for K fixed, the complexity of algorithm 2 is given by the com-
plexity for finding a K -clique (polynomial), plus the complexity of its greedy part,
which is still polynomial [10].

4 Computing cartesian coordinates

In order to simplify the discussion (and since we are mostly interested in MDGPs),
in this section our attention will be focused on the case K = 3. In dimension 3, the
subproblem that needs to be solved at each iteration of the iBP algorithm is the one
of finding the intersection of three Euclidean objects (see Sect. 2). When the three
reference distances are all exact, the three Euclidean objects are three spheres, whose
intersection gives at most 2 points. When one of the three distances is represented
by an interval (see definition 2), the third sphere becomes a spherical shell, and the
intersection generally provides two disjoint curves. In order to discretize, a certain
subset of points can be chosen from the two curves. From a computational point of
view, this can be implemented by choosing a certain subset of distances from the
available interval, and by intersecting the three spheres several times, where only the
third one changes its radius in the given interval. At each recursive call of iBP (see
algorithm 1), therefore, the main subproblem is the one of finding the points given by
one or several sphere intersections.

Suppose that we need to place the vertex i . Let i ′, i ′′ and i ′′′ be the three reference
vertices for i . From the equations of the spheres in the three-dimensional space, we can
deduce that the intersection points can be obtained by solving the following system
of quadratic equations:

⎧
⎪⎨

⎪⎩

||xi − xi ′ ||2 = d2
i,i ′

||xi − xi ′′ ||2 = d2
i,i ′′

||xi − xi ′′′ ||2 = d2
i,i ′′′ .

(4)

A method for finding solutions to the system (4) can be found in [5], where the
solutions to the quadratic system are found by solving two linear systems. This method
was implemented in conjunction with a branch and prune framework for problems
with exact distances in [18], but it was remarked that it can lead to strong numerical
instabilities. A strategy for controlling such errors was actually integrated with the
method, where different sets of references vertices were chosen and the one leading
to the smallest increase in the LDE value was considered (see Eq. 2). However, the
considered method, integrated with this strategy, made the overall computational cost
higher.

When the discretization order on V satisfies a stronger assumption, for which the
reference vertices, for every vertex i , are the ones that immediately precede i in the
order (consecutivity assumption), then a simpler and more reliable procedure can be
employed [11]. The idea is to replace the problem of intersecting the three spheres
with the problem of finding the possible torsion angles of a “backbone” of vertices

123

Discretization orders and efficient computation 2119

that are placed in sequence accordingly to the ordering on V . When all reference
distances are exact (intersection of 3 spheres), it can be proved that only two tor-
sion angles can be defined for each quadruplet of consecutive vertices. Two torsion
angles correspond to two possible positions for the last vertex (in the order r) of the
quadruplet.

In the following, we will use the symbol θi for referring to the angle formed by
the two segments (i, i ′) and (i ′, i ′′). When dealing with molecules, this angle is also
referred to as bond angle. Moreover, we will use the symbol ωi for referring to the
angle formed by the two planes defined by the two triplets (i ′′′, i ′′, i ′) and (i ′′, i ′, i).
Similarly, when the focus is on molecules, this angle is generally named torsion angle.
We warn the reader that, even if we will use the terms “bond angle” and “torsion
angle” in the following, as in molecular biology, the angles that are here consid-
ered may not be equivalent to the ones generally defined when studying biological
molecules.

In order to avoid considering solutions that can be obtained by translations and
rotations, we can fix the three vertices that belong to the initial clique. For instance,
the first vertex can be placed in the origin of the Cartesian system of coordinates, the
second one can lie on the negative x-axis, and the third vertex can be placed on the
1st (or 2nd) quadrant of the xy-plane [20].

If we consider consecutive reference vertices, so that i ′′′ = 1, i ′′ = 2 and i ′ = 3,
in order to position the 4th vertex, we need to compute the torsion angle ω4 defined
by the first four vertices. As described in [11], the cosine of ω4 can be computed from
the distances between pairs of vertices in the quadruplet, by employing the cosine law.
The cosine of the torsion angle, together with distances and angles between segments,
can be used for identifying the two positions given by the sphere intersections. Vertex
positions can be computed by multiplying 4× 4 matrices defined by

Bi =

⎡

⎢⎢⎣

− cos θi − sin θi 0 −di−1,i cos θi

sin θi cos ωi − cos θi cos ωi − sin ωi di−1,i sin θi cos ωi

sin θi sin ωi − cos θi sin ωi cos ωi di−1,i sin θi sin ωi

0 0 0 1

⎤

⎥⎥⎦, (5)

whose elements depend on distances, and bond and torsion angles related to the vertices
i, i−1, i−2, i−3. If we consider the consecutivity assumption [11], then the Cartesian
coordinates of the candidate positions, for each i , can be obtained by:

[xi , yi , zi , 1]T = B1 B2 B3 · · · Bi · [0, 0, 0, 1]T . (6)

This procedure is very efficient and works well in the practice [11,12]. It requires,
however, the consecutivity assumption for the reference vertices. In previous publica-
tions, therefore, orders on V satisfying this assumption were necessary. Instead, orders
that do not satisfy this assumption can be obtained automatically in polynomial time
(see Sect. 3): we will therefore propose a generalization of the procedure defined by
Eqs. (5) and (6) that allows us to generate accurate Cartesian coordinates, while orders
satisfying weaker assumptions can be employed.

123

2120 D. S. Gonçalves, A. Mucherino

Fig. 1 The reference vertices i ′′′, i ′′ and i ′ induce a system of coordinates. The angles θi and ωi are the
spherical coordinates of i for the system centered in i ′.

Our proposition is to avoid to accumulate matrices every time we step from a
vertex to another (see Eq. 6), but rather to define only one matrix, that we will call
Ui ′ , which is able to convert directly vertex positions from the coordinate system
defined in i ′ to the canonical system. This conversion is possible independently from
the fact the reference vertices are consecutive or not. The idea is to construct the
matrix Ui ′ by using the unit vectors defining the three axes of a coordinate system
defined in i ′.

Recall that, during the execution of the iBP algorithm, the Cartesian coordinates for
the reference vertices i ′, i ′′ and i ′′′ are already available along the current branch of
the iBP tree. Let v1 be the vector from i ′′ to i ′. Equivalently, let v2 be the vector from i ′′
to i ′′′. In order to define the matrix Ui ′ , we consider the following coordinate system.
The x-axis can be defined by v1: we will denote the unit vector defining this axis with
the symbol x̂ . Moreover, the vectorial product v1× v2 gives as a result another vector
that defines the z-axis: let us denote the corresponding unit vector with ẑ. Finally,
the vectorial product x̂ × ẑ provides the vector that defines the y-axis (let the unit
vector be ŷ). Figure 1 shows the coordinate system defined by the three unit vectors
(x̂, ŷ, ẑ). The three obtained vectors x̂ , ŷ and ẑ can be used for defining the columns
of the matrix Ui ′ , which is a unitary rotation matrix. Once Ui ′ has been computed, the
Cartesian coordinates for a candidate position for the vertex i can be obtained by:

⎡

⎣
xi

yi

zi

⎤

⎦ =
⎡

⎣
xi ′
yi ′
zi ′

⎤

⎦+Ui ′

⎡

⎣
−di ′,i cos θi

di ′,i sin θi cos ωi

di ′,i sin θi sin ωi

⎤

⎦ . (7)

Notice that Eq. (7) is equivalent to Eq. (6), in the sense that they both depend on bond
angles and torsion angles, and they both provide the same result. However, there is no
need to accumulate products of matrices in Eq. (7), and the consecutivity assumption
is not necessary. The angles θi and ωi can be computed using the cosine law and
exploiting the available distances di ′,i , di ′′,i and di ′′′,i , as well as the positions of the
previous vertices i ′, i ′′ and i ′′′ (see Fig. 1).

123

Discretization orders and efficient computation 2121

There is an axial symmetry around the x-axis which defines a circle of possible
positions for the vertex i . If we suppose that the distance di ′′′,i is exact, only two
possible positions (i+ and i− in the figure), corresponding to the torsion angles ω+
and ω−, can be computed for the vertex i . These positions are symmetric with respect
to the plane defined by i ′′′, i ′′ and i ′. If di ′′′,i is instead an interval, then two symmetric
arcs can be identified on the circle in Fig. 1, where a predefined number of sample
points can be selected (see algorithm 1 in Sect. 2).

5 Computational experiments

This section presents some computational experiments where the considered instances
are based on the discretization orders found by algorithm 2, and the iBP algorithm (see
algorithm 1) is integrated with the procedure detailed in Sect. 4 for the computation
of the Cartesian coordinates of the vertices. All codes were written in C programming
language and all the experiments were carried out on an Intel Core 2 Duo @ 2.4 GHz
with 2GB RAM, running Mac OS X. The codes have been compiled by the GNU C
compiler v.4.0.1 with the -O3 flag.

The purpose of our first set of experiments is to compare the accuracy of the vertex
coordinates obtained by applying the procedure in Sect. 4 to the one that was previously
employed, which is based on the solution of 4 × 4 quadratic systems (see [18]). In
this set of experiments, we consider instances generated from proteins having known
conformation, which can be downloaded from the protein data bank (PDB) [2]. Each
PDB record consists in a set of atomic coordinates for a given protein: we generate
instances by computing the distances between all the possible pairs of hydrogens in
the molecule, and by keeping only the ones smaller than a predefined threshold δ.
In this way, we simulate data obtained from NMR experiments, because all available
distances are generally between hydrogens, and only short-range distances can be
detected. The threshold δ usually ranges between 5Å and 6Å: we set δ = 5.5Å,
because, with this value, the discretization assumptions (see definition 2) do not hold
if the hydrogen atoms are ordered as in the PDB files. In this case, reordering the atoms
of the molecule becomes a necessary preprocessing for applying the iBP algorithm.
The same set of instances was considered in the experiments presented in [10]. We
point out that all distances are here considered as exact. This allows us to analyze the
accuracy of the two compared procedures.

Table 1 shows some computational experiments. The name of the instances corre-
spond to the label of the protein conformation on the PDB. Moreover, the size n of
the instance, in terms of number of vertices (hydrogens), and the cardinality |E | of
the edge set (i.e. the total number of available distances) are given. Experiments are
performed by using the iBP algorithm integrated with the new procedure detailed in
Sect. 4 (see “New procedure” in the table), as well as with iBP integrated with the
procedure presented in [18] and based on the solution of quadratic systems (recall
that, because of the error propagation, a strategy is considered for keeping such errors
as low as possible). In both cases, we evaluate the experiments through the following
three indices: #S is the total number of solutions found by iBP, LDE evaluates the
quality of the best obtained solution X (see Eq. (2), where the lower bounds d and

123

2122 D. S. Gonçalves, A. Mucherino

Table 1 Computational experiments on instances containing sets of hydrogen atoms extracted from real
proteins

Instance n |E | New procedure Quadratic systems

#S LDE Time #S LDE Time

1brv 90 729 2 1.15e-15 0.0003 2 2.07e-11 0.0117

1a11 144 1,192 4 1.75e-14 0.0006 4 1.79e-12 0.0185

1erp 209 1,969 2 1.85e-14 0.0009 4 3.45e-11 0.0380

1aqr 214 1,690 2 1.01e-14 0.0010 2 4.08e-11 0.1741

1bbl 221 1,690 8 1.21e-14 0.0016 8 5.02e-11 0.4015

1ed7 261 2,591 2 1.87e-12 0.0013 2 5.22e-11 0.1526

1h1j 261 2,489 4 1.49e-14 0.0016 4 3.46e-11 0.2308

1ah1 268 2,508 4 1.40e-14 0.0026 4 3.89e-11 0.5606

1dv0 275 2,669 4 2.26e-13 0.0015 4 4.30e-11 0.1991

1k1v 277 2,600 2 5.06e-14 0.0014 4 5.77e-11 0.2132

1ccq 389 3,888 8 5.07e-13 0.0080 8 6.32e-11 2.3542

1a2s 480 4,693 2 7.18e-11 0.0036 4 6.93e-11 1.7359

1acz 589 6,067 4 1.13e-13 0.0067 4 1.76e-10 4.8286

2hsy 620 5,935 2 7.49e-12 0.0071 2 1.29e-10 2.3566

1b4c 1,152 1,1044 8 3.21e-11 0.0625 4 1.03e-10 9.2171

1a23 1,157 11,628 8 5.09e-11 0.0261 8 7.30e-11 5.0266

2ron 1,501 15,101 2,048 1.77e-09 0.9450 – – –

1ezo 2,259 21,049 16,384 2.07e-12 24.4554 – – –

Experiment not reported (–) when iBP failed to find all solutions in <60 s

the upper bounds d̄ coincide in this case), and finally we monitor the CPU time, in
seconds. In all these experiments, the tolerance ε in the DDF pruning device (see Eq. 3)
is set to 10−3.

As Table 1 shows, the iBP algorithm, integrated with the new presented procedure,
outperforms the older version on all instances. The LDE values of the best found solu-
tions are better (smaller) or compatible to the ones found when solving the quadratic
systems, while the executions are always faster when using the new procedure.

In our second set of experiments, we consider fragments of proteins consisting
of short sequences of amino acids, where their atoms are automatically sorted by
algorithm 2. Differently from the previous experiments, all the atom kinds are here
considered, and interval data are included in the instance. We use the following pro-
cedure for generating the instances. From some PDB files that were also consid-
ered in Table 1, we extract a random protein fragment consisting of a predefined
number of consecutive amino acids. For each fragment, we compute all the dis-
tances between pairs of atoms. In order to simulate realistic instances, we consider
as exact all distances smaller than a certain threshold 	b: we suppose that all such
distances are related to chemical bonds. Moreover, all distances between two atoms
that are detected as bonded to a common atom are also considered as exact (they
form the so-called bond angles). Finally, distances between atoms separated by 2

123

Discretization orders and efficient computation 2123

Table 2 Results for some
fragments of proteins

PDB name naa n |E | D LDE

1brv 4 51 368 3 2.10e-4

1brv 8 98 853 9 5.88e-4

1ccq 6 114 1, 181 3 1.16e-4

1ccq 10 183 2,169 8 1.63e-4

1acz 13 199 2, 144 3 1.95e-4

1acz 21 308 3,358 10 4.93e-4

1k1v 6 110 1,236 3 3.04e-4

1k1v 18 317 4,169 3 3.66e-4

1k1v 30 519 7,068 3 5.63e-4

bonded atoms, as well as distances between pairs of hydrogen atoms (which fall
below the threshold δ), are considered as intervals. From the computed exact dis-
tance, an interval is generated by applying a random perturbation (having maximal
amplitude 2.5Å) to the exact distance. The subset of considered exact and interval
distances form an instance of the DGP with interval data. Even if we are aware that
this procedure could fail in identifying atomic bonds correctly (because it only makes
use of a distance threshold), we found its use convenient for an easy generation of
instances that are relatively close to real NMR instances. None of these generated
instances satisfies the discretization assumptions (see definition 2) when the order
given to the atoms is the one we found in the PDB files. Therefore, the greedy algo-
rithm sketched in algorithm 2 is used for reordering the atoms of the instances in
a way that they can be discretized. This preprocessing step took <0.10 s for each
instance.

Table 2 shows some computational experiments with the second set of instances.
When generating such instances, we set 	b = 2.5Å and δ = 5.0Å. From every protein,
we select a certain number naa of consecutive amino acids (the fragment) and we apply
the procedure above for the generation of the instance. Additionally to the information
reported in Table 1, we also report the number D of discretization points to be taken
from the curves (see Sect. 2) in order to allow the discretization in presence of interval
data. The reported D value is actually the smallest one that allows us to find at least
one solution for the instance. The iBP algorithm is employed for finding only one
solution, which is the leftmost solution in the iBP tree. The LDE value (see Eq. 2) in
this solution is used for evaluating the performances of the algorithm. The tolerance
ε in (3) is here set to 10−1 in all experiments. Each experiment took <1 CPU time
second.

As the table shows, the iBP algorithm is able to solve instances formed by up
to about 500 atoms. For every instance, the obtained LDE value for the first found
solution is always about 10−4, which implies that all distance constraints are satisfied
with, at most, a relatively small violation.

The considered instances consist of backbone atoms, as well as side chains atoms,
of a protein [15]. Differently from previous works (see for example [12]), we did
not define any a priori order for the backbone and the side chains, but we rather

123

2124 D. S. Gonçalves, A. Mucherino

automatically found a discretization order for the whole instance. This implies a wider
applicability of this approach to any kind of instance. Moreover, we can also claim
that our orders are more adapted to the instances at hand, because a different ad-hoc
order can be identified for each instance, even when considering instances belonging
to the same class (such as the MDGP).

Finally, we remark that, after having computed the first solution, the iBP algorithm
could continue searching the tree, and find other solutions. However, this possibility
was not considered in this work, because some issues related to the way we currently
discretize the interval distances must be better investigated.

6 Conclusions

We considered two important aspects for the discretization of DGPs. First, instances
of the DGP can be discretized only if its vertices are sorted in a way for which the
discretization assumptions are satisfied. Second, the core of the iBP algorithm, which
we employ for the solution of discretizable DGP instances, is the computation of
candidate positions for the vertices of the graph. This paper discusses an algorithm
for the automatic reordering of DGP instances so that they can be discretized, and
proposes a new procedure for the computation of vertex candidate positions. Presented
computational experiments show the effectiveness and efficiency of the new proposed
approaches.

This paper represents another little but yet important step for the solution of real-
life DGPs by a discrete approach. As mentioned in the Introduction, one of the most
studied classes of DGPs is the MDGP, where experimental data about molecules are
obtained by NMR experiments, and the possible conformations for such molecules
are searched. For the first time, we are able to handle protein instances containing side
chains where an order for their atoms is not predefined, but it is rather automatically
identified and adapted to the instance at hand.

The final aim is however solving, by employing the iBP algorithm, MDGP instances
where real NMR data are contained. One big obstacle to an efficient solution of such
instances is the discretization in presence of interval data. The current strategy consists
in choosing a discrete subset of representative distances from each interval used in the
discretization process. When the entire interval is composed by embeddable distances,
each representative distance can lead to a feasible solution, which may imply the
identification of many “too similar” solutions. On the other hand, when only a small
part of the interval contains embeddable distances, the number of chosen samples is
crucial, because at least one of them should lead to an embedding.

Acknowledgments We wish to thank Carlile Lavor and Leo Liberti for the fruitful comments to this
paper. We are also thankful to Brittany Region (France) for financial support.

References

1. Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining protein
structures from noesy distance constraints by semidefinite programming. J. Comput. Biol. 20(4), 296–
310 (2013)

123

Discretization orders and efficient computation 2125

2. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.:
The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

3. Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network
localization. ACM Trans. Sen. Netw. 2, 188–220 (2006)

4. Cassioli, A., Günlük, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry,
working paper (2014)

5. Coope, I.D.: Reliable computation of the points of intersection of n spheres in n-space. ANZIAM J.
42, 461–477 (2000)

6. Costa, V., Mucherino, A., Lavor, C., Carvalho, L.M., Maculan, N.: On suitable orders for discretizing
molecular distance geometry problems related to protein side chains. In: IEEE Conference Proceedings,
pp. 397–402. Workshop on Computational Optimization (WCO12), FedCSIS12, Wroclaw, Poland
(2012)

7. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons,
New York (1988)

8. Gonçalves, D., Mucherino, A., Lavor, C.: Energy-based pruning devices for the bp algorithm for dis-
tance geometry. In: IEEE Conference Proceedings, pp. 335–340. Workshop on Computational Opti-
mization (WCO13), FedCSIS13, Krakow, Poland (2013)

9. Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global opti-
mization algorithms. Comput. Optim. Appl. 43(1), 23–37 (2009)

10. Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for
distance geometry problems. Optim. Lett. 6(4), 783–796 (2012)

11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry
problem. Comput. Optim. Appl. 52, 115–146 (2012)

12. Lavor, C., Liberti, L., Mucherino, A.: The interval branch-and-prune algorithm for the discretizable
molecular distance geometry problem with inexact distances. J. Glob. Optim. 56(3), 855–871 (2013)

13. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications.
SIAM Review 56(1), to appear (2014)

14. Linge, J.P., Nilges, M.: Influence of non-bonded parameters on the quality of nmr structures: a new
force field for nmr structure calculation. J. Biomol. NMR 13(1), 51–59 (1999)

15. Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biology: new perspectives.
In [19] pp. 329–350 (2013)

16. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15, 219–223
(1999)

17. Mucherino, A.: On the identification of discretization orders for distance geometry with intervals. In:
Proceedings of Geometric Science of Information (GSI13). Lecture Notes in Computer Science 8085,
pp. 231–238. France, Paris (2013)

18. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8),
1671–1686 (2012)

19. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods and
Applications, p 410. Springer, New York (2013)

20. Thompson, H.B.: Calculation of cartesian coordinates and their derivatives from internal molecular
coordinates. J. Chem. Phys. 47, 3407–3410 (1967)

123

	Discretization orders and efficient computation of cartesian coordinates for distance geometry
	Abstract
	1 Introduction
	2 Discretizable DGPs and iBP algorithm
	3 Finding discretization orders
	4 Computing cartesian coordinates
	5 Computational experiments
	6 Conclusions
	Acknowledgments
	References

