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Abstract In this paper, we establish some results which exhibit an application for
Michel–Penot subdifferential in nonsmooth vector optimization problems and vec-
tor variational-like inequalities. We formulate vector variational-like inequalities of
Stampacchia and Minty type in terms of the Michel–Penot subdifferentials and use
these variational-like inequalities as a tool to solve the vector optimization problem
involving nonsmooth V-invex function. We also consider the corresponding weak ver-
sions of the vector variational-like inequalities and establish various results for the
weak efficient solutions.

Keywords Michel–Penot subdifferential · Generalized convexity ·
Nonsmooth optimization · Efficient solution · Vector variational inequalities

1 Introduction

Convexity plays an important role to derive the optimality conditions and duality
results for various scalar and vector optimization problems, see, e.g. [6,8,18,35]. In
order to relax the convexity assumptions imposed on the objective functions involved,
a new class of functions containing the class of convex functions was introduced
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1676 V. Laha et al.

in [14] and further termed as invex functions in [10]. The class of invex functions
preserves many properties of the class of convex functions and has shown to be useful
in a variety of applications, see, e.g. [21]. However, the main difficulty to deal with
the vector optimization problems involving invex functions is the requirement of the
same kernel function for all the involved objective functions. In order to overcome
such restrictions a new class of differentiable vector valued functions called as V-invex
functions was introduced in [16] which coincides with the class of invex functions for
the scalar case. Further, the concept of V-invexity was extended in [11] for locally
Lipschitz vector valued functions using the notion of Clarke subdifferentials. We refer
to [22,23] and the references therein for more details related to the vector optimization
problems involving V-invex functions.

The concept of vector variational inequalities was introduced in [12] for finite
dimensional Euclidean spaces as a generalization of the classical Stampacchia vari-
ational inequalities for the vector valued functions. Using the concept of invexity,
the Stampacchia vector variational inequalities were extended to Stampacchia vector
variational-like inequalities in [38] and further studied in [24,36]. The concept of Minty
vector variational inequalities was introduced in [13] and an equivalence with the vec-
tor optimization problems involving differentiable convex functions was established.
Further, the results were extended in [42] and [43] for differentiable pseudoconvex
functions and differentiable pseudoinvex function, respectively, and in [3] for locally
Lipschitz invex functions. We refer to the recent results[2,4,25–30] and the references
therein for more details related to vector variational inequalities.

The outline of this paper is as follows: in Sect. 2, we give some basic definitions
and results which will be used in the sequel. In Sect. 3, we give the concept of V-
invariant monotonicity and establish equivalence between the V-invexity of the vector
valued function and the V-invariant monotonicity of the corresponding Michel–Penot
subdifferential. We also derive relationships between the V-invexity of the vector
valued function and the preinvexity of the scalar functions involved. In Sect. 4, we
formulate vector variational-like inequalities of Stampacchia and Minty type in terms
of the Michel–Penot subdifferentials and establish relationships with the efficient
solutions of the vector optimization problem involving V-invex function. In Sect. 5, we
formulate weak vector variational-like inequalities of Stampacchia and Minty type in
terms of the Michel–Penot subdifferentials and establish relationships with the weak
efficient solutions of the vector optimization problem involving V-invex function.
In Sect. 6, we conclude the results of this paper and discuss some future research
possibilities.

2 Preliminaries

In this section, we give some preliminary definitions and results, which will be used
in the sequel.

Let X be a real Banach space endowed with a norm ‖·‖ and X∗ its dual space with
a norm ‖·‖∗ . We denote by 2X∗

, 〈·, ·〉, [x, y] and (x, y), the family of all nonempty
subsets of X∗, the dual pair between X and X∗, the line segment for x, y ∈ X and the
interior of [x, y], respectively. Let S be a nonempty subset of X, let η : X × X → X be
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On nonsmooth V-invexity and vector 1677

a mapping and let αi : X × X → R+\{0} are strictly positive scalar valued functions
for all i ∈ M := {1, . . . , m}. Let f := ( f1, . . . , fm) : X → R

m be a vector valued
function such that fi : X → R are locally Lipschitz on S for all i ∈ M . We consider
the vector optimization problem (VOP) as follows:

min f (x) := ( f1(x), . . . , fm(x)), s.t. x ∈ S.

The following concept of efficiency was introduced in [34]. For recent developments
in the field of vector optimization, we refer to the monograph [1] and the references
therein.

Definition 1 A vector x̄ ∈ S is said to be an efficient solution of the VOP, iff for all
x ∈ S, one has

f (x) − f (x̄) := ( f1(x) − f1(x̄), . . . , fm(x) − fm(x̄)) /∈ R
m+\{0}.

Definition 2 A vector x̄ ∈ S is said to be a weak efficient solution of the VOP, iff for
all x ∈ S, one has

f (x) − f (x̄) := ( f1(x) − f1(x̄), . . . , fm(x) − fm(x̄)) /∈ −int R
m+.

Remark 1 It is clear that every efficient solution is a weak efficient solution, but the
converse is not true in general.

Now, we recall the definitions of the Clarke and Michel–Penot subdifferentials. For
more details related to nonsmooth analysis, we refer to the monographs [9,37].

Definition 3 Let S be a nonempty subset of X and let g : X → R be locally Lipschitz
at x̄ ∈ S. The Clarke directional derivative of g at x̄ in the direction v ∈ X, denoted
by g◦(x̄; v), is given by

g◦(x̄; v) := lim sup
x→x̄,t↓0

g(x + tv) − g(x)

t
,

and the Clarke subdifferential of g at x̄, denoted by ∂◦g(x̄), is given by

∂◦g(x̄) := {
x∗ ∈ X∗ : 〈

x∗, v
〉 ≤ g◦(x̄; v),∀v ∈ X

}
.

Definition 4 Let S be a nonempty subset of X and let g : S → R be locally Lipschitz
at x̄ ∈ S. The Michel–Penot directional derivative of g at x̄ in the direction v ∈ X,

denoted by g�(x̄; v), is given by

g�(x̄; v) := sup
w∈X

lim sup
t↓0

g(x̄ + tv + tw) − g(x̄ + tw)

t
,

and the Michel–Penot subdifferential of g at x̄, denoted by ∂�g(x̄), is given by

∂�g(x̄) := {
x∗ ∈ X∗ : 〈

x∗, v
〉 ≤ g�(x̄; v),∀v ∈ X

}
.
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Remark 2 It is clear that g�(x̄; v) ≤ g◦(x̄; v),∀v ∈ X, and ∂�g(x̄) ⊆ ∂◦g(x̄).

The following example illustrates the fact that the above inequality or inclusion
may be strict.

Example 1 Let g : R → R be a real valued function such that g(x) = x2 sin 1
x , when

x �= 0 and g(x) = 0, when x = 0. g is locally Lipschitz near x = 0. It is easy to see
that ∂�g(0) = {0} and g�(0; v) = 0. However, ∂◦g(0) = [−1, 1] and g◦(0; v) = |v|.

The following concepts of the invex sets and the preinvex functions was given in
[33].

Definition 5 Let S be a nonempty subset of X and let η : X × X → X be a mapping.
The set S is said to be an invex set with respect to η, iff for all x, y ∈ S and λ ∈
[0, 1], one has x + λη(y, x) ∈ S.

Definition 6 Let S be a nonempty invex subset of X with respect toη and let g : X → R

be a scalar valued function. The function g is said to be preinvex at x ∈ S over S, iff
for all y ∈ S and λ ∈ [0, 1], one has

g(x + λη(y, x)) ≤ λg(y) + (1 − λ)g(x).

g is said to be preinvex on S, iff g is preinvex at x ∈ S over S for every x ∈ S.

Based on the M-P subdifferential, we give the notions of invexity and V-invexity.

Definition 7 Let S be a nonempty subset of X and let g be locally Lipschitz near
y ∈ S. The function g is said to be M-P invex at y ∈ S over S with respect to η, iff for
all x ∈ S and y∗ ∈ ∂�g(y), one has

g(x) − g(y) ≥ 〈
y∗, η(x, y)

〉
.

The function g is said to be M-P invex on S with respect to η, iff g is M-P invex at
y ∈ S over S with respect to η for all y ∈ S.

Definition 8 Let S be a nonempty subset of X and let f := ( f1, . . . , fm) : X → R
m

be a vector valued function such that fi : X → R is locally Lipschitz near y ∈ S for
every i ∈ M := {1, . . . , m}. The function f is said to be M-P V-invex at y ∈ S over S
with respect to η and αi , i ∈ M, iff for all i ∈ M, x ∈ S and y∗

i ∈ ∂� fi (y), one has

fi (x) − fi (y) ≥ αi (x, y)
〈
y∗

i , η(x, y)
〉
.

The function f is said to be M-P V-invex on S with respect to η and αi , i ∈ M, iff f
is M-P V-invex at y ∈ S over S with respect to η and αi , i ∈ M for all y ∈ S.

The following assumptions will be used in the sequel.
Condition A Let S be an invex subset of X with respect to η, and let f :=

( f1, . . . , fm) : X → R
m be a vector valued function. Then, for all x, y ∈ S and

for all i ∈ M , one has

fi (x + η(y, x)) ≤ fi (y).
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Condition C Let S be an invex subset of X with respect to η. Then, for all x, y ∈ S
and λ, λ1, λ2 ∈ [0, 1], one has

(a) η(x, x + λη(y, x)) = −λη(y, x),

(b) η(y, x + λη(y, x)) = (1 − λ)η(y, x),

(c) η(x + λ1η(y, x), x + λ2η(y, x)) = (λ1 − λ2)η(y, x).

For the examples of the map η satisfying the Conditions C(a), C(b) and C(c), we refer
to [3,40,41].

Condition D Let S be an invex subset of X with respect to η and let αi , i ∈ M be
the scalar valued mappings. Then, for all i ∈ M, x, y ∈ S and λ ∈ [0, 1], one has

(a) αi (x, x + λη(y, x)) ≥ αi (y, x),

(b) αi (y, x + λη(y, x)) ≥ αi (y, x),

(c) αi (x,x+λη(y,x))
αi (x+λη(y,x),x)

≥ αi (y, x).

Now, we give example of a map αi , i ∈ M which satisfies Condition D.

Example 2 Let S be an invex subset of X with respect to η : X × X → X such
that η satisfies Condition C. Let αi : X × X → R+\{0}, i ∈ M be the scalar valued
mappings defined as follows

αi (x, y) := 1

i + ‖η(x, y)‖ ,∀x, y ∈ X.

Then, it is easy to see that αi , i ∈ M satisfies Condition D.

The mapping η is said to be skew on S, iff for all x, y ∈ S, one has, η(x, y) +
η(y, x) = 0. The mapping αi , i ∈ M is said to be symmetric on S, iff for all x, y ∈ S,

one has, αi (x, y) = αi (y, x).

The following mean value theorem in terms of the Michel–Penot subdifferential was
proved in [7]. We refer to [20,44,45] and the references therein for more applications
of the Michel–Penot subdifferentials.

Theorem 1 Let x, y ∈ X, and suppose that g : X → R is locally Lipschitz on an
open set containing the line segment [x, y]. Then there exists a point z ∈ (x, y) such
that

g(x) − g(y) ∈ 〈
∂�g(y), x − y

〉
.

Remark 3 The above mean value theorem in terms of the Michel–Penot subdifferential
is stronger than the Lebourg mean value theorem (see, e.g. [9]), the corresponding
version for the Clarke subdifferential, since the Michel–Penot subdifferential of a
function at a point is contained, and sometimes properly contained, in its Clarke
subdifferential at this point, and hence the results obtained by the application of above
theorem will be stronger than the results obtained by the application of the Lebourg
mean value theorem.
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3 V-invexity and V-invariant monotonicity using the Michel–Penot
subdifferentials

In this section, we extend the concept of invariant monotonicity (see, e.g. [15,41]) to
V-invariant monotonicity. We also establish relationship between the M-P V-invexity
of a vector valued function and the preinvexity of the corresponding scalar valued
functions.

Definition 9 Let S be a nonempty subset of X and let Ti : X → 2X∗
be a set-valued

mapping for every i ∈ M := {1, . . . , m}. The mapping T : (T1, . . . , Tm) is said to
be V-invariant monotone on S with respect to η and αi , i ∈ M, iff for all i ∈ M,

x, y ∈ S, x∗
i ∈ Ti (x) and y∗

i ∈ Ti (y), one has

αi (x, y)
〈
y∗

i , η(x, y)
〉 + αi (y, x)

〈
x∗

i , η(y, x)
〉 ≤ 0.

The following proposition gives the relationship between the M-P V-invexity of
the vector valued function and the V-invariant monotonicity of the corresponding
Michel–Penot subdifferential.

Proposition 1 Let S be a nonempty subset of X and let f := ( f1, . . . , fm) : X → R
m

be locally Lipschitz on S. If f is M-P V-invex with respect to η : X × X → X and
αi : X × X → R+\{0}, i ∈ M := {1, . . . , m} on S, then ∂� f := ∂� f1 × · · · × ∂� fm

is V-invariant monotone with respect to η and αi , i ∈ M on S.

Proof Suppose that f is M-P V-invex with respect to η and αi , i ∈ M on S. Then, for
every x, y ∈ S, x∗

i ∈ ∂� fi (x), y∗
i ∈ ∂� fi (y), and i ∈ M , one has

f (x) − f (y) ≥ αi (x, y)
〈
y∗

i , η(x, y)
〉

and f (y) − f (x) ≥ αi (y, x)
〈
x∗

i , η(y, x)
〉
.

Adding the above inequalities, for every x, y ∈ S, x∗
i ∈ ∂� fi (x), y∗

i ∈ ∂� fi (y), and
i ∈ M , one has

0 ≥ αi (x, y)
〈
y∗

i , η(x, y)
〉 + αi (y, x)

〈
x∗

i , η(y, x)
〉
.

Hence, ∂� f is V-invariant monotone with respect to η and αi , i ∈ M on S. ��
The following proposition gives the converse of above proposition under the

assumption that Condition A, Condition C and Condition D hold.

Proposition 2 Let S be a nonempty invex subset of X with respect to η such that η

satisfies Condition C and let f := ( f1, . . . , fm) : X → R
m be locally Lipschitz on

S such that f satisfies Condition A. If ∂� f := ∂� f1 × · · · × ∂� fm is V-invariant
monotone with respect to η and αi , i ∈ M on S such that αi , i ∈ M satisfy Condition
D, then f is M-P V-invex with respect to η and αi , i ∈ M on S.

Proof Let x, y ∈ S and let z(λ) := y + λη(x, y) for every λ ∈ [0, 1]. Since S is
an invex set with respect to η, it follows that, z(λ) ∈ S,∀λ ∈ [0, 1]. By the mean
value theorem, for every i ∈ M and for any λ̂ ∈ (0, 1), there exists λ̃i ∈ (0, λ̂) and
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On nonsmooth V-invexity and vector 1681

λ̄i ∈ (λ̂, 1) such that, for every i ∈ M and for some z̃∗
i ∈ ∂� fi (z(λ̃i )), i ∈ M and for

some z̄∗
i ∈ ∂� fi (z(λ̄i )), i ∈ M , one has

fi (z(λ̂)) − fi (z(0)) = λ̂
〈
z̃∗

i , η(x, y)
〉
, ∀i ∈ M, (1)

and

fi (z(1)) − fi (z(λ̂)) = (1 − λ̂)
〈
z̄∗

i , η(x, y)
〉
, ∀i ∈ M. (2)

By the V-invariant monotonicity of ∂� f with respect to η and αi , i ∈ M on S,

Condition C for η and Condition D for αi , i ∈ M, for any i ∈ M and y∗
i ∈ ∂� fi (y),

one has

〈
z̃∗

i , η(x, y))
〉 ≥ αi (x, y)

〈
y∗

i , η(x, y))
〉
, (3)

〈
z̄∗

i , η(x, y))
〉 ≥ αi (x, y)

〈
y∗

i , η(x, y))
〉
. (4)

From (1), (2), (3) and (4), for any i ∈ M , one has

fi (z(λ̂)) − fi (z(0)) ≥ λ̂αi (x, y)
〈
y∗

i , η(x, y))
〉
, (5)

and

fi (z(1)) − fi (z(λ̂)) ≥ (1 − λ̂)αi (x, y)
〈
y∗

i , η(x, y))
〉
. (6)

Adding the above inequalities and using Condition A for f , it follows that

fi (x) − fi (y) ≥ αi (x, y)
〈
y∗

i , η(x, y))
〉
, ∀y∗

i ∈ ∂� fi (y),∀i ∈ M.

Since x, y ∈ S are arbitrary, it implies that, f is M-P V-invex with respect to η and
αi , i ∈ M on S and hence the result.

The following theorem is a direct consequence of Proposition 1 and 2. ��
Theorem 2 Let S be a nonempty invex subset of X with respect to η such that η

satisfies Condition C and let f := ( f1, . . . , fm) : X → R
m be locally Lipschitz on S

such that f satisfies Condition A. Let αi : X × X → R+\{0}, i ∈ M := {1, . . . , m}
be such that αi , i ∈ M satisfy Condition D. Then, f is M-P V-invex with respect to
η and αi , i ∈ M on S, iff ∂� f := ∂� f1 × · · · × ∂� fm is V-invariant monotone with
respect to η and αi , i ∈ M on S.

The following proposition gives the relationship between the M-P V-invexity of
the vector valued function and the preinvexity of the corresponding scalar valued
functions.

Proposition 3 Let S be a nonempty invex subset of X with respect to η such that η

satisfies Condition C. If f is M-P V-invex with respect to η and αi , i ∈ M on S, then
fi is preinvex with respect to η on S for all i ∈ M.
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Proof Let x, y ∈ S for any λ ∈ (0, 1) and let z := y +λη(x, y). Since S is invex with
respect to η, z ∈ S. By the M-P V-invexity of f on S with respect to η and αi , i ∈ M,

for all i ∈ M and z∗
i ∈ ∂� fi (z), one has

fi (x) − fi (z) ≥ αi (x, z)
〈
z∗

i , η(x, z)
〉
, and fi (y) − fi (z) ≥ αi (y, z)

〈
z∗

i , η(y, z)
〉
.

Since η satisfies Condition C and αi , i ∈ M satisfy Condition D, it follows that

fi (x) − fi (z) ≥ (1 − λ)αi (x, y)
〈
z∗

i , η(x, y)
〉
, (7)

and

fi (y) − fi (z) ≥ −λαi (x, y)
〈
z∗

i , η(x, y)
〉
. (8)

��
Multiplying (7) by λ, (8) by (1-λ) and adding the inequalities, it follows that

λ fi (x) + (1 − λ) fi (y) ≥ fi (y + λη(x, y)), ∀i ∈ M.

Since x, y ∈ S and λ ∈ (0, 1) are arbitrary, fi is preinvex with respect to η on S for
all i ∈ M and hence the result.

4 Vector variational-like inequalities using the Michel–Penot subdifferentials

In this section, we consider the vector variational-like inequalities of Stampacchia
type in terms of the Michel–Penot subdifferentials, denoted by MP-SVVLI ( f , S), as
follows:

(MP-SVVLI)To find x̄ ∈ S such that, for all x ∈ S, there exists x̄∗
i ∈ ∂� fi (x̄), i ∈

M := {1, . . . , m} such that,(
〈
x̄∗

1 , η(x, x̄)
〉
, . . . ,

〈
x̄∗

m, η(x, x̄)
〉
) − Rm+\{0}.

The following proposition gives the condition under which a solution of the MP-
SVVLI ( f, S) is also an efficient solution of the VOP ( f, S).

Proposition 4 Let S be a nonempty subset of X and let f := ( f1, . . . , fm) : X → R
m

be locally Lipschitz and M-P V-invex with respect to η and αi , i ∈ M at x̄ ∈ S over
S. If x̄ solves the MP-SVVLI ( f, S) with respect to η, then x̄ is an efficient solution of
the VOP ( f, S).

Proof Suppose that x̄ is not an efficient solution of the VOP ( f, S). Then, there
exists x̃ ∈ S such that, fi (̃x) − fi (x̄) ≤ 0,∀i ∈ M, with strict inequality for at
least one i ∈ M. By the M-P V-invexity of f at x̄ over S with respect to η and
αi , i ∈ M, it follows that, αi (̃x, x̄)

〈
x̄∗

i , η(̃x, x̄)
〉 ≤ 0,∀x̄∗

i ∈ ∂� fi (x̄),∀i ∈ M, with
strict inequality for at least one i ∈ M. Since αi (̃x, x̄) > 0 for all i ∈ M, it implies
that,

〈
x̄∗

i , η(̃x, x̄)
〉 ≤ 0,∀x̄∗

i ∈ ∂� fi (x̄),∀i ∈ M, with strict inequality for at least one
i ∈ M, a contradiction to the fact that x̄ solves MP-SVVLI ( f, S) and hence the result.
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Example 3 Consider the VOP as follows:

min f (x) := ( f1(x), f2(x)) s.t. x ∈ S ⊆ R
2,

where f1(x) := x1/x2, f2(x) := x2/x1 and S := {x := (x1, x2)|x1 ≥ 1, x2 ≥ 1}. It is
easy to see that f is M-P V-invex with respect to α1(x, x̄) := x̄2/x2, α2(x, x̄) := x̄1/x1
and η(x, x̄) := x − x̄ on S. Let x̄ := (1, 1) ∈ S. Then, ∂� f1(x̄) := {(1,−1)} and
∂� f2(x̄) := {(−1, 1)}. Now, for any x ∈ S, x̄∗

1 ∈ ∂� f1(x̄) and x̄∗
2 ∈ ∂� f2(x̄),

one has,
〈
x̄∗

1 , η(x, x̄)
〉 = x1 − x2, and

〈
x̄∗

2 , η(x, x̄)
〉 = x2 − x1, which implies

that,

(〈
x̄∗

1 , η(x, x̄)
〉
,
〈
x̄∗

2 , η(x, x̄)
〉) − R

2+\{0}.

Hence, x̄ := (1, 1)solves MP-SVVLI ( f, S) with respect to η. By Proposition 4, it
follows that, x̄ is also an efficient solution of the VOP ( f, S).

The following result is a direct consequence of the fact that every efficient solution
is also a weak efficient solution of the VOP ( f, S).

Corollary 1 Let S be a nonempty subset of X and let f be locally Lipschitz and M-P
V-invex with respect to η and αi , i ∈ M at x̄ ∈ S over S. If x̄ solves the MP-SVVLI
( f, S) with respect to η, then x̄ is a weak efficient solution of the VOP ( f, S).

Now, We consider the vector variational-like inequalities of Minty type in terms of
the Michel–Penot subdifferentials, denoted by MP-MVVLI ( f , S), as follows:

(MP-MVVLI) To find x̄ ∈ S such that, for all x in S, and for all x∗
i ∈ ∂� fi (x), i ∈

M := {1, . . . , m}, one has,(
〈
x∗

1 , η(x, x̄)
〉
, . . . ,

〈
x∗

m, η(x, x̄)
〉
) /∈ −R

m+\{0}.
The following result gives the condition under which an efficient solution of the

VOP ( f, S) also solves the MP-MVVLI ( f, S).

Proposition 5 Let S be a nonempty subset of X and let f := ( f1, . . . , fm) : X → R
m

be locally Lipschitz and M-P V-invex on S with respect to η and αi , i ∈ M such that
η is skew and αi , i ∈ M is symmetric. If x̄ is an efficient solution of the VOP ( f, S),

then x̄ solves the MP-MVVLI ( f, S) with respect to η.

Proof Suppose to the contrary that x̄ does not solve the MP-MVVLI ( f, S) with respect
to η. Then, there exists x̃ ∈ S and x̃∗

i ∈ ∂� fi (x̃), i ∈ M such that,
〈
x̃∗

i , η(x̃, x̄)
〉 ≤

0,∀i ∈ M, with strict inequality for at least one i ∈ M. Since, η is skew, αi , i ∈ M is
symmetric and αi (x̃, x̄) > 0, i ∈ M, it follows that αi (x̄, x̃)

〈
x̃∗

i , η(x̄, x̃)
〉 ≥ 0,∀i ∈

M, with strict inequality for at least one i ∈ M. By the M-P V-invexity of f on S, it
implies that fi (x̃) − fi (x̄) ≤ 0,∀i ∈ M, with strict inequality for at least one i ∈ M,

a contradiction to the fact that x̄ is an efficient solution of the VOP ( f, S) and hence
the result. ��
Example 4 Consider the VOP as follows:

min f (x) := ( f1(x), f2(x)) s.t. x ∈ S ⊆ R
2,
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where f1(x) := | 2x1−x2
x1+x2

|, f2(x) := x1−2x2
x1+x2

and S := {x1 ≤ x2, x1 ≥ 1, x2 ≥ 1}. It is

easy to see that f is M-P V-invex with respect to η(x, y) := (
3(x1−1)
x1+x2

,
3(x2−2)
x1+x2

) and
α1(x, y) = α2(x, y) = 1. Let x̄ := (1, 2) ∈ S. Then, for any x ∈ S\{x̄}, one has,
f1(x)− f1(x̄) = | 2x1−x2

x1+x2
| > 0, which implies that, ( f1(x) − f1(x̄), f2(x) − f2(x̄)) /∈

−R
2+\{0}. Hence, x̄ := (1, 2) is an efficient solution of the VOP ( f, S). By Proposition

5, it follows that, x̄ also solves MP-MVVLI ( f, S) with respect to η.

The following result gives the condition under which converse of the above propo-
sition holds.

Proposition 6 Let S be a nonempty invex subset of X with respect to η such that η is
skew and satisfies Condition C and let f be locally Lipschitz and M-P V-invex with
respect to η and αi , i ∈ M on S such that αi , i ∈ M satisfy Condition D. If x̄ ∈ S
solves MP-MVVLI ( f, S) with respect to η, then x̄ is an efficient solution of the VOP
( f, S).

Proof Suppose to the contrary that x̄ is not an efficient solution of the VOP ( f, S).
Then, there exists x̃ ∈ S such that

fi (x̃) − fi (x̄) ≤ 0, ∀i ∈ M, (9)

with strict inequality for at least one i ∈ M. Set x(λ) := x̄ + λη(x̃, x̄) for any
λ ∈ [0, 1]. Since S is an invex set with respect to η, for any λ ∈ [0, 1], x(λ) ∈ S.

Since f is M-P V-invex with respect to η and αi , i ∈ M on S, by Proposition 3, fi is
preinvex with respect to η for all i ∈ M on S and hence, for all i ∈ M and λ ∈ [0, 1],
one has

fi (x̄ + λη(x̃, x̄)) − fi (x̄) ≤ λ
[

fi (x̃) − fi (x̄)
]
.

In particular, for λ = 1, it follows that

fi (x̄ + η(x̃, x̄)) − fi (x̄) ≤ fi (x̃) − fi (x̄), ∀i ∈ M. (10)

By the mean value theorem, for every i ∈ M, there exists λ̂i ∈ (0, 1) and x̂∗
i ∈

∂� fi (x(λ̂i )) such that

fi (x̄ + η(x̃, x̄)) − fi (x̄) = 〈
x̂∗

i , η(x̃, x̄)
〉
. (11)

From (10) and (11), it follows that

〈
x̂∗

i , η(x̃, x̄)
〉 ≤ fi (x̃) − fi (x̄), ∀i ∈ M. (12)

Suppose that λ̂1 = λ̂2 = · · · = λ̂m = λ̂. Multiplying both the sides of the above
inequalities by −λ̂, and using skewness and Condition C for η, it follows that

〈
x̂∗

i , η(x(λ̂), x̄)
〉
≤ λ̂

[
fi (x̃) − fi (x̄)

]
, ∀i ∈ M.
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From (9), it follows that, for every i ∈ M, there exists x(λ̂) ∈ S and x̂∗
i ∈

∂� fi (x(λ̂)) such that

〈
x̂∗

i , η(x(λ̂), x̄)
〉
≤ 0, ∀i ∈ M,

with strict inequality for at least one i ∈ M, a contradiction to the fact that x̄ ∈ S
solves the MP-MVVLI ( f, S) and hence the result.

Consider the cases when λ̂1, λ̂2, . . . , λ̂m are not all equal. Without loss of generality,
we may assume that λ̂1 �= λ̂2. Then, from (12), one has

〈
x̂∗

1 , η(x̃, x̄)
〉 ≤ f1(x̃) − f1(x̄), (13)

and 〈
x̂∗

2 , η(x̃, x̄)
〉 ≤ f2(x̃) − f2(x̄). (14)

Since f is M-P V-invex with respect to η and αi , i ∈ M on S, by Proposition 1, ∂� f is
V-invariant monotone with respect to η and αi , i ∈ M on S, and hence, by Condition
C for η and by Condition D for αi , i ∈ M, it follows that, for all x̂∗

12 ∈ ∂� f1(x(λ̂2))

and x̂∗
21 ∈ ∂� f2(x(λ̂1)), one has

α1(x̃, x̄)
〈
x̂∗

12, (λ̂1 − λ̂2)η(x̃, x̄)
〉
+ α1(x̃, x̄)

〈
x̂∗

1 , (λ̂2 − λ̂1)η(x̃, x̄)
〉
≤ 0, (15)

and

α2(x̃, x̄)
〈
x̂∗

2 , (λ̂1 − λ̂2)η(x̃, x̄)
〉
+ α2(x̃, x̄)

〈
x̂∗

21, (λ̂2 − λ̂1)η(x̃, x̄)
〉
≤ 0. (16)

If λ̂1 − λ̂2 > 0, dividing (15) by α1(x̃, x̄)(λ̂1 − λ̂2), and using (13), for all x̂∗
12 ∈

∂� f1(x(λ̂2)), one has

〈
x̂∗

12, η(x̃, x̄)
〉 ≤ f1(x̃) − f1(x̄).

If λ̂2 − λ̂1 > 0, dividing (16) by α2(x̃, x̄)(λ̂2 − λ̂1), and using (14), for all x̂∗
21 ∈

∂� f2(x(λ̂1)), one has

〈
x̂∗

21, η(x̃, x̄)
〉 ≤ f2(x̃) − f2(x̄).

Therefore, for the case λ̂1 �= λ̂2, setting λ̂ := min
{
λ̂1, λ̂2

}
, there exists x̄∗

i ∈
∂� fi (x(λ̄)) such that

〈
x̄∗

i , η(x̃, x̄)
〉 ≤ fi (x̃) − fi (x̄), ∀i = 1, 2.

By continuation of this process, we can find ¯̄λ ∈ (0, 1) and ¯̄x∗
i ∈ ∂� fi (x( ¯̄λ)) such that,

¯̄λ := min
{
λ̂1, . . . , λ̂m

}
and
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〈 ¯̄x∗
i , η(x̃, x̄)

〉 ≤ fi (x̃) − fi (x̄), ∀i ∈ M.

Multiplying the above inequalities by −¯̄λ and using skewness and Condition C for η,

it follows that

〈 ¯̄x∗
i , η(x( ¯̄λ), x̄)

〉
≤ ¯̄λ [

fi (x̃) − fi (x̄)
]
, ∀i ∈ M.

From (9), there exists x( ¯̄λ) ∈ S and ¯̄x∗
i ∈ ∂� fi (x( ¯̄λ)), i ∈ M such that, for all i ∈ M ,

one has

〈 ¯̄x∗
i , η(x( ¯̄λ), x̄)

〉
≤ 0,

with strict inequality for at least one i ∈ M, a contradiction to the fact that x̄ ∈ S
solves MP-MVVLI ( f , S) and hence the result. ��

The following theorem is a direct consequence of Propositions 5 and 6.

Theorem 3 Let S be a nonempty invex subset of X with respect to η such that η is
skew and satisfies Condition C and let f be locally Lipschitz and M-P V-invex with
respect to η and αi , i ∈ M such that αi , i ∈ M satisfy Condition D. Then, x̄ ∈ S
solves MP-MVVLI ( f, S) with respect to η, iff x̄ is an efficient solution of the NVOP
( f, S.)

The following corollary is a direct consequence of the fact that every efficient
solution is also a weak efficient solution.

Corollary 2 Let S be a nonempty invex subset of X with respect to η such that η is
skew and satisfies Condition C and let f be locally Lipschitz and M-P V-invex with
respect to η and αi , i ∈ M such that αi , i ∈ M satisfy Condition D. If x̄ ∈ S solves
MP-MVVLI ( f, S) with respect to η, then x̄ is a weak efficient solution of the NVOP
( f, S.)

5 Weak vector variational-like inequalities using the Michel–Penot
subdifferentials

Now, we consider the weak formulation of the vector variational-like inequalities
of Stampacchia type in terms of the Michel–Penot subdifferentials, denoted by MP-
SWVVLI ( f , S), as follows:

(MP-SWVVLI) To find x̄ ∈ S such that, for all x ∈ S, there exists x̄∗
i ∈ ∂� fi (x̄), i ∈

M := {1, . . . , m} such that, (
〈
x̄∗

1 , η(x, x̄)
〉
, . . . ,

〈
x̄∗

m, η(x, x̄)
〉
) /∈ −intRm+.

Remark 4 It is clear that every solution of the MP-SVVLI ( f, S) is also a solution of
MP-SWVVLI ( f, S), but the converse is not true in general.

The following result gives the condition under which a solution of the MP-SWVVLI
( f, S) is also a weak efficient solution of the VOP ( f, S).
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Proposition 7 Let S be a nonempty subset of X and let f be locally Lipschitz and M-P
V-invex with respect to η and αi , i ∈ M at x̄ ∈ S over S. If x̄ solves the MP-SWVVLI
( f, S) with respect to η, then x̄ is a weak efficient solution of the VOP ( f, S).

Proof Suppose to the contrary that x̄ is not a weak efficient solution of the VOP ( f, S).

Then, there exists x̃ ∈ S such that

fi (̃x) − fi (x̄) < 0, ∀i ∈ M. (17)

By the M-P V-invexity of f at x̄ over S with respect to η and αi , i ∈ M, and since
αi (̃x, x̄) > 0 for all i ∈ M, it implies that

〈
x̄∗

i , η(̃x, x̄)
〉
< 0, ∀x̄∗

i ∈ ∂� fi (x̄),∀i ∈ M,

a contradiction to the fact that x̄ solves MP-SWVVLI ( f, S) and hence the result.

Now, we consider the weak formulation of the vector variational-like inequalities of
Minty type in terms of the Michel–Penot subdifferentials, denoted by MP-MWVVLI
( f , S), as follows:

(MP-MWVVLI) To find x̄ ∈ S such that, for all x ∈ S, and for all x∗
i ∈ ∂� fi (x), i ∈

M := {1, . . . , m}, one has, (
〈
x∗

1 , η(x, x̄)
〉
, . . . ,

〈
x∗

m, η(x, x̄)
〉
) /∈ −intRm+.

Remark 5 Obviously, every solution of the MP-MVVLI ( f, S) is also a solution of
the MP-MWVVLI ( f, S), but the converse is not true in general.

The following result is a direct consequence of Proposition 5.

Corollary 3 Let S be a nonempty subset of X and let f := ( f1, . . . , fm) : X → R
m

be locally Lipschitz and M-P V-invex on S with respect to η and αi , i ∈ M such that
η is skew and αi , i ∈ M is symmetric. If x̄ is an efficient solution of the VOP ( f, S),

then x̄ solves the MP-MWVVLI ( f, S) with respect to η.

The following corollary is a direct consequence of Propositions 4 and 5.

Corollary 4 Let S be a nonempty subset of X and let f := ( f1, . . . , fm) : X → R
m

be locally Lipschitz and M-P V-invex on S with respect to η and αi , i ∈ M such that
η is skew and αi , i ∈ M is symmetric. If x̄ solves the MP-SVVLI ( f, S) with respect
to η, then x̄ solves the MP-MWVVLI ( f, S) with respect to η.

The following result gives the relationship between the MP-SWVVLI ( f, S) and
MP-MWVVLI ( f, S).

Proposition 8 Let S be a nonempty subset of X and let f be M-P V-invex with respect
to η and αi , i ∈ M on S such that η is skew. If x̄ ∈ S solves the MP-SWVVLI ( f, S)
with respect to η, then it also solves the MP-MWVVLI ( f, S) with respect to η.

Proof Suppose that x̄ solves the MP-SWVVLI ( f, S) with respect to η. Then, for
every i ∈ M, there exists x̄∗

i ∈ ∂� fi (x̄) such that, for all x ∈ S, one has

(
〈
x̄∗

1 , η(x, x̄)
〉
, . . . ,

〈
x̄∗

m, η(x, x̄)
〉
) /∈ −intRm+. (18)
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Since f is M-P V-invex with respect to η and αi , i ∈ M on S, by Proposition 1, ∂� f
is V-invariant monotone with respect to η and αi , i ∈ M on S and hence, by skewness
of η, for all i ∈ M, x ∈ S and x∗

i ∈ ∂� fi (x), one has

αi (x, x̄)

αi (x̄, x)

〈
x̄∗

i , η(x, x̄)
〉 ≤ 〈

x∗
i , η(x, x̄)

〉
. (19)

From (18) and (19), for all x ∈ S, i ∈ M and x∗
i ∈ ∂� fi (x), one has

(〈
x∗

1 , η(x, x̄)
〉
, . . . ,

〈
x∗

m, η(x, x̄)
〉)

/∈ −intRm+.

Thus, x̄ solves the MP-MWVVLI ( f, S) and hence the result. ��
The following result gives the condition under which a weak efficient solution of

the NVOP ( f, S) also solves the MP-MWVVLI ( f, S).

Proposition 9 Let S be a nonempty subset of X and let f be locally Lipschitz and
M-P V-invex on S with respect to η and αi , i ∈ M such that η is skew and αi , i ∈ M
is symmetric. If x̄ is a weak efficient solution of the VOP ( f, S), then x̄ solves the
MP-MWVVLI ( f, S) with respect to η.

Proof Suppose to the contrary that x̄ does not solve the MP-MWVVLI ( f, S)
with respect to η. Then, there exists x̃ ∈ S and x̃∗

i ∈ ∂� fi (x̃), i ∈ M such
that,

〈
x̃∗

i , η(x̃, x̄)
〉

< 0,∀i ∈ M. Since, η is skew, αi , i ∈ M is symmetric and
αi (x̃, x̄) > 0, i ∈ M, it follows that αi (x̄, x̃)

〈
x̃∗

i , η(x̄, x̃)
〉
> 0,∀i ∈ M. By the M-P

V-invexity of f on S, it implies that fi (x̃) − fi (x̄) < 0,∀i ∈ M, a contradiction to
the fact that x̄ is a weak efficient solution of the VOP ( f, S) and hence the result.

6 Conclusions

In this paper, we have formulated Stampacchia and Minty type vector variational-like
inequalities in terms of the Michel–Penot subdifferentials which is the smallest among
all the convex valued subdifferentials. We have established the relationships among
the solutions of the Stampacchia and Minty type vector variational-like inequalities
and the efficient solutions of the vector optimization problems involving locally Lip-
schitz Michel–Penot V-invex functions and could thus overcome the restriction of
the requirement of the same kernel function for all the involved objective functions.
We have also considered the corresponding weak versions of the Stampacchia and
Minty vector variational-like inequalities and also established relationships between
their solutions and the weak efficient solutions of the nonsmooth vector optimization
problem under the assumption of Michel–Penot V-invexity. The results of this paper
are more general and sharper than the corresponding results present in literature (see,
e.g. [3,24]) due to the use of V-invexity and Michel–Penot subdifferentials. Further,
the results of this paper may be extended using some more general locally Lipschitz
V-r-invexity assumptions, which was introduced in [5] and further studied in [31] and
[32].
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