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Abstract In this paper our interest is in investigating properties and numerical solu-
tions of Proximal Split feasibility Problems. First, we consider the problem of finding
a point which minimizes a convex function f such that its image under a bounded
linear operator A minimizes another convex function g. Based on an idea introduced
in Lopez (Inverse Probl 28:085004, 2012), we propose a split proximal algorithm with
a way of selecting the step-sizes such that its implementation does not need any prior
information about the operator norm. Because the calculation or at least an estimate
of the operator norm ‖A‖ is not an easy task. Secondly, we investigate the case where
one of the two involved functions is prox-regular, the novelty of this approach is that
the associated proximal mapping is not nonexpansive any longer. Such situation is
encountered, for instance, in numerical solution to phase retrieval problem in crystal-
lography, astronomy and inverse scattering Luke (SIAM Rev 44:169–224, 2002) and
is therefore of great practical interest.
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1 Introduction and preliminaries

The split feasibility problem has received much attention due to its applications in
signal processing and image reconstruction [9], with particular progress in intensity-
modulated therapy [6]. For a complete and exhaustive study on algorithms for solving
convex feasibility problem, including comments about their applications and an excel-
lent bibliography see, for example [1]. Our purpose here is to study the more general
case of proximal split minimization problems and to investigate the convergence prop-
erties of the associated numerical solutions. To begin with, we are interested in finding
a solution x∗ ∈ H1 of the following problem

min
x∈H1

{ f (x) + gλ(Ax)}, (1.1)

where H1, H2 are two real Hilbert spaces, f : H1 → IR ∪ {+∞}, g : H2 →
IR ∪ {+∞} two proper convex lower semicontinuous functions and A : H1 → H2
a bounded linear operator, gλ(y) = minu∈H2{g(u) + 1

2λ
‖u − y‖2} stands for the

Moreau–Yosida approximate of the function g of parameter λ.
Note that the differentiability of the Yosida-approximate gλ, see for instance [19],

secures the additivity of the subdifferentials and thus we can write

∂( f (x) + gλ(Ax)) = ∂ f (x) + A∗∇gλ(Ax) = ∂ f (x) + A∗
(

I − proxλg

λ

)
(Ax).

The optimality condition of (1.1) can be then written as

0 ∈ λ∂ f (x∗) + A∗(I − proxλg)(Ax∗), (1.2)

where proxλg(x) = argminu∈H2{g(u)+ 1
2λ

‖u−x‖2} stands for the proximal mapping
of g and the subdifferential of f at x is the set

∂ f (x) := {u ∈ H1 : f (y) ≥ f (x) + 〈u, y − x〉for all y ∈ H1}.

Inclusion (1.2) in turn yields to the following equivalent fixed point formulation

x∗ = proxμλ f

(
x∗ − μA∗(I − proxλg)

)
(Ax∗). (1.3)

To solve (1.1), relation (1.3) suggests to consider the following split proximal algorithm

xk+1 = proxμkλ f

(
xk − μk A∗(I − proxλg)

)
(Axk); (1.4)

Observe that by taking f = δC [defined as δC (x) = 0 if x ∈ C and +∞ otherwise],
g = δQ the indicator functions of two nonempty closed convex sets C, Q of H1 and
H2 respectively, Problem (1.1) reduces to

min
x∈H1

{δC (x) + (δQ)λ(Ax)} ⇔ min
x∈C

{ 1

2λ
‖(I − PQ)(Ax)‖2}, (1.5)
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Solving proximal split feasibility problems 2101

which, when C ∩ A−1(Q) �= ∅, is equivalent to the so called Split Feasibility Problem,
namely

x ∈ C such that Ax ∈ Q. (1.6)

This problem was used for solving an inverse problem in radiation therapy treatment
planning [6] and has been well studied both theoretically and practically, see for
example [1,5] and the references therein. In this context, (1.4) reduces to the so-called
CQ-algorithm introduced by Byrne [4]

xk+1 = PC
(
xk − μk A∗(I − PQ)(Axk)

); (1.7)

where the step-size μk is chosen in (0, 2/‖A‖2) and PC , PQ stand for the orthogonal
projections on the closed convex sets C and Q, respectively.

The determination of the step-size in (1.7) (idem for its Krasnoselskii–Mann ver-
sion, see for instance [21–23], and also for (1.4), see for example [9] and references
therein) depends on the operator norm which computation (or at least estimate) is not
an easy task. To overcome this difficulty, Lopez et al. [10] introduce a new choice of
the step-size sequence (μk) and propose the following algorithm:

Algorithm 3.1 Given an initial arbitrarily point x0 ∈ H1. Assume that xk ∈ C has
been constructed and ∇h̃(xk) �= 0; then compute xk+1 via the rule

xk+1 = PC (xk − μk A∗(I − PQ))(Axk), (1.8)

where μk := ρk
h̃(xk)

‖∇ h̃(xk)‖2 with 0 < ρk < 4 and h̃(x) = 1
2‖(I − PQ)Ax‖2. If

∇h̃(xk) = 0, then xk+1 = xk is a solution of (2.2) and the iterative process stops;
otherwise, we set k := k + 1 and go to (1.8).

They proved the weak convergence of the sequence generated by (1.8) if (2.2) is
consistent and in fkρk(4 − ρk) > 0.

At this stage we would like to emphasize that our interest, in the first part of the
present paper, is in solving (1.1) in the case argmin f ∩ A−1(argmin g) �= ∅, or in
other words: in finding a minimizer x∗ of f such that Ax∗ minimizes g, namely

x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (1.9)

f, g being two proper, lower semicontinuous convex functions, argmin f := {x̄ ∈
H1 : f (x̄) ≤ f (x) ∀x ∈ H1} and argmin g := {ȳ ∈ H2 : g(ȳ) ≤ g(y) ∀y ∈ H2}. �

will denote the solution set.
This problem was considered, for instance in [5] and [14], however, the iterative

methods proposed to solve it need to know a priori the norm (or at least an estimate
of the norm) of the bounded linear operator A. To avoid this difficulty, inspired by
the idea introduced in [10], we develop in Sect. 2 an algorithm which is designed to
address a way of selecting the step-sizes such that its implementation does not need
any prior information about the operator norm and prove its related convergence result.
This result is an extension of Theorem 3.5-[10].
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2102 A. Moudafi, B. S. Thakur

In the second part of this paper, we will still assume f to be convex, but we allow
the function g to be noconvex. In the case of indicator functions of subsets with
A = I , such situation is encountered in numerical solution to phase retrieval problem
in inverse scattering [11] and is therefore of great practical interest. Here, we consider
the more general problem of finding a minimizer x̄ of f such that Ax̄ is a critical point
of g, namely

0 ∈ ∂ f (x̄) such that 0 ∈ ∂P g(Ax̄), (1.10)

where ∂P stands for the Proximal subdifferential of g which will be define in Sect. 3.
At this time the nonconvex theory is much less developed than the convex one. A

notable exception, in the fixed-point context, is the work by Luke [12], who studies
the convergence of a projection/reflection algorithm in a prox-regular setting. Never-
theless, the fixed point operator is assumed to be locally firmly nonexpansive. In [15]
a proximal approach was also developed for finding critical points of uniformly prox-
regular functions. Here, in the case of variable regularization parameters (λk), we will
prove in Sect. 3 the convergence of our Split Proximal Algorithm if the bounded linear
operator is surjective. The latter assumption is always satisfied in inverse problems in
which a priori information is available about the representation of the target solution
in a frame, see for instance [7] and the references therein.

2 Convex minimization feasibility problem

Now, we are in a position to introduce a new way of selecting the step-sizes. To that end,
we set θ(xk) := √‖∇h(x)‖2 + ‖∇l(x)‖2 with h(x) = 1

2‖(I − proxλg)Ax‖2, l(x) =
1
2‖(I − proxμkλ f )x‖2 and introduce the following split proximal algorithm:

Split proximal algorithm Given an initial point x0 ∈ H1. Assume that xk has been
constructed and θ(xk) �= 0; then compute xk+1 via the rule

xk+1 = proxλμk f (xk − μk A∗(I − proxλg)(Axk)), (2.1)

where the stepsize μk := ρk
h(xk)+l(xk )

θ2(xk )
with 0 < ρk < 4. If θ(xk) = 0, then xk+1 = xk

is a solution of (1.9) and the iterative process stops; otherwise, we set k := k + 1 and
go to (2.1).

Observe that by taking f = δC , g = δQ the indicator functions of two nonempty
closed convex sets C, Q of H1 and H2 respectively, we recover [10, Algorithm 3.1].
Indeed, since proxλμk f = PC , the iterates xk belong to C and thus ∇l(xk) = 0. So

θ(xk) reduces to ∇h̃(xk).
Recall that the proximal mapping of g is firmly nonexpansive, namely

〈proxμg y − proxμg y′, y − y′〉 ≥ ‖ ≥ proxμg y − proxμg y′‖2 ∀y, y′ ∈ H2,

and it is also the case for complement I − proxμg , see for example [7].
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Solving proximal split feasibility problems 2103

In order to prove the main result of this section, the idea is to apply the following
well-known result on weak convergence in Hilbert spaces (the Opial’s lemma) with
S := �. The original proof of this Lemma in [16] requires S to be closed and convex.
An argument given in [20] shows that we do not need convexity.

Lemma 2.1 see [16,20].
Let H be a Hilbert space and (xk) a sequence in H such that there exists a nonempty

closed set S ⊂ H satisfying:

(i) For every z ∈ S, limk ‖xk − z‖ exists.
(ii) Any weak-cluster point of the sequence (xk) belongs in S.

Then, there exists x̄ ∈ S such that (xk) weakly converges to x̄ .

The following Theorem contains the main convergence result of this section.

Theorem 2.2 Assume that f and g are two proper convex lower-semicontinuous
functions and that (1.9) is consistent (i.e., � �= ∅). If the parameters satisfy the
following conditions ε ≤ ρk ≤ 4h(xk)

h(xk)+l(xk)
− ε (for some ε > 0 small enough), then

the sequence (xk) generated by (2.1) weakly converges to a solution of (1.9).

Proof Let z ∈ � and note that ∇h(x) = A∗(I − proxμk g)Ax , ∇l(x) = (I −
proxμkλ f )x . Using the fact that proxλμk f is nonexpansive, z verifies (1.9) (since min-
imizers of any function are exactly fixed-points of its proximal mapping) and having
in hand

〈∇h(xk), xk −z〉 = 〈(I −proxμk g)Axk, Axk − Az〉 ≥ ‖(I −proxλg)Axk‖2 = 2h(xk),

thank to the fact that I − proxμk g is firmly nonexpansive, we can write

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + μ2
k‖∇h(xk)‖2 − 2μk〈∇h(xk), xk − z〉

≤ ‖xk − z‖2 + μ2
k‖∇h(xk)‖2 − 4μkh(xk)

= ‖xk −z‖2+ρ2
k
(h(xk)+l(xk))

2

(θ2(xk))2 ‖∇h(xk)‖2−4ρk
h(xk)+l(xk)

θ2(xk)
h(xk)

≤ ‖xk −z‖2+ρ2
k
(h(xk)+l(xk))

2

θ2(xk)
−4ρk

(h(xk)+l(xk))
2

θ2(xk)

h(xk)

h(xk)+l(xk)

= ‖xk − z‖2 − ρk(
4h(xk)

h(xk) + l(xk)
− ρk)

(h(xk) + l(xk))
2

θ2(xk)
.

Thus

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − ρk

(
4h(xk)

h(xk) + l(xk)
− ρk

)
(h(xk) + l(xk))

2

θ2(xk)
. (2.2)

The sequence (xk) is thus Fejer monotone with respect to � which assures the existence
of the limit

l(z) := lim
k→+∞‖xk − z‖2 < +∞, (2.3)
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2104 A. Moudafi, B. S. Thakur

and hence the first condition of Lemma 2.1 is satisfied. The latter in turn implies that
(xk) is bounded.

Now, Summing up inequality (2.2) with respect to k = 0, 1, . . ., we obtain

∞∑
k=0

ρk

(
4h(xk)

h(xk) + l(xk)
− ρk

)
(h(xk) + l(xk))

2

θ2(xk)
≤ ‖x0 − z‖2 < +∞. (2.4)

On the other hand, the assumption ε ≤ ρk ≤ 4h(xk)
h(xk)+l(xk)

− ε together with (2.4) ensure
that

∞∑
k=0

(h(xk) + l(xk))
2

θ2(xk)
< +∞. (2.5)

Consequently,

lim
k→+∞(h(xk) + l(xk)) = 0 ⇔ lim

k→+∞ h(xk) = 0 and lim
k→+∞ l(xk) = 0, (2.6)

because θ2(xk) := ‖∇h(x)‖2 + ‖∇l(x)‖2 is bounded. This follows from the fact
that ∇h is Lipschitz continuous with constant ‖A‖2, ∇l is nonexpansive and (xk) is
bounded. More precisely, for any z which solves (1.9), we have

‖∇h(xk)‖ = ‖∇h(xk)) − ∇h(z)‖ ≤ ‖A‖2‖xk − z‖ and

‖∇l(xk)‖ = ‖∇l(xk) − ∇l(z)‖ ≤ ‖xk − z‖.

Now, let x̃ be a weak cluster point of (xk), there exists a subsequence (xkν ) which
weakly converges to x̃ . The lower-semicontinuity of h then implies that

0 ≤ h(x̃) ≤ lim inf
ν→+∞ h(xkν ) = lim

k→+∞ h(xk) = 0.

That is h(x̃) = 1
2‖(I − proxλg)Ax̃‖2 = 0, i.e. Ax̃ is a fixed point of the proximal

mapping of g or equivalently 0 ∈ ∂g(Ax̃). In other words Ax̃ is a minimizer of g.
Likewise, the lower-semicontinuity of l implies that

0 ≤ l(x̃) ≤ lim inf
ν→+∞ l(xkν ) = lim

k→+∞ l(xk) = 0.

That is l(x̃) = 1
2‖(I − proxμkλ f )x̃‖2 = 0, i.e. x̃ is a fixed point of the proximal

mapping of f or equivalently 0 ∈ ∂ f (x̃). In other words x̃ is also a minimizer of
f and thus a solution of problem (1.9). The second condition of Lemma 2.1 is also
verified and consequently the whole sequence (xk) converges weakly to a solution of
problem (1.9). This completes the proof. ��
Remark 2.3 i) Where the bounded linear operator A is the identity operator, (1.9)

is nothing else than the problem of finding a common minimizer of f and g and
(2.1) reduces to the following relaxed split proximal algorithm
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Solving proximal split feasibility problems 2105

xk+1 = proxλμk f

(
(1 − μk)xk + μkproxλg(xk)

)
. (2.7)

ii) We would like also to emphasize that by taking f = δC , g = δQ the indicator
functions of two nonempty closed convex sets C, Q of H1 and H2 respectively,
(2.1) reduces to [10, Algorithm 3.1] and we recover the corresponding convergence
result, namely [10, Theorem 3.5].

iii) It is worth mentioning that our approach works for split equilibrium and split null
point problems considered in [5] and [14], respectively. To that end, just replace
the proximal mappings of the convex functions f and g by the resolvent operators
associated to two monotone equilibrium bifunctions and two maximal monotone
operators, respectively.

3 A step towards the nonconvex case

Throughout this section g is assumed to be prox-regular. The following problem

0 ∈ ∂ f (x̄) such that 0 ∈ ∂P g(Ax̄), (3.1)

is very general in the sense that it includes, as special cases, g convex and g lower-C2

function which is of great importance in optimization and can be locally expressed
as a difference g − r

2‖ · ‖2, where g is a finite convex function, hence a large core of
problems of interest in variational analysis and optimization. It should be noticed that
examples abound of practitioners needing algorithms for solving nonconvex problems,
for instance, in crystallography, astronomy and more recently in inverse scattering,
see for example [12].

We start with some elementary facts of prox-regularity. We denote by B(x, ε)

(respectively B[x, ε]) the open (respectively closed) ball around x with radius ε.
Let g : H2 → IR ∪ {+∞} be a function and let x̄ ∈ domg, i.e., g(x̄) < +∞.

Poliquin–Rockafellar [17] introduced the concept of a proximal subdifferential and
then they investigated the limiting proximal subdifferential (see also Bernard and
Thibault [2] for the Hilbert setting). More precisely, the proximal subdifferential
∂P g(x̄) is defined as follows

Definition 3.1 A vector v is in ∂P g(x̄) if there exist some r > 0 and ε > 0 such that
for all x ∈ B(x̄, ε),

〈v, x − x̄〉 ≤ g(x) − g(x̄) + r

2
‖x − x̄‖2. (3.2)

When g(x̄) = +∞, one puts ∂P g(x̄) = ∅.

Before stating the definition of prox-regularity of g and properties of its proximal
mapping, we recall that g is locally l.s.c at x̄ if its epigraph is closed relative to a
neighborhood of (x̄, g(x̄)), prox-bounded if g is minorized by a quadratic function,
and recall that for ε > 0, the g-attentive ε-localisation of ∂P g around (x̄, v̄), is the
mapping Tε : H2 → 2H2 defined by
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2106 A. Moudafi, B. S. Thakur

Tε(x) =
{ {v ∈ ∂P g(x), ‖v − v̄‖ < ε} if ‖x − x̄‖ < ε and |g(x) − g(x̄)| < ε,

∅ otherwise.

Definition 3.2 A function g is said to be prox-regular at x̄ for v̄ ∈ ∂P g(x̄) if there
exist some r > 0 and ε > 0 such that for all x, x ′ ∈ B(x̄, ε) with |g(x) − g(x ′)| < ε

and all v ∈ B(v̄; ε) with v ∈ ∂P g(x) one has

g(x ′) ≥ g(x) + 〈v, x ′ − x〉 − r

2
‖x ′ − x‖2. (3.3)

If the property holds for all vectors v̄ ∈ ∂P g(x̄), the function is said to be prox-regular
at x̄ .

Fundamental insights into the properties of a function g come from the study of its
Moreau–Yosida regularization gλ and the associated proximal mapping proxλg defined
for λ > 0 respectively by

gλ(x)= inf
u∈H2

{g(u)+ 1

2λ
‖u− x‖2} and proxλg(x) :=arg min

u∈H2
{g(u)+ 1

2λ
‖u−x‖2}.

The latter is a fundamental tool in optimization and it was shown that a fixed point
iteration on the proximal mapping could be used to develop a simple optimization
algorithm, namely, the proximal point algorithm.

Note also, see for example Sect. 1 in [8], that local minima are zeroes of the Proximal
subdifferential and that the Proximal subdifferential and the convex one coincide in
the convex case.

Now, let us state the following proposition which summarizes some important
consequences of the prox-regularity, see [17, Theorem 4.4] and [2, Lemma 3.1], The-
orem 3.4.

Proposition 3.1 Suppose that g is locally lower semicontinuous at x̄ and prox-regular
at x̄ for v̄ = 0 with respect to r and ε. Let Tε be the g-attentive ε-localisation of ∂P g
around (x̄, v̄). Then for each λ ∈]0, 1/r [ there is a neighborhood Uλ of x̄ such that,
on Uλ

i) the mapping proxλg is single-valued and Lipschitz continuous with constant 1
1−λr

and proxλg(x) = (I + λTε)
−1(x) = [singleton].

ii) gλ is differentiable (more precisely g is of class C1+) with

∇gλ(x) = x − proxλg(x)

λ
= (λI + T −1

ε )−1(x).

Now, let us prove the following key property of the proximal mapping complement.

Remark 3.2 If the assumptions of Proposition (3.1) hold true, then ∀λ ∈ (0, 1
r ) and

∀x1, x2 ∈ Uλ, one has
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Solving proximal split feasibility problems 2107

〈(I − proxλg)(x1) − (I − proxλg)(x2), x1 − x2〉
≥ ‖(I − proxλg)(x1) − (I − proxλg)(x2)‖2 − λr

(1 − λr)2 ‖x1 − x2‖2.

Observe that when r = 0 which amount to saying that g is convex, we recover the fact
that the mapping I − proxλg is firmly nonexpansive.

Indeed, let xi ∈ Uλ, i = 1, 2. Then vi = xi −proxλg(xi )

λ
∈ Tε(proxλg(xi )). Invoking

the prox-regularity of g, we have the monotonicity of Tε + r I , see for instance [2,
Theorem 3.4]. This implies, for the pairs (x1, v1) and (x2, v2), that

〈v1 − v2, proxλg(x1) − proxλg(x2)〉 ≥ −r‖proxλg(x1) − proxλg(x2)‖2

We also have

〈v1 − v2, x1 − x2〉 = 〈v1 − v2, x1 − proxλg(x1) − (x2 − proxλg(x2))〉
+ 〈v1 − v2, proxλg(x1) − proxλg(x2)〉

≥ λ−1‖x1 − proxλg(x1) − (x2 − proxλg(x2)‖2

− r‖proxλg(x1) − proxλg(x2)‖2,

hence

〈(I − proxλg)(x1) − (I − proxλg(x2)), x1 − x2〉
≥ ‖(I − proxλg)(x1) − (I − proxλg)(x2)‖2 − λr‖proxλg(x1) − proxλg(x2)‖2.

Combining the last inequality with Lipschitz continuity of the proximal mapping, i.e.,

‖proxλg(x1) − proxλg(x2)‖ ≤ 1

1 − λr
‖x1 − x2‖,

we obtain the desired result.

We state also a lemma which will be needed in the sequel.

Lemma 3.3 (See Polyak [18, Lemma 2.2.2]).
Let (ak), (βk) and (γk), k ∈ IN be three sequences of nonnegative numbers satis-

fying ak+1 ≤ (1 + βk)ak + γk . If
∑∞

k=0 βk < +∞ and
∑∞

k=0 γk < +∞, then (ak) is
convergent.

Now, the regularization parameters λ are allowed to vary in the algorithm (2.1),
namely considering possibly variable parameters λk ∈ (0, 1

r − ε) (for some ε > 0
small enough) and μk > 0, our interest is in studying the convergence properties of
the following algorithm:

Split proximal algorithm Given an initial point x0 ∈ H1. Assume that xk has been
constructed and θ(xk) �= 0; then compute xk+1 via the rule

xk+1 = proxλkμk f (xk − μk A∗(I − proxλk g)(Axk)), (3.4)
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2108 A. Moudafi, B. S. Thakur

where the stepsize μk := ρk
h(xk)+l(xk )

θ2(xk )
with 0 < ρk < 4. If θ(xk) = 0, then xk+1 = xk

is a solution of (3.1) and the iterative process stops; otherwise, we set k := k + 1 and
go to (3.4).

Theorem 3.4 Assume that f is a proper convex lower-semicontinuous function, g
is locally lower semicontinuous at Ax̄, prox-bounded and prox-regular at Ax̄ for
v̄ = 0 with x̄ a point which solves (3.1) and A a bounded linear operator which
is surjective with a dense domain. If the parameters satisfy the following conditions∑∞

k=0 λk < +∞ and infk ρk(
4h(xk)

h(xk)+l(xk )
− ρk) > 0, and if ‖x0 − x̄‖ is small enough,

then the sequence (xk) generated by (3.4) weakly converges to a solution of (3.1).

Proof Using the fact that proxλkμk f is nonexpansive, x̄ verifies (3.1) (critical points
of any function are exactly fixed-points of its proximal mapping) and having in mind
Remark 3.2, we can write

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + μ2
k‖∇h(xk)‖2 − 2μk〈∇h(xk), xk − x̄〉

≤ ‖xk − x̄‖2 + μ2
k‖∇h(xk)‖2 − 2μk

(
2h(xk) − λkr‖A‖2

(1 − λkr)2 ‖xk − x̄‖2)

= ‖xk − x̄‖2+2μk
λkr‖A‖2

(1 − λkr)2 ‖xk − x̄‖2 − 4μkh(xk)+μ2
k‖∇h(xk)‖2

≤ ‖xk − x̄‖2 + 2ρk
(h(xk) + l(xk))

‖∇h(xk)‖2 + ‖∇l(xk)‖2

λkr‖A‖2

(1 − λkr)2 ‖xk − x̄‖2

−ρk(
4h(xk)

h(xk) + l(xk)
− ρk)

(h(xk) + l(xk))
2

θ2(xk)

≤
(

1 + λkρk

(
2h(xk)

‖∇h(xk)‖2 + 2l(xk)

‖∇l(xk)‖2

)
r‖A‖2

(1 − λkr)2

)
‖xk − x̄‖2

−ρk

(
4h(xk)

h(xk) + l(xk)
− ρk

)
(h(xk) + l(xk))

2

θ2(xk)

=
(

1 + λkρk

(
1 + 2h(xk)

‖∇h(xk)‖2

)
r‖A‖2

(1 − λkr)2

)
‖xk − x̄‖2

−ρk

(
4h(xk)

h(xk) + l(xk)
− ρk

)
(h(xk) + l(xk))

2

θ2(xk)
.

Recall that

(�) A is surjective with a dense domain ⇔ ∃γ > 0 such that ‖A∗x‖ ≥ γ ‖x‖,

see for example Brezis [3, Theorem II.19]. This ensures that

2h(xk)

‖∇h(xk)‖2 = ‖(I − proxλk g)(Axk)‖2

‖A∗(I − proxλk g)(Axk)‖2 ≤ 1

γ 2 .

Conditions on the parameters λk and ρk assure the existence of a positive constant M
such that
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‖xk+1 − x̄‖2 ≤ (1 + Mλk)‖xk − x̄‖2 − ρk

(
4h(xk)

h(xk) + l(xk)
− ρk

)
(h(xk) + l(xk))

2

θ2(xk)
.

(3.5)

In view the inequality (3.5), Lemma 3.3 assures the existence of lim
k→+∞‖xk − x̄‖2,

since
∑∞

k=0 λk < +∞.
Now, summing up inequality (3.5) with respect to k = 0, 1, . . . and taking into

account the assumption on ρk , we obtain

ε2
∞∑

k=0

(h(xk) + l(xk))
2

θ2(xk)
≤ ‖x0 − z‖2 + M

∞∑
k=0

λk‖xk − z‖2, (3.6)

and by invoking the facts that (‖xk − z‖2) is bounded and
∑∞

k=0 λk < +∞, we infer

∞∑
k=0

(h(xk) + l(xk))
2

θ2(xk)
< +∞. (3.7)

Following the proof of Theorem 2.1, we conclude that the sequence (xk) weakly
converges to a solution of (3.1). ��
Remark 3.5 In inverse problems, certain physical properties of the target solution are
most suitably expressed in terms of the coefficients of its representation with respect to
a family of finite or infinite vectors (ek)k of a Hilbert space which constitutes a frame
(see for instance [7] and the references therein), namely there exist two constants such
that

∀x ∈ H β‖x‖2 ≤
∑

k

|〈x, ek〉|2 ≤ β‖x‖2.

The associated frame operator is the injective bounded operator F define on H by
F(x) := (〈x, ek〉)k and the adjoint of which is the surjective operator define as
F∗((ξ)k) := ∑

k ξkek .
Let x̄ ∈ H be the target solution of the underlying inverse problem in which a priori

information (e.g., sparsity, distribution, statistical properties) is available about the
coefficients (ξ̄k) of the decomposition of x̄ in (ek)k . To recover x̄ a natural formulation
is a variational problem in the space l2 of frame coefficients (where a priori information
on (ξ̄k) can be easily incorporated) that involves two functions f and g ◦ F∗ with
f, g two proper lower semicontinuous convex functions (see for example [7] and the
references therein). In this context the assumption on the linear operator A := F∗ is
satisfied. Furthermore, in the particular case of a Riesz basis, relation (�) is satisfied
with γ = √

β, see [13].
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